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Abstract: The use of secondary raw materials in metallurgical processes such as steelmaking is an
important contribution to the circular economy aspired to by EU members and many other countries.
The agglomeration of dusts, fines and sludges is an important pretreatment step to enable the use of
these materials in subsequent melting processes, such as steelmaking in electric arc furnaces (EAFs).
It also reduces the amount of by-products and waste materials that are currently waste for disposal
and are landfilled. The presented research is part of the Fines2EAF project, which aims to increase
the value of steelmaking residues by internal recycling and use or reuse in the form of agglomerates.
The approach followed in this project is the use of a hydraulic stamp press and alternative binder
systems to produce cement-free agglomerates. The first results of lab-scale agglomeration tests of six
different recipes with varying pressing forces are presented in this paper. It is shown that the addition
of fibres from paper recycling has a strong effect on the cold compression stability of the agglomerates,
by far exceeding other effects such as increased pressing force. Overall, the agglomerates produced
in the lab show promising characteristics, for example, cold compression stability and abrasion
resistance, which should allow for use in EAF steelmaking.

Keywords: secondary raw materials; recycling; press agglomeration; metallurgical by-products;
stamp press; cement-free briquettes; electric arc furnace

1. Introduction

The experiments presented here for the agglomeration of secondary raw materials of the electric
arc furnace (EAF) process are part of the research project Fines2EAF, which is funded by the European
Research Fund for Coal and Steel. The aim of the project is to find an easy and flexible on-site
solution for the agglomeration of fine materials, which accrue in low quantities in steel plants. Beyond
the technical challenges of agglomerate fine materials, the solution has to be low cost to fulfil the
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requirement of economic efficiency. Therefore, the stamp press is the central element of the investigated
process chain.

The stamp press has the ability to be easily adapted to different materials compared with the
pelletising process, which is also quite common for the recovery of metallurgical waste materials.
A benefit compared with pelletising is the lower amount of binding agent and the lack of a drying
process, which is necessary after pelletising, thus making the stamp press a more economical solution.
Furthermore, the variation of the pressing force and mould size as well as the independence of the
grain size are benefits which are important for the diversity of materials found in a steel plant [1,2].

The EAF is the main component of the secondary (electric) steelmaking route, which consists of
the furnace, a casting plant and a hot rolling mill. In 2017, global crude steel production via the electric
steel route was 28.0%, accounting for 472 million tons of crude steel [3]. During the production and
processing of steel, a variety of by-products accrue, such as slags, dusts, sludges and scales. These
by-products have the potential to be recycled on site but at the moment are not because it is not suitable
due to the lack of low-cost methods. Therefore, they are disposed of in landfills or reused outside the
steel plant, for example, as construction material. Due to the changes in worldwide environmental
policies towards integrated pollution prevention, the regulations for applications outside of steel plants
and landfills have become more restrictive [4,5].

However, the reuse of these substances is limited both by their particle size and their sometimes
poor quality. Heavy metals and hydrocarbons make direct landfilling or recycling difficult [6].
Nevertheless, today, around 10%–67% are landfilled [7,8]. Therefore, research on other methods for
reuse, especially the recycling of residues into EAFs, remains useful:

• The residues contain a high content of metal oxides, which are an important source for iron
production. Other major components of the residues, such as magnesium oxide, can also bring
benefits to the process [9].

• The use of residual materials outside the steelworks or their landfills is restricted, more expensive
or prohibited due to stricter environmental laws [10,11].

• There are also opportunities to reduce the cost of required scrap, alloying elements or slag formers,
as well as the cost of landfilling, so that even profits can be made.

Driven by political pressure and the goal of reducing waste and saving primary raw materials by
substitution with secondary raw materials, a favourable and flexible agglomeration method must be
found. The main aim of the presented work was to produce agglomerates with sufficient physical
properties (abrasion resistance and cold strength) to be used in EAFs without material loss during
handling. The following section presents a selection of residual materials from a steel mill that were
successfully formed into agglomerates using a stamp press.

2. Materials and Methods

The residues collected by SIDENOR were characterised by an EVO 50 Zeiss W filament SEM,
equipped with an Inca Oxford energy-dispersive X-ray spectroscopy (EDS) probe. Fine samples were
analysed in as-received condition using carbon adhesive on aluminium stubs to handle the material.
Coarse samples were moulded in a bicomponent cold araldite-based resin, grinded by abrasive papers
and polished by 1 µm diamond paste on metallurgical velvet.

General chemical composition measurement by EDS was performed on an area of 5 mm2.
Heat treatments for measurement of moisture, loss of ignition (LOI) and carbonate content were

performed according to the following standards:

• EN 14346:2006: Characterisation of waste—Calculation of dry matter by determination of dry
residue or water content

• EN 15169:2007: Characterisation of waste—Determination of loss on ignition in waste, sludge
and sediments
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• EN 459-25:2010: Building lime—Test methods

For each temperature test, absolute mass variation was expressed as

mass loss[%] =
mi −m f

mi −mc

where mi is the initial mass of the sample, mf is the mass of the sample after heat treatment and mc is
the mass of the empty crucible.

Water content measurement was performed at 105 ◦C, dwelling the samples overnight in the
furnace; LOI was measured at 550 ◦C, dwelling the samples for 2 h; and carbonates concentration was
measured at 1050 ◦C, dwelling the samples for 2 h.

Dry mass and water content were expressed as indicated in the EN 14346 standard as

mDR =
mc −ma

mb −ma
·100

mW = 100−mDR

where mDR is the dry residue of the sample, mc is the mass of the crucible containing the dried sample,
mb is the mass of the crucible containing the undried sample, ma is the mass of the empty crucible and
mW is the water content of the sample.

LOI, associated with the hydroxide within the samples, was expressed as indicated in the EN
15169 standard as

mLOI =

(
mb −mc

md −ma
·100− (100−mDR)

)
·

100
mDR

where mLOI is the loss of ignition of the sample.
Carbonate content was expressed as indicated in the EN 459-2 standard as

mC =

((
m11 −m12

m11
·100

)
−

(
mb −mc

md −ma
·100

))
·

100

100−
(mb−mc

md−ma
·100

)
where m11 is the mass of the sample before ignition at 1050 ◦C; m12 is the mass of the sample after
ignition at 1050 ◦C; and ma, mb, mc and md are the masses referring to the LOI determination.

Thermal gravimetric–differential scanning calorimetry (TG-DSC) simultaneous thermal analysis
was performed on 25 mg of sample in a Labsys Setaram machine, with a heating ramp of 30 ◦C/min
from room temperature to 1200 ◦C under Ar atmosphere and using Al2O3 pans of 100 µL.

The identification of the transformation highlighted by TG-DSC analysis was performed according
to the “Handbook of thermogravimetric system of minerals and its use in geological practice” [12].

XRD on as-received fines (grinding sludge (GS), oxy-cutting fines and combustion chamber dusts)
was carried out by means of a Rigaku Smartlab SE diffractometer in θ-θ Bragg–Brentano configuration
and employing Cu Kα radiation (λ = 1.54 Å). Two grams of dried material (105 ◦C overnight), manually
homogenised in an agate mortar, were scanned from 5◦ to 80◦ 2θ at 0.5◦/min with a step size of
0.02◦, with a fixed divergence slit size 0.5◦ and a 120 rpm rotating sample stage. The diffracted
beam was collected by means of a 1D D/teX Ultra 250 detector with an XRF suppressor filter. Phase
identification was performed with Smartlab Studio II software employing the Crystallographic Open
Database (COD).

2.1. Grinding Sludge

The grinding sludge came from a local bearing manufacturer close to the SIDENOR works, which
generates it at a rate of about 1000 t/y. Figure 1 shows the sample analysed and Table 1 shows the results
of the chemical analysis. Due to the high content of iron in the sample, it was analysed specifically for
its iron oxide and metallic iron content.
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Figure 1. Picture (a) and stereo-micrograph (b) of grinding sludge samples. 

Table 1. Chemical analysis of grinding sludge samples. 
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Al2O3 1.069 

WD-XRF 

CaO 0.157 
Cr2O3 1.739 
MgO 0.102 
MnO 0.320 
P2O5 0.437 

S 0.085 
SiO2 3.577 

C 3.03 Elemental analysis 
Fe total 83.6 DIN EN ISO 11885 

Fe2+ 24.1 AM_EG.26 (Titration) 
Fe3+ 0.3 Calculated 

Fe met 59.2 ISO 5416 

Table 2. Physical analysis of grinding sludge samples. 

CHARACTERISTIC VALUE TEST TEMPERATURE (°C) METHOD 
Moisture 24.787% 105 EN 14346:2006 

Loss of ignition (LOI) -35.267% 550 EN 15169:2007 
Carbonates 0.697% 1050 EN 459-2_2010 

Bulk density 1.192 g/cm³  ÖNORM EN 1097-3: 1998 08 01 
True density 5.302 g/cm³  ÖNORM EN 1097-7: 2009 01 01 

Grinding sludge is mainly formed by metallic iron and residual abrasive material (i.e., silicon 
carbide (SiC)) (Figure 2). 

Figure 1. Picture (a) and stereo-micrograph (b) of grinding sludge samples.

Table 1. Chemical analysis of grinding sludge samples.

SUBSTANCE CONCENTRATION (%) METHOD

Al2O3 1.069

WD-XRF

CaO 0.157
Cr2O3 1.739
MgO 0.102
MnO 0.320
P2O5 0.437

S 0.085
SiO2 3.577

C 3.03 Elemental analysis
Fe total 83.6 DIN EN ISO 11885

Fe2+ 24.1 AM_EG.26 (Titration)
Fe3+ 0.3 Calculated

Fe met 59.2 ISO 5416

Table 2 shows the results of the physical analysis regarding moisture and density. These sludges
were characterised by a high moisture content (25%) and a small amount of carbonates (0.7%).

Table 2. Physical analysis of grinding sludge samples.

CHARACTERISTIC VALUE TEST TEMPERATURE (◦C) METHOD

Moisture 24.787% 105 EN 14346:2006
Loss of ignition (LOI) −35.267% 550 EN 15169:2007

Carbonates 0.697% 1050 EN 459-2_2010
Bulk density 1.192 g/cm3 ÖNORM EN 1097-3: 1998 08 01
True density 5.302 g/cm3 ÖNORM EN 1097-7: 2009 01 01

Grinding sludge is mainly formed by metallic iron and residual abrasive material (i.e., silicon
carbide (SiC)) (Figure 2).
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(Figure 3a_B, Figure 3b_B and Figure 3b_C) with some residual abrasive particles, which probably 
were SiC (Figure 3a_A and Figure 3b_A; Table 3). After thermal treatment at 550 and 1050 °C, most 
of the surface was oxidised (Figure 3c–d; Table 3), as confirmed by the mass increase after the thermal 
treatment at 550 °C (Table 2). 

TG-DSC analysis of grinding sludges did not show any significant transformation, and for this 
reason, results are not reported. 
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Figure 2. XRD pattern of as-received grinding sludges (I = metallic iron (α-Fe at 45◦ and 65◦ 2θ; γ-Fe at
43.5◦, 50◦ and 75◦ 2θ), SiC = silicon carbide).

Grinding sludge samples were in the form of a matt-grey, smelly powder with some friable
coarse blocks (Figure 1a). At high magnification, the appearance of a metallic compound was detected
on the surface (Figure 1b). By SEM observation, a typical morphology of iron chips was detected
(Figure 3a_B, Figure 3b_B and Figure 3b_C) with some residual abrasive particles, which probably
were SiC (Figure 3a_A, Figure 3b_A and Table 3). After thermal treatment at 550 and 1050 ◦C, most of
the surface was oxidised (Figure 3c–d and Table 3), as confirmed by the mass increase after the thermal
treatment at 550 ◦C (Table 2).

Table 3. SEM–energy-dispersive X-ray spectroscopy (SEM-EDS) analysis of as-received and
thermal-treated grinding sludge samples.

% by Weight C O Na Al Si K Ca Ti Cr Fe

General chemical
composition 0.40 2.10 1.67 95.84

Figure 2A_A 44.43 26.36 0.37 2.12 22.93 1.81 0.23 1.75
Figure 2A_B 0.78 1.40 97.82
Figure 2D_A 58.60 0.87 39.51 1.02
Figure 2D_B 1.49 98.51
Figure 2D_C 1.24 1.40 97.36

General chemical
composition at 550 ◦C

10.56 1.44 1.13 86.87

Figure 2C_A 20.02 5.43 2.21 14.34 58.00
Figure 2C_B 1.36 98.64

General chemical
composition at 1050 ◦C

2.67 11.27 0.35 0.85 0.26 1.34 83.26

Figure 2D_A 8.46 4.04 87.50
Figure 2D_B 12.37 27.13 1.00 77.17
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the use of these materials in subsequent melting processes, such as steelmaking in electric arc 
furnaces (EAFs). It also reduces the amount of by-products and waste materials that are currently 
waste for disposal and are landfilled. The presented research is part of the Fines2EAF project, which 
aims to increase the value of steelmaking residues by internal recycling and use or reuse in the form 
of agglomerates. The approach followed in this project is the use of a hydraulic stamp press and 
alternative binder systems to produce cement-free agglomerates. The first results of lab-scale 
agglomeration tests of six different recipes with varying pressing forces are presented in this paper. 
It is shown that the addition of fibres from paper recycling has a strong effect on the cold 
compression stability of the agglomerates, by far exceeding other effects such as increased pressing 
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Figure 3. SEM micrographs of (a,b) as-received, (c) 550 ◦C and (d) 1050 ◦C treated grinding
sludge samples.

TG-DSC analysis of grinding sludges did not show any significant transformation, and for this
reason, results are not reported.

2.2. Oxy-Cutting Fines

Pursuant to its name, these fines originated from the cutting of billets by an oxygen lance.
At SIDENOR, the oxy-cutting fines were collected in a filter house and stored in big bags. Figure 4
shows the sample and Table 4 gives the chemical analysis of the oxy-cutting fines. Due to the high
content of iron in the sample, it was analysed specifically for the iron oxide and metallic iron content.
Table 5 gives the results of the physical analysis regarding moisture and density. The physical analysis
was in good agreement with the iron forms within the samples. For instance, practically no mass
variations were registered during the heat treatment for moisture and LOI evaluation. This was due
to the fact that most of the sample was in oxide form and thus remained unaltered during roasting.
The particle size distribution of the oxy-cutting fines sample is shown in Figure 5.
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Table 4. Chemical analysis of SIDENOR oxy-cutting fines samples.

SUBSTANCE CONCENTRATION (%) METHOD

Al2O3 0.170

WD-XRF

CaO 1.295
Cr2O3 0.654
MgO 0.368
MnO 0.815
P2O5 0.530

S 0.188
SiO2 1.065

C 0.31 Elemental analysis
Fe total 68.2 DIN EN ISO 11885

Fe2+ 16.4 AM_EG.26 (Titration)
Fe3+ 51.5 Calculated

Fe met 0.3 ISO 5416

Table 5. Physical analysis of SIDENOR oxy-cutting fines samples.

CHARACTERISTIC VALUE TEST TEMPERATURE (◦C) METHOD

Moisture 4.730% 105 EN 14346:2006
LOI 0.115% 550 EN 15169:2007

Carbonates N.A. 1050 EN 459-2_2010
Bulk density 1.824 g/cm3 ÖNORM EN 1097-3: 1998 08 01
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From the crystallographic point of view, the oxy-cutting fines were composed of magnetite (Fe3O4),
as determined by the titration analysis shown in Table 4 (Figure 6).
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Figure 6. XRD pattern of as-received oxy-cutting fines (M = magnetite).

Oxy-cutting fines appeared dusty, easily compactable and brown. No coarse particles were
detected (Figure 4). At high magnification, the fines appeared to be formed by slightly oxidised
spherical metallic particles, ranging from 1 to 10 µm, with some coarse particles reaching 100 µm
(Figure 5) and blocky compounds of 20–30 mm length (Figure 7). Metallic spheres were mainly
composed of iron with traces of copper. The blocky compounds were magnesite residues (Table 6).
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Table 6. SEM-EDS analysis of as-received oxy-cutting fines.

% by Weight C O Na Mg Si Cl K Ca Cr Mn Fe Cu

General chemical
composition

4.19 12.45 0.80 0.59 80.61 1.36

Figure 5A_A 25.68 16.22 1.21 49.36 1.20 1.96 0.75 1.29 2.33
Figure 5A_B 3.18 15.27 81.55
Figure 5A_C 8.30 15.85 0.65 0.59 1.00 71.41 2.20

TG-DSC analysis of the grinding sludges did not show any significant transformation, and for
this reason, the results are not reported.

2.3. Combustion Chamber Dust

The samples of combustion chamber dust were taken from the exhaust gas abatement system
installed in the SIDENOR steel shop. The material was chosen for briquetting tests because it currently
is not utilised like, for example, EAF dust, which undergoes the Waelz process due to its high zinc
content [13]. The combustion chamber residues appeared like a moist, dense, dark brown powder
with some rusty stains (Figure 8). The chemical analysis of the SIDENOR combustion chamber dust
samples is given in Table 7. Due to the high content of iron in the combustion chamber dust sample,
it was analysed specifically for the iron oxide and metallic iron content. Table 8 gives the results
of the physical analysis regarding moisture and density. The combustion chamber dust contained
a considerable amount of moisture and a negligible concentration of hydrated and carbonated
compounds. Combustion chamber dust was characterised by a coarse morphology and the size
distribution was not homogenous. For instance, two different subgroups were identified: the coarse
fraction and the fine fraction. Thus, both fractions were analysed by SEM.Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 19 
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Table 7. Chemical analysis of SIDENOR combustion chamber dust samples.

SUBSTANCE CONCENTRATION (%) METHOD

Al2O3 1.912

WD-XRF

CaO 9.301
Cl 0.301

Cr2O3 1.289
CuO 0.127
K2O 0.192
MgO 1.950
MnO 3.455
Na2O 3.171
NiO 0.056
P2O5 0.631
PbO 0.161

S 0.199
SiO2 4.389
ZnO 7.779

C 2.57 Elemental analysis
Fe total 45.1 DIN EN ISO 11885

Fe2+ 16.4 AM_EG.26 (Titration)
Fe3+ 26.9 Calculated

Fe met 1.8 ISO 5416

Table 8. Physical analysis of SIDENOR combustion chamber dust samples.

CHARACTERISTIC VALUE TEMPERATURE (◦C) METHOD

Moisture 6.397% 105 EN 14346:2006
LOI 2.482% 550 EN 15169:2007

Carbonates 1.492% 1050 EN 459-2_2010
Bulk density 2.193 g/cm3 ÖNORM EN 1097-3: 1998 08 01
True density 4.276 g/cm3 ÖNORM EN 1097-7: 2009 01 01

2.3.1. Coarse Fraction of Combustion Chamber Residues

A coarser (15–30 mm), friable fraction was detected. This coarse fraction was characterised by
enough compactness to allow moulding and polishing. The rusty stains present on the surface suggests
a residual content of metallic iron that oxidised after the cleaning of the combustion chamber (Figure 9).Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 19 
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Figure 9. Stereomicrographs of as-received coarse combustion chamber residues with (a) and without
(b) visible rusty stains.

From a crystallographic point of view, the combustion chamber dust was a complex material,
mainly formed by different ferrite compounds (franklinite (ZnFe2O4), brownmillerite (Ca2Fe2O5) and
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plumboferrite (PbFe12O19)). Traces of zincite (ZnO), wustite (FeO) and goethite (FeO(OH)) were also
found (Figure 10).
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Figure 10. XRD pattern of as-received combustion chamber dusts (B = brownmillerite, F = franklinite,
G = goethite, P = plumboferrite, W = wustite and Z = zincite).

These residues were rich in Fe, Ca and Zn. In some areas, Pb was detected (Table 9). They can be
considered to be a multiphase material, mainly composed of a phase rich in Fe and Zn (clear grey in
the micrographs) and a phase rich in Ca, Fe and Al, with a composition close to brownmillerite (dark
grey) (Figure 11).

Table 9. SEM-EDS analysis of as-received coarse combustion chamber dusts.

% by Weight C O Mg Al Si Ca Ti Cr Mn Fe Zn Pb

General chemical
composition

13.10 20.07 1.86 2.65 2.35 15.00 0.81 3.22 36.84 4.09

Figure 8A_A 8.55 12.84 4.01 0.51 2.01 0.55 6.84 57.77 6.92
Figure 8A_B 7.68 18.19 7.35 1.09 33.99 1.18 0.66 29.86
Figure 8A_C 6.98 16.76 2.72 2.24 22.17 1.51 0.55 0.63 29.35 1.81 15.49
Figure 8B_A 7.63 14.77 5.59 0.48 25.00 0.71 0.59 41.47 3.77
Figure 8B_B 9.76 13.67 1.26 1.84 0.48 1.65 60.49 10.85
Figure 8B_C 7.58 19.56 2.30 0.78 2.31 0.68 2.82 52.90 11.07
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Figure 11. SEM micrographs (a,b) of as-received coarse combustion chamber residues.

2.3.2. Fine Fraction

Unlike the coarse fraction, the fine fraction appeared like a spherical agglomerated material
(Figure 8), with some coarser agglomerated lumps. The spheres had a size distribution ranging
from 25 to 250 µm in diameter, whereas the coarser agglomerates ranged from 0.5 to 1 mm in length.
The spheres had different compositions: some were rich in Fe (B in Figure 12a) and others were richer
in Zn and Ca (A in Figure 12a). On the agglomerate blocks, some prismatic crystals rich in Ca and Zn
were detected (A in Figure 12b). After thermal treatment at 550 ◦C, a weak depletion in Zn content was
observed (Figure 12c–d and Table 10).

Table 10. SEM-EDS analysis of as-received and thermal-treated fine combustion chamber residues.

% by Weight C O Mg Al Si Cl K Ca Cr Mn Fe Zn

General chemical
composition 17.99 16.65 1.07 0.72 1.80 0.79 8.93 2.79 31.23 18.03

Figure 9A_A 6.76 16.18 2.95 1.77 1.65 8.81 1.59 6.50 38.88 14.90
Figure 9A_B 5.19 17.70 0.75 1.04 2.45 3.99 1.86 60.16 6.86
Figure 9B_A 6.48 36.33 12.76 1.69 42.75
Figure 9B_B 8.94 17.52 1.58 1.04 5.72 4.54 5.11 47.90 7.65

General chemical
composition at 550 ◦C 19.24 15.81 0.79 0.56 1.87 1.12 8.86 2.46 32.34 16.96

Figure 9D_A 11.67 23.50 1.88 0.53 1.94 0.55 0.37 7.42 0.86 1.86 15.89 33.55
Figure 9D_B 10.32 0.95 1.82 4.20 3.23 67.17 12.31
Figure 9D_C 12.97 3.67 1.58 20.77 3.80 57.22

The TG-DSC analysis is reported in Figure 13 and Table 11. Heat flow (HF) and dTG curves
showed two endothermic transformations at 170 and 690 ◦C related to the dehydroxylation of a
zeolite-like compound and the calcining of calcite. In the dTG curve, the melting of the dusts is
also visible and is associated with a high mass loss, probably due to the partial evaporation of Zn.
The abovementioned transformations correspond with the specific mass losses, as depicted in the TG
curve. These results are in good agreement with the evaluation of LOI and carbonates by thermal
treatment (Table 8).
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Table 11. Transformation temperature from TG-DSC of combustion chamber thermal analysis.

PEAK TEMPERATURE (◦C) MASS LOSS (%) TRANSFORMATION

177 0.334 Zeolite dehydroxylation
690 1.551 Calcite calcining
1120 2.759 Melting

2.4. Laboratory Agglomeration Tests and Recipes

For the agglomeration tests in the laboratories of RWTH Aachen University and the University of
Oulu (UOulu), two different presses were used (Figure 14). The Gabbrielli L-4 stamp press located at
RWTH and the vibrating stamp press located at UOulu were used to produce full-sized bricks with
different agglomeration parameters.
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Figure 14. Gabbrielli L-4 stamp press (RWTH Aachen University, left) and vibrating stamp press
(University of Oulu (UOulu), right).

In the pretests, a number of binders were tested, including sodium silicate, polyethylenglycol
(PEG), carboxymethylcellulose (CMC), different types of starch, molasses, copolymer binders and
superabsorbers. In addition to these different binding systems and agglomeration parameters, such as
pressing force, pressing time, aging condition and so forth, additives were also investigated. CaCO3,
bentonite, SiO2 and sodium silicate hardener were used with a sodium silicate binder. Fibres from
paper recycling were also tested to increase the strength of the produced agglomerates.

Based on these pretests, starch was selected as the binder for the agglomerates and fibres from
paper recycling were chosen as the additive to increase the strength of the agglomerates. Table 12
shows the recipes used for the laboratory production of the agglomerates. The press parameters SC
and BC denote the use of two different upper stamps in the Gabbrielli stamp press at RWTH resulting
in a clearance between mould and upper stamp of 50 (SC) and 500 (BC) µm, respectively. The mould
itself was of round geometry and 73 mm in diameter.

After the mixing of the components, the pressing procedure was carried out. Since the
manufacturing pressure (MP) is the most important parameter of the pressing process, it was varied
for each of the first four recipes at RWTH, except MA604B SC, between 10 and 40 N/mm2 in steps
of 10 N/mm2. MA604B SC was produced with only two MPs of 10 and 40 N/mm2. For each step,
four briquettes were pressed and subsequently tested.
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Table 12. Recipes of the agglomerates produced and tested at RWTH and UOulu (composition in wt%).

RECIPE PP GS OCF CCD CARBON FIBRES STARCH 2301 DD STARCH 6501 XC WATER

MA604C SC 46.4 34.1 - 10.3 - - 9.2 -
MA604B SC 46.0 33.8 - 10.2 0.9 - 9.2 -
MA604B BC 46.0 33.8 - 10.2 0.9 - 9.2 -

CC03 SC - 34.4 34.1 14.9 - 9.7 7.0
CC02A BC - 36.2 35.9 15.6 0.9 4.0 7.4

UO - 43.1 33.8 - 10.2 1.9 - 11.0 -

PP: press parameter; GS: grinding sludge; OCF: oxy-cutting fines; CCD: combustion chamber dust.

The samples manufactured at RWTH showed sufficient green strength for further handling.
In order to allow for further hardening, the samples were placed on wooden pallets in ambient
atmosphere and ambient temperature for a minimum of 10 days in order to imitate a possible later
industrial production (curing) process without further drying/heat treatment.

The recipe UO was used to produce a total of 10 briquettes with a Carver vibrating press.
The maximum vibration was 50 Hz and the MP was 20 N/mm2. The produced briquettes were used
to carry out drop and compression tests after 2 and 7 days of curing in ambient conditions. Since
the grinding sludge contained a high water content, recipes that incorporated GS did not require
more water during mixing. Throughout the curing time, the dimensions and mass of the produced
briquettes were measured on a daily basis. On average, briquette size remained virtually unchanged
and exhibited less than 1.5% mass loss. Mass loss was likely due water evaporation from briquettes
during curing.

3. Results and Discussion

Figure 15 shows an example of the shape of the samples after pressing, labelling and curing at
RWTH. The height of each manufactured sample varied with the different recipes and the different
MPs of the press. The height showed values between 24 and 52 mm, depending on the filling factor of
the mould.
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Figure 15. Exemplary MA604B agglomerates manufactured with a 10 N/mm2 manufacturing
pressure (MP).

Cold compression strength (CCS) tests were carried out using an INSTRON multifunctional
breaking strength testing machine with a 500 kN load cell. Samples were placed in between the load
cell (upper position) and the moving bar (lower position). The moving bar subsequently was driven up
just before the sample touched the load cell. Thus, the testing procedure started by basically following
ISO BS 4700:2015 with a moving speed of the lower bar of 15 mm/min. The test was aborted manually
at the point when (1) max. resistance was reached and (2) visual disintegration of the sample itself
noticeably started. Figure 16 shows an MA604 sample after the CCS testing procedure placed in
between the load cell and reversed moving bar.
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Figure 16. MA604 after the cold compression strength (CCS) testing procedure.

Results of the compression strength dependent on different MPs and recipes are given in Table 13
and illustrated by the following diagrams. For every MP and recipe, the average of four CCS tested
briquettes is reported.

Table 13. Cold compression strength (average of four tests) of the agglomerates produced and tested
at RWTH.

RECIPE PP
MANUFACTURING PRESSURE (N/mm2)

10 20 30 40

MA604C SC 73.9 80.2 84.5 83.2
MA604B SC 53.6 84.4
MA604B BC 42.8 38.5 40.0 34.4

CC03 SC 18.6 21.6 23.8 22.8
CC02A BC 46.4 49.1 52.3 51.9

Results of the CCS test of the briquettes based on grinding sludge and oxy-cutting fines (MA604
series) are shown in Figure 17. The figure depicts the dependency of compression strength on MP,
the parameter “clearance” between upper stamp and mould as well as the compression strength
dependency on the use of fibres as reinforcement in the mixture. For the MA604B recipes, it can be
derived that the increasing MP leads to a higher compression strength. For MA604B SC, the increase in
compression strength (10 vs 40 N/mm2) was in the range of about 60%, and for MA604B BC, the increase
was in the range of about 15%. However, it seems that there exists a threshold for the MP, at least
for MA604B BC, at approximately 30 N/mm2, where an increase in MP does not lead to a higher
compression strength.

Based on the results of MA604B SC versus BC, it seems that the clearance between the mould and
the stamp only has an influence on the compression strength for lower manufacturing pressures, while
the resulting compression strength for a higher MP seems to be independent of the clearance.
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Figure 17. Compression strength (average of four tests) of recipes based on grinding sludge and
oxy-cutting fines with and without fibres.

What can clearly be stated from the results obtained is that the use of fibres in the recipe increased
the compression strength by approx. 70%–100% depending on the MP.

Figure 18 compares two different recipes having combustion chamber dust and oxy-cutting fines
as base raw materials. Between the recipes, a number of parameters were altered at the same time,
so it is not so easy to draw clear conclusions. However, it is remarkable that, again, the samples using
fibres as a reinforcement showed an increase in compression strength. The increase was up to 150%,
even though more than double the amount of starch compensated for the omission of the fibres in
recipe CC03. At the same time, the results indicate that the use of BS (500 µm clearance) did not lead
to reduced compression strength in comparison to the use of SC (50 µm clearance), at least for the
higher MP.
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Figure 18. Compression strength (average of four tests) of recipes based on combustion chamber dust
and oxy-cutting fines.

The results obtained with the RWTH stamp press were verified with the bricks produced by
the UOulu vibrating press. Compression strength tests at UOulu were performed after 2 and 7 days
of curing at room temperature. The results are shown in Table 14 below. After 28 days of curing,
cold-bonded briquettes having around 11% Portland cement (the same as the starch content used
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in our briquettes) are reported to have a compression strength of 54 kN for fine raw material and
25 kN for coarser raw material [14]. The compression strength of UO recipe was comparable to CC03
briquettes. However, it was lower than that of MA604B BC. This could have been due to the shorter
curing time but could also indicate that increasing the paper fibre content over 0.9% may have a
negative influence on the compression strength. The geometry of produced briquettes might also be a
factor that influences that final strength [15].

Table 14. Compression test results after 2 and 7 days.

BRIQUETTE TEST COMPRESSION
TEST RESULT (N)

STRENGTH
(N/mm2)

21 S11 W0 2-day compression test 34,156.20 17.05
23 S11 W0 7-day compression test 45,476.59 22.70

A drop test was performed after 2 days of curing from a height of 1 m and after 7 days of
curing from a height of 5 m. Briquettes were able to survive 50 drops without falling below 50% of
their original mass, which means the bricks had adequate mechanical strength for material handling
(Figure 19). Furthermore, the 7-day drop test from 5 m showed that the bricks can withstand the high
drop distance associated with charging the bricks to raw material silos. Mass measurements and mass
loss percentage are shown in Table 15.Appl. Sci. 2019, 9, x FOR PEER REVIEW 18 of 19 
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Figure 19. Mass loss in drop tests conducted after 2 and 7 days of curing in ambient air.

Table 15. Two-day drop test (from 1 m height) and 7-day drop test (from 5 m height).

BRIQUETTE 22—7-DAY DROP TEST (5 M)

No of drops Original mass 1 10 20 30 40 50
Mass (g) 185.72 185.38 182.16 155.49 145.15 122.6 107.59

Mass loss (%) - 0.18 1.92 16.28 21.84 33.99 42.07
BRIQUETTE 20—2-DAY DROP TEST (1 M)

Mass (g) 193.2 193.1 192.8 192.5 192 191.8 191.5
Mass loss (%) - 0.05 0.21 0.36 0.62 0.72 0.88

SEM observations were carried for the fracture surface of the briquettes on a Zeiss ULTRA plus
field emission scanning electron microscope (FESEM), using a secondary electron detector at 5–15 kV.
Figure 20a shows clearly how the starch formed a film that surrounded smaller spherical particles
originating from oxy-cutting fines and interconnected smaller and bigger particles together. Figure 20b
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captures the local influence of the fibrous reinforcement on the briquette. Fibres appeared to be well
dispersed, while starch and smaller particles appeared to be adhering to the fibre body, indicating
that the fibres and the starch matrix were well bonded. The fibre bridging action was likely one of the
factors contributing to the enhanced mechanical properties of the produced briquettes.
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LECO analysis was performed to obtain the total amount of carbon and sulphur in the bricks.
The results of the analysis are presented in Table 16. The analysis showed some variance between
different bricks of the same batch, but the average carbon content was on average 15.0 wt %. Most of
the carbon in the material was introduced by adding 10.2 wt % of injection carbon in the brick recipe.
The analysis suggests that the amount of carbon introduced to the bricks via paper fibre and starch
additions was approximately 4.8 wt %, which significantly contributed to the total carbon in the bricks.

Table 16. LECO analysis.

BRICK 1 BRICK 2 BRICK 3 BRICK 4

C (%) S (%) C (%) S (%) C (%) S (%) C (%) S (%)

BRICK X PIECE 1 15.5 0.176 14.5 0.148 14.9 0.15 15.3 0.17
BRICK X PIECE 2 15 0.165 14.7 0.155 15.1 0.158 15.2 0.164
BRICK X PIECE 3 15.2 0.159 14.8 0.17 14.9 0.163 15.2 0.16
BRICK X PIECE 4 15 0.14 14.8 0.161 15 0.15 15 0.153
BRICK X PIECE 5 14.9 0.155 15 0.164 14.8 0.143 15.4 0.17

MEAN (%) 15.1 0.16 14.8 0.16 14.9 0.15 15.2 0.16
SD (%) 0.2 0.01 0.2 0.01 0.1 0.01 0.1 0.01

RSD (%) 1.4 7.45 1.1 4.73 0.7 4.56 0.9 3.94

4. Conclusions

Based on the results presented in this paper, it seems feasible to create agglomerates with sufficient
physical properties to withstand handling in a steel plant by the innovative approach of using paper
fibres as reinforcement and the stamp press with its high manufacturing pressures. This way, and in
contrast to the current state of the art, an agglomerate can be produced that will only include secondary
raw materials as well as binders and fibres, which will contribute to a reduction of oxides by the
increased carbon content. A cement- or water-glass-based binding system, which would introduce
materials without use for the metallurgical melting process, can be avoided while still achieving
sufficient compression strength of the agglomerates.

Future research for this project will focus on the melting and reduction behaviour of the investigated
recipes. Subsequently, pilot-scale production of selected recipes, as well as industrial-scale testing in
electric arc furnaces for steelmaking, is planned. To make the conclusions regarding the influence of
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fibre addition and manufacturing pressure on compression strength more robust, additional tests with
different recipes and an extended range of manufacturing pressures would be useful.

The results achieved so far can already be applied by research institutes and companies trying to
develop new ways to agglomerate and recycle especially fine metallurgical residues and waste materials.
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Abbreviations

The following abbreviations are used in this manuscript:

CCD Combustion chamber dust
CCS Cold compression strength
CMC Carboxymethylcellulose
COD Crystallographic Open Database
EAF Electric arc furnace
EDS Energy-dispersive X-ray spectroscopy
EN European Standard
FESEM Field emission scanning electron microscope
GS Grinding sludge
ISO International Organization for Standardization
LOI Loss of ignition
MP Manufacturing pressure
OCF Oxy-cutting fines
PEG Polyethylenglycol
PP Press parameter
RWTH RWTH Aachen University
SEM Scanning electron microscopy
SEM-BSE Scanning electron microscopy–back-scattered electrons
SEM-SE Scanning electron microscopy–secondary electrons
TG-DSC Thermal gravimetric–differential scanning calorimetry
UOulu University of Oulu
WD-XRF Wavelength-dispersive X-ray fluorescence
XRD X-ray diffraction
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