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Abstract: Automatic object-detection technique can improve the efficiency of building data collection
for semi-empirical methods to assess the seismic vulnerability of buildings at a regional scale. However,
current structural element detection methods rely on color, texture and/or shape information of the
object to be detected and are less flexible and reliable to detect columns or walls with unknown
surface materials or deformed shapes in images. To overcome these limitations, this paper presents
an innovative gray-level histogram (GLH) statistical feature-based object-detection method for
automatically identifying structural elements, including columns and walls, in an image. This method
starts with converting an RGB image (i.e. the image colors being a mix of red, green and blue light)
into a grayscale image, followed by detecting vertical boundary lines using the Prewitt operator and
the Hough transform. The detected lines divide the image into several sub-regions. Then, three
GLH statistical parameters (variance, skewness, and kurtosis) of each sub-region are calculated.
Finally, a column or a wall in a sub-region is recognized if these features of the sub-region satisfy
the predefined criteria. This method was validated by testing the detection precision and recall
for column and wall images. The results indicated the high accuracy of the proposed method in
detecting structural elements with various surface treatments or deflected shapes. The proposed
structural element detection method can be extended to detecting more structural characteristics
and retrieving structural deficiencies from digital images in the future, promoting the automation in
building data collection.

Keywords: column and wall detection; imaging recognition; structural information collection;
gray-level histogram

1. Introduction

Regional seismic vulnerability assessment of school buildings can provide civil-protection agencies
with information crucial to optimal emergency planning and mitigation, including projections of the
scale and distribution of building damages. Semi-empirical methods, which evaluate the seismic
vulnerability of buildings based on a small range of building attributes selected by experts coupled
with data-mining techniques, have proved its efficiency in rapidly assessing the seismic vulnerabilities
of buildings at a large scale [1,2]. These building attributes include the number and sizes of structural
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elements (e.g., columns and walls), building heights, structural deficiencies (e.g., short columns and
soft-stories), and so forth. However, existing data on building attributes at a regional scale are often
incomplete or dispersed (e.g., available only as paper records spanning a number of bureaucratic
departments), imposing limits on the effectiveness of vulnerability assessment [3]. Collecting such
data anew, meanwhile, is costly, time-consuming, and expert-dependent because the traditional
visual-screening approach to do so involves paper-based field surveys carried out by structural experts
or certified engineers [4]. Moreover, human errors like mistaking the number of structural elements
during field survey are commonplace, and such errors can reduce the reliability and accuracy of
assessment results.

To overcome the limitations of field survey, computer vision technologies have been applied
to data collection on building characteristics [5–10]. As columns and walls are basic load-bearing
elements relevant to buildings’ seismic vulnerability, automatic recognition of columns and walls could
provide important information for seismic vulnerability assessment of buildings. Previous research
on the automated detection of columns commonly uses color/texture and shape features to recognize
concrete columns because such columns are considered to be rectangular in shape with familiar color
and texture on surfaces [11–13]. However, the color/texture-based detection techniques are unable to
cope with the structural elements covered in unknown types of paint, tiling, or other surface treatments,
which is common for school building columns, and the shape-based detection methods fail to work if
structural elements deflect in images resulting from camera tilting or perspective illusion. Meanwhile,
automated detection of walls using computer version technologies is still a lack of study.

This article reports on an innovative study that utilizes the gray-level histogram (GLH) statistical
features and shape features, without relying on detecting familiar colors and surface materials or fixed
shapes, to overcome the drawbacks of present automatic detection methods for columns and walls.
Moreover, in the view of the practical application of the proposed method, every single person who
can take images by their smartphones, cameras, or other devices should be able to collect information
of columns and walls, with the images processed on personal computers, local devices, or cloud
computing. With this in mind, the proposed method is based on a single image, without any technical
requirements for image acquisition. Although this paper focuses on detecting and counting columns
and walls in images, the proposed automatic detection method can be further extended to the detection
of a wide range of structural elements’ characteristics (e.g., sizes and surface defects) and structural
deficiencies (e.g., short columns and soft stories), promoting the automation in building data collection.

2. Background

Ideally, a holistic urban seismic risk assessment would investigate the behavior of every single
building during seismic events via computational modeling. However, it is impractical to apply them
at a regional scale because the computational models require detailed information of each building
and it takes massive time to build models and execute structural analysis for hundreds of thousands
of buildings. For vulnerability assessment to achieve adequate accuracy while avoiding exhaustive
data collection and computational analysis, semi-empirical approaches have been developed: a few
structural characteristics of buildings (e.g., the number and sizes of columns and walls, building
height, and structural deficiencies) assessed by expert judgment are coupled with data-mining
techniques to predict buildings’ seismic vulnerabilities [1,14,15]. Therefore, collecting structural
information is the first step to successfully apply the semi-empirical approaches for building seismic
vulnerability assessment at a regional scale. Realizing deficiencies of traditional paper-based field
surveys, vision-based technologies have been applied to structural information collection.

A handful of prior studies on structural element detection methods can be generally classified
into color/texture-based methods and shape-based methods: the former detects a structural element
by judging if the color or texture of the object’s material matches the predefined material databases,
and the latter by judging if the shape of the object matches the predefined element shape templates.
However, structural elements in images may fail to match these predefined databases or templates
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because of their diversities in colors, textures, and shapes. Therefore, grayscale statistical feature-based
object-detection methods, being able to detect objects without predefining databases or templates, are
introduced in this section.

2.1. Color/Texture-Based Object Detection Methods

The color and texture of materials are commonly used in detecting structural elements since those
elements are usually composed of a single material (e.g., concrete) [11–13,16]. Based on the finding
that most color values of construction materials were in certain ranges, Abeid Neto et al. [17] identified
a structural element by detecting its boundary pixels whose color values satisfied the predefined color
ranges. Instead of taking into account color features only, Brilakis and Soibelman [18] combined both
color and texture features to label regions in an image. A region was considered as a structural element,
if the Euclidean distance between the region label and a predefined material label was smaller than a
predefined threshold. Recently, machine learning techniques are widely used in detecting concrete
structural elements by recognizing their materials [11,19–22]. The input data are those quantified color
or texture characteristics, such as RGB values (the color depth of red, green, and blue light, ranging
from 0 to 255) [23], luminance values [24], and filter bank responses [25].

However, color/texture-based methods are unable to cope with structural elements covered in
unknown paint, tiles, or other surface treatments, which are common to be seen in school building
columns and walls. Moreover, color/texture-based methods require a predefined material library, which
is not only time-consuming to be built but also is unable to cover all characteristics of materials because
even the same material can have different characteristics under different scenarios. For example,
the color of a material can be different under various illumination intensities. Missing containing
characteristics of materials can lead to the failure of detection.

2.2. Shape-Based Object Detection Methods

In addition to color and texture features, the edge information, indicating the boundary of an
object and appearing in the area where image pixel intensity changes sharply, is another feature used
for detecting structural elements. Shape-based object detection methods identify structural elements in
images by detecting their edge lines. Jung and Schramm [26] detected rectangle objects which represent
structural elements in images by searching their two pairs of parallel edge lines. Although this method
performs well in detecting rectangle structural elements of different sizes and length-width ratios, the
sole reliance on shape information narrows their applications in detecting slant or vague elements in
images [27]. To improve such drawbacks, coupling shape information with color and texture features,
Zhu and Brilakis [28] proposed a concrete column-detection method based on the assumptions that
the shape of a single concrete column is bounded by a pair of long vertical lines, and the color and
texture patterns on the surface of a concrete column are uniform and could be matched to a predefined
color-pattern database for particular materials. Zhang et al. [29] used long edge lines as well as color
features to locate a wall between two windows. Hamledari et al. [30] utilized both shape and color
features to detect vertical indoor components of structures from 2D digital images during construction
phases. Although such a combination improves the drawbacks of shape-based methods, it introduces
the disadvantage of color/texture-based methods as aforementioned. In addition, current shape-based
methods fail to work when vertical edge lines of structural elements deviate from the vertical direction
because of camera tilting or perspective illusion.

2.3. Grayscale Statistical Feature-Based Object Detection Methods

Grayscale statistical feature-based methods utilize a set of statistical parameters extracted from
grayscale pixel intensity of images to recognize objects. Generally, grayscale statistical parameters
are classified into two groups: gray-level co-occurrence matrix (GLCM) statistical parameters and
gray-level histogram (GLH) statistical parameters.
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Haralick and Shanmugam [31] first introduced the GLCM, which described the frequency of
one gray level appearing in a specified spatial linear relationship with another gray level within the
area under investigation and originally proposed 14 GLCM statistical parameters to label the GLCM.
From then on, these GLCM statistical parameters have been widely used in image recognition, such as
detecting sea ice changing in images [32–34], classifying landscape images [35], and distinguishing
computed tomography (CT) images of normal and abnormal tissues [36,37]. However, it is difficult to
understand the essential meanings of GLCM statistical parameters and to visibly check how these
GLCM parameters can affect detection results since GLCM statistical parameters represent abstract
characteristics of an object. Accordingly, GLH statistical parameters (mean, variance, integrated
intensity, skewness, and kurtosis), representing the distribution of the pixel intensity of an image, have
been developed and used in image recognition [38–40]. Zhang and Wang [41] used GLH and GLCM
statistical parameters respectively to classify normal and abnormal human brain CT images, and the
results showed that the classification accuracy with GLH statistical parameters was higher than that
with GLCM statistical parameters, proving GLH’s superiority in image classification. This result was
also supported by Fallahi et al. [42]. In addition to medical use, An et al. [43] classified traffic signs
with GLH statistical parameters and got a high classification accuracy rate.

The proposed method innovatively combines the GLH statistical parameters and shape features of
structural elements to recognize columns and walls in images given that columns and walls have two
distinguishing visual characteristics: (1) the gray levels of their surfaces are relatively homogeneous
compared with their neighboring areas that contain various objects, and (2) their boundary edges are
long vertical lines. Additionally, as some of GLH statistical parameters contribute little in representing
specific objects, it is unnecessary to use all GLH parameters to detect objects. Thus, this study will
select proper GLH parameters by considering both statistical meanings and visual meanings of these
GLH parameters to decrease the computational cost for the detection of structural elements.

3. Methodology

As shown in Figure 1, this method starts with transforming an RGB image (i.e. the image colors
are a mix of red, green and blue light) into a grayscale image. Then the Prewitt operator, coupled
with the Hough transform, is used to detect long vertical lines in the grayscale image. Quadrilateral
sub-regions could then be identified between two adjacent detected lines. Next, three GLH statistical
parameters (variance, skewness, and kurtosis) of each sub-region are calculated. A structural element
is recognized if the shape and the GLH statistical parameters of a sub-region satisfy our predefined
criteria. Finally, the type of the element (a column or a wall) is determined according to the ratio of the
sub-region’s length to width.Appl. Sci. 2019, 9, x FOR PEER REVIEW 5 of 17 
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3.1. Image Preprocessing

In order to extract the GLH statistical parameters in later steps, the RGB image is firstly converted
into a grayscale image using Equation (1),

f (x, y) = a1 ∗R(x, y) + a2 ∗G(x, y) + a3 ∗ B(x, y), ∀a1 + a2 + a3 = 1, (1)

where (x, y) is the location of a pixel in the pixel matrix of an image; f (x, y) is the grayscale value
comprising a pixel intensity level between 0 and 255; R(x, y), G(x, y), B(x, y) represent the red, green
and blue values of the pixel located in (x, y), respectively; a1, a2 and a3 are weighting factors that are
automatically adjusted according to the R, G, B values of a given image.

An edge is defined as the abrupt change of gray levels in a grayscale image [44], providing
indications of the physical extent of an object. In a continuous domain edge segment F(x, y),
the continuous gradient G(x, y) is calculated along a certain direction. The edge is detected if the
gradient G(x, y) is above a given threshold value. The gradient G(x, y) can be computed by Equation (2),

G(x, y) =
∂F(x, y)
∂x

cosϕ+
∂F(x, y)
∂y

sinϕ, (2)

where ϕ is the angle between F(x, y) and the horizontal axis.
In a discrete grayscale image which is a M×N pixel matrix with M rows and N columns of pixels,

a row gradient GR( j, k) and a column gradient GC( j, k) can be calculated using Equation (3),{
GR( j, k) = F( j, k) − F( j, k− 1), j = 0, 1, . . . , M− 1; k = 0, 1, . . . , N − 1;
GC( j, k) = F( j, k) − F( j + 1, k), j = 0, 1, . . . , M− 1; k = 0, 1, . . . , N − 1;

, (3)

where ( j, k) is the coordinate of a pixel in the matrix, in which the coordinate of the first pixel (in
the top-left corner) is (0,0). The row and column gradients GR( j, k) and GC( j, k) can be alternatively
computed by using impulse response matrix, Equation (4):{

GR( j, k) = F( j, k) ×HR( j, k)
GC( j, k) = F( j, k) ×HC( j, k)

, (4)

where HR( j, k) and HC( j, k) are row- and column-impulse response matrix, respectively, which can
be defined by given edge-detection operators: the Prewitt operator [45], the Sobel operator [46], the
Roberts operator [47], and the Canny operator [48]. Among these operators, the Prewitt operator is
distinguished by its capability of detecting the horizontal and vertical edges [49], defined by Equation (5)
and Equation (6), respectively:

HR( j, k) =
1
3


1 0 −1
1 0 −1
1 0 −1

 (5)

HC( j, k) =
1
3


−1 −1 −1
0 0 0
1 1 1

. (6)

However, the edge-detection operator can only result in a discrete edge map composed of isolated
boundary points without knowing which points lie on the same lines. Therefore, coupled with
edge-detection operators, line-detection techniques should be used to extract lines from the discrete
edge map.

The Hough transform [50] is widely used for retrieving line information from edge maps, due to
its powerful ability in dealing with pixels that are missing or spurious as a result of noise produced by
image defects or edge-detector imperfections. In a discrete binary image, such as an edge map produced
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by the Prewitt operator, each non-zero point (x, y) in the Cartesian coordinate space is transformed
into a line in the polar coordinate space (ρ,θ) using Equation (7), where ρ is the perpendicular distance
from the image’s origin point to the line, restricted to [−D, D], with D being the half-diagonal size of
the image; and θ is the angle between the normal of the line and the x-axis of the image, restricted
to [−90◦, 90◦]. After transformation, lines are quantized into cells A (ρ,θ) whose initial values are 0.
Straight lines that are transformed from points lying on the same line in Cartesian coordinate space will
intersect at the same point in polar coordinate space. Then, the number of straight lines intersecting at
the point (ρi,θi) will be recorded in A(ρi,θi), which represents the number of edge points lying on the
same straight line. After all detected edge points are processed, the A(ρ,θ) cells are examined. Large
counts in cells A(ρ,θ) correspond to collinear edge points that can be fitted by a straight line with the
(ρ,θ) parameters. Small counts in cells usually represent isolated points or noise points that can be
deleted. Through the Hough transform, straight lines longer than one-four of the height of an image
are detected while straight lines shorter than one-four of the height of an image are abandoned as they
are seen as noisy lines (preliminary study showed that the threshold of one-four of the height of an
image can cover most of the vertical boundary lines of structural elements in images).

ρ = xcosθ+ ysinθ. (7)

Traditional shape-based methods assumed that the boundary lines of structural elements in an
image are precisely vertical, which lead to the failure detection of slant structural elements resulting
from camera tilting or perspective illusion. The proposed method improves shape-based methods
by setting an allowed inclination (±5◦) of boundary lines with the vertical direction to more flexibly
detect structural elements. After the Hough transform, an image is divided into several quadrilateral
sub-regions, each of which is formed by two adjacent detected lines.

3.2. Columns and Walls Recognition using GLH Statistical Parameters

The GLH is innovatively used in this proposed study to recognize structural elements from
detected sub-regions in an image. The meanings of the five GLH statistical parameters are described
as follows: mean is the average gray value of a GLH; integrated density is the sum of the gray values
of a GLH; variance indicates the degree of spread from the mean of a GLH; skewness represents the
dissymmetric degree of the distribution of a GLH; and kurtosis reflects the tailedness of the distribution
of a GLH.

By investigating GLHs of detected sub-regions, the authors found that, comparing with the GLH
of the adjacent sub-regions that contain various objects, the GLH of a structural element sub-region
showed a more concentrated, symmetric distribution with fat tailedness due to relatively uniform
gray levels on the surface of the element (also discussed in Section 4.2.1), while differences of the
gray values between structural element regions and nonstructural element regions are inconspicuous.
Therefore, only variance, skewness, and kurtosis are used to differentiate GLHs between structural
element sub-regions and nonstructural element sub-regions. These three statistical parameters of a
GLH can be calculated by Equations (8)–(13):

H(i) =
ni

m× n
, i = 0, 1, 2, . . . , L− 1, (8)

µ =
L−1∑
i=0

i×H(i), i = 0, 1, 2, . . . , L− 1, (9)

σ =

L−1∑
i=0

(i− µ)2H(i)


1/2

, (10)

Variance =
∑L−1

i=0
(i− µ)2H(i), (11)
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Skewness =
1
σ3

L−1∑
i=0

(i− µ)3H(i), (12)

Kurtosis =
1
σ4

∑L−1

i=0
(i− µ)4H(i), (13)

where i is the gray level of a pixel ranging from 0 to 255; H(i) is the proportion of pixels in the gray
level i; ni is the number of pixels in the gray level i of a sub-region; and m and n are the numbers
of pixels in the rows and columns of a sub-region, respectively; µ is the average gray level of pixels;
σ is the standard deviation of pixels’ gray levels; L is the RGB color space, which is equal to 256.
Accordingly, three GLH statistical parameters of every sub-region are calculated.

Based on the preliminary study, the authors conclude that (1) the variance and skewness values
of a sub-region that is a structural element is smaller than the values of adjacent sub-regions that
contain complex surrounding environment, respectively; (2) the kurtosis value of a sub-region that is
a structural element is larger than the kurtosis values of adjacent sub-regions that contain complex
surrounding environment. The first conclusion can be explained by the concentrated distributions of
the gray levels of structural element sub-regions in narrow ranges as a result of the relatively uniform
color of columns’ and walls’ surfaces, while gray levels of sub-regions containing complex surrounding
environment distribute in wide ranges, leading to large variance values. Meanwhile, the centralization
of gray level distributions also results in the low skewness values of structural element sub-regions
because the concentration of gray level distributions leads to a relatively symmetric distribution
compared with the random distribution of non-structural element sub-regions’ gray levels. Finally,
based on Equation (13), for a concentrated distribution, a few pixels with extreme values (i.e., the
values considerably deviate from the mean value) can lead to an extreme large skewness value of a
structural element sub-region. Accordingly, this study considers a sub-region as a column or a wall if
it satisfies the following criteria:

(1) the intersection angle of a sub-region’s two adjacent boundary lines is less than 5◦;
(2) variance and skewness values of the sub-region’s GLH are local minimum while the kurtosis

value is local maximum among adjacent sub-regions;
(3) the ratio of length to width of a sub-region is set as no less than two for a column, and less than

two for a wall. The length of a sub-region is defined by the length of its longer boundary line,
and the width is defined as the distance between its two boundary lines [51].

4. Implementation and Results

4.1. Validation

The database of Taiwan’s National Center for Research on Earthquake Engineering (NCREE)
contains thousands of school building images in different sizes and resolutions taken in Taiwan by
various devices. The authors selected images that were taken indoors and outdoors from the front
view and the side view of buildings from the database of NCREE and implemented these images in
MATLAB R2017a (The MathWorks, Natick, MA, USA) to validate the performance of the proposed
method. Finally, the detection precision and recall were used respectively to assess the detection
accuracy and detection efficiency of the proposed method. Part of the column and wall detection
results are shown in Tables 1 and 2 respectively. Precision and recall are calculated by Equations (14)
and (15), respectively:

Precision =
TP

TP + FP
, (14)

Recall =
TP

TP + FN
, (15)

where TP (true positive) is the number of target objects (i.e., columns or walls in this study) that are
correctly detected; FP (false positive) is the number of detected objects that are not target objects; FN
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(false negative) is the number of target objects that are undetected; (TP + FP) is the total number of
objects that are detected; (TP + FN) is the total number of target objects to be detected. The values
of TP, FP, and FN are judged manually from detection results. High precision means that most
detected elements are target elements, and high recall indicates that most target elements in images are
correctly detected.

Table 1. The column detection results for 20 column images.

Number of the Image TP FP FN
Precision Recall

TP/(TP+FP) TP/(TP+FN)

1 5 0 0 100.0% 100.0%
2 2 0 2 100.0% 50.0%
3 2 0 0 100.0% 100.0%
4 5 0 1 100.0% 83.3%
5 5 0 2 100.0% 71.4%
6 1 0 1 100.0% 50.0%
7 4 0 1 100.0% 80.0%
8 4 0 2 100.0% 66.7%
9 4 0 1 100.0% 80.0%
10 6 0 0 100.0% 100.0%
11 4 0 0 100.0% 100.0%
12 6 0 0 100.0% 100.0%
13 6 0 3 100.0% 66.7%
14 4 0 4 100.0% 50.0%
15 3 0 1 100.0% 75.0%
16 3 0 1 100.0% 75.0%
17 2 0 0 100.0% 100.0%
18 2 0 2 100.0% 50.0%
19 6 0 0 100.0% 100.0%
20 2 0 0 100.0% 100.0%
Total 76 0 21 100.0% 78.4%

Table 2. The wall detection results for 20 wall images.

Number of the Image TP FP FN
Precision Recall

TP/(TP+FP) TP/(TP+FN)

1 1 0 0 100.0% 100.0%
2 2 0 1 100.0% 66.7%
3 1 0 1 100.0% 50.0%
4 2 0 0 100.0% 100.0%
5 1 0 1 100.0% 50.0%
6 1 0 0 100.0% 100.0%
7 2 0 1 100.0% 66.7%
8 1 0 0 100.0% 100.0%
9 1 0 1 100.0% 50.0%
10 1 0 0 100.0% 100.0%
11 1 0 1 100.0% 50.0%
12 1 0 0 100.0% 100.0%
13 2 0 1 100.0% 66.6%
14 1 0 1 100.0% 50.0%
15 3 0 1 100.0% 75.0%
16 2 0 0 100.0% 100.0%
17 1 0 0 100.0% 100.0%
18 1 0 1 100.0% 50.0%
19 3 0 0 100.0% 100.0%
20 2 0 1 100.0% 66.7%
Total 30 0 11 100.0% 73.2%
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4.2. Implementation and Discussion

4.2.1. column Detection Results and Discussion

The detection precision for all 20 column images in Table 1 is 100%, while detection recall ranges
from 50% to 100% with an average of 78.4%. The No. 1 column image, in which all five columns were
correctly detected, is taken as an example to explain the whole procedure of the proposed method.
Firstly, by using Equation (1), the original RGB image (Figure 2a) was converted into a grayscale image
(Figure 2b), which served as the basis of edge detection. Then, discrete edge points were detected
using the Prewitt Operator, generating the edge map. As shown in Figure 2c, the edge map is a binary
image in which white points are edge points and black points are the background. Next, long vertical
lines, potentially to be boundaries of structural elements, were retrieved by the Hough Transform
from the edge map. In this study, the authors defined a vertical line whose length is longer than a
quarter of the height of the image as a long vertical line. Moreover, slightly inclined lines could also
be retrieved by setting the allowed inclination of ± 5◦ with the vertical direction. Consequently, 20
vertical boundary lines were detected, dividing the image into 19 sub-regions, as shown in Figure 2d.
Accordingly, the variance, skewness, and kurtosis of the GLHs of every sub-regions were calculated,
and sub-regions with variance and skewness values being local minimum and kurtosis values being
local maximum were identified as structural elements. Finally, these detected structural elements
were regarded as columns because their ratios of length to width were no less than two. As shown in
Figure 3a–c, sub-region 3, 7, 12, 16, 19 are columns. It can be observed that non-column sub-regions
contain various objects in different gray levels: windows in high gray levels and retaining walls in
low gray levels, while column sub-regions only contain columns in similar gray levels. To further
illustrate the differences of variance, skewness, and kurtosis among a column sub-region and its
two adjacent non-column sub-regions, the GLHs of the column sub-region 7 and the two adjacent
non-column sub-region 6 and 8 in Figure 2d are shown in Figure 3d–f respectively. Three peaks
exist in Figure 3d,f but only one peak in Figure 3e, which means that in non-column sub-region 6
and 8, gray levels of pixels dispersedly distribute in wide ranges while in the column sub-region 7,
gray levels of pixels concentrate on a narrow range. Therefore, compared with the GLH of adjacent
non-column sub-regions, the GLH of a column sub-region shows a more concentrated and symmetric
distribution, with fat tailedness.
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Figure 2. The preprocessing of the No. 1 image in Table 1: (a) the original image; (b) converting the RGB
image into a grayscale image; (c) generating the edge map using the Prewitt Operator; (d) detecting
long vertical lines by the Hough transform.
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Figure 3. column recognition of the No. 1 image in Table 1 (sub-region 3, 7, 12, 16, and 19 are columns):
(a) variance of gray-level histograms (GLHs); (b) skewness of GLHs; (c) kurtosis of GLHs; (d) the
GLH in sub-region 6 (non-structural element); (e) the GLH in sub-region 7 (a column); (f) the GLH in
sub-region 8 (non-structural element).

The column detection results prove that columns with tiled or painted surfaces can be detected,
overcoming the shortage of color/texture-based methods. For example, in Figure 4a, both column 1
and column 2 were successfully detected although they are tiled with colorful tiles—the top and
bottom parts are tiled with dark tiles while the middle parts with light tiles. Moreover, columns with a
small tilt, which commonly occur due to camera tilting or perspective illusion, can be detected by this
method. As shown in Figure 4b, three tilted columns (column 2, 3 and 4) in the image, with tilt angles
between their boundary lines and the vertical direction ranging from 1◦ to 5◦, were detected as a result
of the maximum allowed tilt angle set as 5◦ in this study. On the other hand, taking images from the
side view of structural elements can aggravate tilting of distant objects in images, leading to the failure
detection of distant columns: the most distant column 1 in Figure 4b failed to be detected because the
aggravated inclination of its boundary lines exceeds 5◦. To avoid such deficiency, images should be
taken from the front view of structural elements.
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Figure 4. Examples of column detection results: (a) the No. 3 image in Table 1; (b) the No. 16 image in
Table 1.

4.2.2. Wall detection results and discussion

As shown in Table 2, similar to column detection results, the detection precision of all 20 wall
images are 100% and the detection recall ranges from 50% to 100% with the average of 73.2%, proving
the outstanding capability of the proposed method in correctly detecting columns and walls. Looking
into these images, the authors found that the proposed method was able to detect structural elements
in complex scenarios. Take the No. 1 image in Table 2 as an example. Compared with the similar
GLHs among non-column sub-regions (Figure 3), GLHs are markedly different from each other among
non-column sub-regions in Figure 5a, leading to the huge differences of variance, skewness and
kurtosis values among non-column sub-regions. The variance value in the sub-region 2 is much
smaller than the value in the sub-region 6 (Figure 5b,c) while the skewness value in the sub-region
2 is much bigger than the value in the sub-region 6 (Figure 5d). However, most sub-regions with
complex scenarios in wall images have little influence on the detection results because only these
sub-regions adjacent to structural element sub-regions can determine the detection results of structural
elements. As shown in Figure 5, whether the wall in sub-region 4 could be successfully detected is only
affected by adjacent sub-region 3 and 5 in spite of other sub-regions with diverse GLHs. Moreover, the
proposed detection method is able to detect slightly distorted structural elements by setting an allowed
intersection angles (5◦) of objects’ two vertical boundary lines, compared with existing structural
element detection methods which assume that the vertical boundaries of a structural element are a pair
of parallel lines [28]. For instance, the wall (sub-region 4) in Figure 5a were successfully detected even
if its two boundary lines are not parallel with an intersection angle of 2◦ caused by perspective illusion.
On the other hand, the perspective illusion can lead to the failure detection of distant structure elements
in images whose boundary lines are too blurry to be detected. For instance, wall 1 in Figure 6a and
wall 1 in Figure 6b were not successfully detected because the edge detection method was unable to
retrieve these walls’ left boundary lines that are invisible due to far distance between the walls and the
camera–perspective illusion makes distant object small and blurry. Therefore, images that are taken
from the side view of the structural elements to be detected result in low detection recall.
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Figure 6. The wall detection results: (a) the No. 3 image in Table 2, (b) the No. 7 image in Table 2.

Another advantage of the presented method is that different illumination intensities in images
will not hinder structural elements from being successfully detected. The change in illumination
intensities can only result in translation motion of GLHs: the peaks of GLHs move to high gray level
side under high illumination and move to low gray level side under low illumination, without changing
their concentration, symmetry, and tailedness. As shown in Figure 7, gray levels of pixels in light
sub-region 2 mainly range from 200 to 250 while gray levels of pixels in dark sub-region 6 are mainly
around 150. However, the shapes of these two GLHs show fewer differences. The insensitivity to
illumination intensity of this method allows images to be collected throughout the daytime, overcoming
the limitation of traditional image recognition methods that images should be collected in the same
time period of a day (Han et al. 2017). On the other hand, the non-uniform illumination on the surface
of an element can result in failure of detection due to the asymmetric distribution of the element’s GLH.
For instance, the wall 4 in Figure 7a, with non-uniform illumination on its surface, failed to be detected
because of the local maximum value of the skewness in sub-region 4 (Figure 7c). Thus, non-uniform
illumination on surfaces of structural elements should be avoided when taking photos.
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Figure 7. The wall detection result of the No. 13 image in Table 2 (sub-region 2, 4, and 6 contain
walls while only walls in sub-region 2 and 6 are detected): (a) the preprocessed image; (b) variance of
GLHs; (c) skewness of GLHs; (d) kurtosis of GLHs; (e) the GLH in sub-region 2 (a wall); (f) the GLH in
sub-region 6 (a wall).

5. Conclusions

Realizing the benefits of collecting building information using visual data, researchers have begun
to focus on the automatic extraction of structural characteristics from images to quickly assess seismic
vulnerabilities of regional-scale buildings. However, existing structural element detection methods
have a certain of limitations for the detection of school building columns and walls. To improve
existing automatic structural element detection techniques, this paper combines the GLH statistical
feature-based object-detection method with an improved shape-based method: the former can identify
structural elements from complex scenarios, and the latter has proved its superior capability in
detecting slant objects in an image. Focusing on detecting columns and walls, the proposed method
was validated by testing the detection precision and recall for column and wall images selected from
the database of NCREE, respectively. The main advantages of the proposed column and wall detection
method are listed as follows. First, the present method is able to detect columns and walls with various
surface treatments or slightly tilting shapes which frequently occur in images. Second, images in
different sizes and resolutions taken by either cameras or mobile phones can be used in this method,
broadening the sources and decreasing the cost for images collection. Last, the proposed method is
insensitive to illumination intensities which means that images taken in different time periods of a day
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can be used in this method. As three GLH statistical parameters used in this method only depend on
the shapes of GLHs, their values are insusceptible of the average high or low illumination intensities.
On the other hand, as for the unsuccessful detection of columns and walls, the main reason is that
images are not taken from the front view of structural elements. Camera tilting and perspective illusion
can aggravate the inclination of distant elements, leading to the failure of detecting their boundary
lines. Therefore, taking images from the front view of the target structural elements are recommended.

Although the proposed method was applied here to only detecting and counting columns and
walls, it can be further extended to detect other structural characteristics, such as sizes and surface
defects of structural elements, or structural deficiencies, such as short columns and soft-stories, as
broader applications to automatically extract structural information from digital images. Furthermore,
as glass has been widely used for facades in modern buildings and the failure of such glass-elements
can lead to serious casualties in earthquakes, automatic detection of building elements made of
glass is a critical and challenging issue in the future [52]. The proposed GLH statistical feature-based
object-detection method has the potential for solving such issue because the gray levels of glass-elements’
surfaces are homogeneous compared with the gray levels of surrounding environment that contains
various objects, while the color/texture-based methods may fail to work in detecting glass that has
various colors and surface treatments.
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