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Abstract: The need for energy and environmental sustainability has spurred investments in renewable
energy technologies worldwide. However, the flexibility needs of the power system have increased
due to the intermittent nature of the energy sources. This paper investigates the prospects of
interlinking short-term flexibility value into long-term capacity planning towards achieving a
microgrid with a high renewable energy fraction. Demand Response Programs (DRP) based on
critical peak and time-ahead dynamic pricing are compared for effective demand-side flexibility
management. The system components include PV, wind, and energy storages (ESS), and several
optimal component-sizing scenarios are evaluated and compared using two different ESSs without
and with the inclusion of DRP. To achieve this, a multi-objective problem which involves the
simultaneous minimization of the loss of power supply probability (LPSP) index and total life-cycle
costs is solved under each scenario to investigate the most cost-effective microgrid planning approach.
The time-ahead resource forecast for DRP was implemented using the scikit-learn package in Python,
and the optimization problems are solved using the Multi-Objective Particle Swarm Optimization
(MOPSO) algorithm in MATLAB R©. From the results, the inclusion of forecast-based DRP and PHES
resulted in significant investment cost savings due to reduced system component sizing.

Keywords: demand response program (DRP); photovoltaic system (PV); pumped heat energy storage
(PHES); critical peak pricing (CPP) DRP; time-ahead dynamic pricing (TADP) DRP; loss of power
supply probability (LPSP); energy storage system (ESS); Multi-Objective Particle Swarm Optimization
(MOPSO)

1. Introduction

The quest for provision of affordable, clean, and reliable electricity supply is the key aspiration
of many nations globally. These aspirations are portrayed by the commitment of most countries to
the formulation and chartering of strategic policies that are targeted towards attaining 100% green
energy transition in the near future [1]. Many countries have embarked on different sustainable energy
pathways; for example Germany [2] and Sweden [3] aims to attain 100% renewable energy by 2050
while Hawaii in the United States has set 2045 as a target [4]. Several African countries have also taken
significant steps and shown visible commitment towards massive green energy uptakes mainly by
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wind and solar energy. Countries such as Kenya [5], Ghana [6], Mauritius [7], Nigeria [8], Egypt, and
South Africa [9] are currently making efforts in the integration of renewable energy technologies on
both small and large scale. However, the incorporation of variable renewable energy resources (VREs)
such as wind and solar energy increases the flexibility needs of a power system. Hence, to achieve an
acceptable level of power system operation reliability, dynamic and vibrant control strategies need to
be devised to balance the demand and supply using efficient flexibility mechanism [10]. Flexibility
providers are, usually, adaptable resources needed to address the short-term mismatches between the
instantaneous generated power and the load demand [11].

Most of the classical power system planning strategies comprises of segregated optimization
models for power system design. These models generally comprise of three features which are
component sizing to determine the optimal capacity configuration, unit commitment model to
determine the optimal operation strategy, and electricity market strategies to evaluate optimal
point-to-point energy transactions [12]. However, the segregated approach is not sufficient for
achieving an optimally reliable system design; this is because the operational efficiency of power
system relies highly on the time-based dispatchability and controllability of the system generating
resources. Furthermore, with the increasing penetration of VREs, the controllability and dispatchability
of power system generation sources becomes more complex. Hence, the planning for the transition
towards a high VREs-based energy system requires an integrated system planning that involves the
cost of component sizing and system flexibility [13]. A comprehensive investigation of the economic
viability of different kinds of flexibility providers available for power systems is discussed in [14].
The cost of flexibility is defined as the additional cost required to integrate additional adaptable
resources to address the intermittency of VREs integration. There are many sources of flexibility
provider options; these includes system interconnection, demand-side management, supply-side
management, storage technologies, etc. [15]. From the generation planning perspective, flexibility
is investigated based on the ramping capability of the generators, the minimum possible attainable
generation, increased cycles of shutdowns and startups for hybrid configuration as outlined in [16].

The idea of hybrid-energy system has also shown some significant growing interest as a valuable
and efficient flexibility provider towards 100% VREs generation as shown in much recent research. The
authors in [14] performed and provided a comprehensive framework for techno-economic flexibility
analysis based on MILP optimization model by combining complimentary distribution generation
alternatives such as thermal storage, heat pump, and cogeneration. The importance of the appropriate
selection of complementary generating technologies coupled with energy storage system (ESS), with
an improved optimal operation strategy, as a cost-effective path towards ensuring power system
flexibility is highlighted in [17]. Electricity storage has played a valuable and significant central role in
power system in many aspects [18]. Energy storage has the advantage to time-shift the electrical energy
supply thus it acts as an ideal mechanism for moderating the consequences of fluctuating output of
VREs on the power system. There are many well-known types of ESS in many works of literature
varying in terms of technical and economic specification as summarized in [19]. Many studies have
evaluated and demonstrated the cost–benefits of appropriate selection and application of different ESS
technologies incorporation into the power system planning. The common ESS ranges from pumped
hydro [20], hydrogen storage [21], BESS [22], compressed air energy storage, etc. [23]. The inclusion of
demand-side management into optimal component sizing that involves energy storage (ESS) facilities
is proposed in [24]. The final outcomes show that using the demand-side management (DSM) increases
the system flexibility and offers an economical planning option with reduced ESS capacity requirement.

There are two main categories of end-user electrical demand namely the flexible load demand
(FDRs) and inflexible/static load demand. The flexible load demand (FDR) are assumed to be those
appliances whose time of use can be transferred from one period to another. FDRs include heat
pump, room heater, washing machines, etc. They are also referred to as the shiftable appliances
because their usage can be delayed during the period of peak demand or shortage of electricity supply
and activated later during the period of over-generation. Non-shiftable load demands, on the other
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hand, are appliances that are static in terms of the time of use, they have a fixed time of period as to
when to use, such as illumination loads. DSM has recently received heightened attention in terms of
flexibility provision capability using flexible demand resources (FDRs) to achieve the controllability
of the customer load demand pattern [25]. In general, the FDRs provide allowances and capacity for
time-shifting in terms of their energy requirements. A proper schedule of the FDRs can guarantee
mitigation of the gap that exists between demand and system generation for power systems with very
high renewable energy fraction as addressed in [26]. A demand-side flexibility approach using the
controllability of FDRs has been developed with a detailed implementation framework for commercial
and residential smart building in [27]. Demand response program (DRP) is a subset of DSM designed
to influences the consumer’s behaviors in terms of the time of usage of the FDR through motivations
such as incentive payments and lucrative electricity prices to improve the overall system efficiency [28].
The concepts of DRP have been adequately covered in the literature with much focus on optimizing
the electricity market design. The commonly featured types of DRPs found in the literature includes
and not limited to; real-time pricing, day-ahead pricing, time of use, interrupted curtailable, direct load
control, critical peak pricing, etc. [29]. Successful implementation of DRP should take into account the
current and the forecasted future power system status to fully exploit the market flexibility [30] and
captures the VREs generation uncertainties [31,32].

However, an accurate and reliable VREs output forecasting can serve as a core and vital component
of energy management systems (EMS) implementation [33]. The role of forecasting also has significant
value in the implementation of pricing schemes in the power markets to decrease the rate of market
volatility [34]. Hence, power forecasting plays a pivotal role in flexibility planning for integrating and
addressing the uncertainty of the VREs in hybrid power systems. Accurate power forecasting provides
critical information of the anticipated status (power shortages and surplus) of the power system ahead
of time before the actual occurrence. Hence, a good foresight of the time-ahead generation profile
provides an opportunity to plan for future uncertainties adequately and cost-effectively. The ability of
a system to meet and handle the growing ramping requirements and volatile residual demand is a
significant concern of system operators as the share of wind and solar increases. The economic benefit
of accurate solar forecasting in minimizing the generation cost, as well as managing power curtailment
was investigated and illustrated by Martinez-Anido et al. [32]. A detailed approach has been adopted
for wind power forecast application in [35] and in [36] considering several power market scenarios.

1.1. Research Motivation

Various research has been conducted on optimum component sizing using various optimization
techniques to evaluate a cost-effective hybrid microgrid configuration such as PV/biodiesel/BESS
using simulated annealing [37], Supercapacitors/BESS/WT/Fuel using Non-dominated Sorted Genetic
Algorithm [6], diesel/PV/WT using multi-objective self-adaptive differential evolution algorithm [38],
PV/WT/BESS using cuckoo search algorithm [39], MOPSO [40], GA-PSO and MOPSO [41], and
more. However, it is observed from the research trends in the literature that in order to ascertain the
maximum techno-economic benefits for any microgrid configuration and investment, the flexibility
requirements of the system must be factored into its design, i.e., reliability based on adequate system
flexibility provision must be prioritized alongside the planning and capacity sizing. Hence, in this
study, a multi-objective optimal planning for an isolated microgrid that introduces the cost of flexibility
management using ESS and DRP is investigated. The multi-objective design problem is formulated
and solved using the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm in MATLAB
environment.

1.2. Research Contribution

In view of the above, the main contribution of this work is to introduce a suitable cost-effective
framework for incorporating short-term flexibility management requirements into the long-term
planning of renewable energy-based microgrid. The total cost of investment and flexibility
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management, and the supply reliability requirements are investigated and compared under different
system design scenarios using the multi-objective optimization approach. The effectiveness of
ensembled data-driven renewable energy generation forecasting using the Gradient Boosted regression
trees (GBRT) techniques for DSM/DRP flexibility planning and efficient coordination of FDRs is
analyzed and compared with the critical peak pricing DRP alternative. The economic advantage of
using PHES, compared to BESS, in microgrid applications that requires high renewable energy fraction
has been demonstrated through simulation using the data for a real Kenyan microgrid case study.

The rest of the paper is organized as follows; Section 2 presents the methodology and system
modeling, Section 3 provides an overview of the FDR, and the techniques of each DRP is described.
The optimization problems are formulated in Section 4 while Section 5 provided the details of the
case study and simulation parameters, simulation results are outlined and discussed in Section 6 and
finally, Section 7 provides the conclusion of the work.

2. Methodology and System Modeling

Figure 1 shows the proposed microgrid system infrastructure; which consist of the WT, PV, PHES,
and AC loads connected through an AC bus. The energy management system is also included as the
control center for the microgrid. The mathematical models that describe the behavior of each system
component and the energy management strategies deployed in this study are discussed below.

Motor/
generator12bar

550oC 

1bar
-160oC

1 2

3 4

Figure 1. Proposed system model.

2.1. Wind Turbine

The output power of a wind generator WTP(t) is a function of wind speed and can be calculated
using Equation (1) [42]:

WTp(t) =


WTrtd

p (t)× u3−u3
in

u3
rtd−u3

ou
uci ≤ u ≤ urtd

WTrtd
p (t) urtd ≤ u ≤ uou

0 u < uin or u > uou

(1)

where uci, urtd, u and uou are the cut-in speed, nominal speed, instantaneous wind speed at hub height
and cut-out wind speed for the wind turbine, respectively. WTrtd

p is the rated power output of the
wind turbine.
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2.2. PV System

The generated output power of the PV system (PVp(t)) is significantly determined by the solar
irradiances incident on the PV surface and temperature. The PV output power as a function of input
variables is given by (2) [43]:

PVp(t) = fpv ×
G(t)
Gstd

× [1 + θi(tpv(t)− tstd)]× PVrtd
p (2)

where fpv, PVrtd
p , G(t) is the power reduction factor, installed capacity of the PV in kW and the

incident solar irradiance, respectively. θt, Gstd, tstd is the temperature coefficient, solar irradiance, and
temperature under the standard test condition.

2.3. Energy Storage System Model

Whenever the combined output power of WT and PV generation surpasses the capacity of load
demand, the ESS transitions into the charging state. The amount of energy stored at any given time t is
primarily determined by the difference between the sum of the total PV and WT generation, and the
load demand.

2.3.1. Battery Energy Storage System (BESS)

The amount of discharging and charging power drawn or sent to the battery energy storage system,
respectively, is subject to the previous state of charge (SOC) as well as the ESS system constraints.
The SOC at any given t is determined by the following equation.

SOC(t) =
[
(PVp(t) + WTp(t))−

LD(t)
βc

]
× βch + SOC(t− 1) (1− dr) (3)

where SOC(t− 1) and SOC(t) and is the BESS state of charge for the previous and current period in
kWh, respectively. LD(t) is the load demand, βc denotes the power converters efficiency, dr and βch is
the hourly self-discharge rate and BESS charging efficiency respectively. Whenever the total generation
cannot meet the load demand, BESS shifts into the discharging mode. Consequently, the current state
of charge at any given time t is given by:

SOC(t) =
(

LD(t)
βds

− (PVp(t) + WTp(t))
)

/βds + (SOC(t− 1) (1− dr)) (4)

where βds is the discharging efficiency. The energy storage level (SOC) must be constrained within the
upper SOCmax and the lower SOCmin bounds of the BESS.

SOCmin ≤ SOC(t) ≤ SOCmax (5)

2.3.2. Pumped Heat Energy Storage (PHES)

The PHES stores electricity as sensible heat in two thermal storage system; a hot high pressure and
temperature tank (+500 ◦C, 12 bars pressure) and a cold low pressure and temperature tank (−160 ◦C,
1 Bar). It also consists of a two compressor/expander pair, argon as a working fluid and it uses gravel
as the storage medium. The operation strategy is analogous to pumped hydro storage but rather
than pumping water, heat pumping is used to create temperature difference. Theory of operation and
development is adequately covered in [44–46]. Figure 2. shows the schematic diagram of the PHES.
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Figure 2. Schematic diagram of PHES.

The energy stored in a PHES depends on the temperature differences between the two thermal
storage system. The energy stored ESSphes(t) in the reservoirs per unit volume is the difference
between the internal energies of the storage medium in the hot and cold stores. The internal energies
of the storage medium are the function of the mass (Mr) and specific heat densities of the storage
medium (SHr). The energy stored can be determined by the temperature difference between the hot
and cold store [47] as illustrated below:

ESSphes(t) = Mr × SHr × {(T2(t)− T3(t))− (T1(t)− T4(t))} (6)

The power output and input Pphes(t) of the PHES per unit volume (for charging and discharging
instance) is determined by the mass (Mg) and the specific heat of the argon gas (SHg), and the
temperature difference [48] as follows:

Pphes(t) = Mg × SHg × {(T2(t)− T1(t))− (T3(t)− T4(t))} (7)

where (T1(t), T2(t)) are the top and (T3(t), T4(t)) are the bottom section temperature of the hot tank
and cold tank respectively.

3. Flexible Demand Resources (FDRs) and Demands Response Program (DRPs)

Figure 3 shows the flowchart for the integrated system planning method considered in this work.
The framework combines the optimal ESS scheduling and optimal DRP implementations. The FDRs
play significant roles in the flexibility management of the system whenever they are appropriately
activated to minimize the mismatch between generation and demand. The DSM approach that is
employed in this study for the DRPs is based on the optimal scheduling of appropriate FDRs in the
microgrid as explained below. The net capacity of the shiftable load demand (FDR), throughout the
system scheduling period, is assumed to have a maximum range of up to 10% up (FDRmax) and down
(FDRmin) of the initial total FDR load demand value [49].

FDRmin ≤ FDR(t) ≤ FDRmax (8)
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Figure 3. Flowchart for the proposed integrated system planning framework.

3.1. Price Elasticity of Demand and Load Modeling

A change in price of a service will have an impact on the amount of quantity demanded.
For instance, a change in the price of electricity (∂Epr

std(i)) in the ith period will result in a change
of the load demand (∂LD(j)) in the jth period either by increasing or decreasing the load demand.
Thus, a change in electricity price during the single period ith affects the load demand during all the
periods (T). The price elasticity of demand (PEφ(i,i)) gives a measure of the responsiveness at which
the end-user time-shift their energy consumption patterns with respect to change in electricity as
shown below:

PEφ(i,i) =
Epr(i)
LD(i)

.
∂LD(i)
∂Epr(i)

; ∀i, j ∈ T (9)

The price elasticity of demand entails self and cross-elasticity; the self-elasticity defines the sensitivity
of load demand with respect to price within the same pricing interval (single period elasticity) and
usually has a negative value implying some proportion of the load cannot be transferred from one
period to another. On the other hand, cross-elasticity (PEφ(i,j)) defines the load demand sensitivity
of the (ith) pricing period in response to the electricity price variation in the (jth) pricing period
(multi-period elasticity) and usually has positive value implying some proportion of the load demand
is shiftable to another period. The cross-elasticity of load demand is given by [50];
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PEφ(i,j) =
Epr

std(i)
LD(j)

.
∂LD(j)
∂Epr(i)

; ∀i, j ∈ T (10)

3.2. Critical Peak Pricing (CPP) Demand Response Program

CPP is a time-based DRP that divide electricity usage time into periods and presents the fixed
electricity prices for each period in advance; peak and off-peak periods. It is usually employed to
increase system energy efficiency and alleviate stress on the power system especially when the load
demand is likely to surpass the generation capacity. It commonly enforces a very high electricity
price during system peak load demand periods and for some specific time periods in order to achieve
load reduction during these periods, and retains a flat pricing scheme or a lower electricity price
during off-peak periods [51]. The electricity customer responds by shifting load demand from one
time period to another due to the enforced pricing scheme. The ultimate customer’s demand profile
after implementation of CPP DRP is expressed as [41,52]:

Lcpp
D (i) = LD(i)

{
1 + PEφ(i,i)

[Epr
cpp(i)− Epr

std(i) + pd(i) + ps(i)]

Epr
std(i)

+
T

∑
j=1,j 6=i

PEφ(i,j)
[Epr

cpp(j)− Epr
std(j) + pd(j) + ps(j)]

Epr
std(j)

} ; for all i, j ∈ T (11)

where Epr
std(i) is the standard Kenyan electricity price before CPP DRP implementation, Epr

cpp(i), Epr
cpp(j)

is the electricity price for current ith period and the jth period after implementation of CPP DRP, pd(i)
and pd(j) are the incentives and ps(i) and ps(j) are penalties enforced for non-compliance’s of DRP.

3.3. Time-Ahead Dynamic Pricing (TADP) Demand Response Program

The cost of generation and the corresponding cost of electricity are highly affected by the shortages
and surplus of power generated in the power system. Short periods of mismatch in load demand
and generation might necessitate an over-sizing or additional capacity in the ESS that might not be
necessary or efficiently used during normal operating times. A remedy to this challenge is to offer
motivating electricity prices to influence a time shift in FDRs by the end user. A longer pricing horizon
ahead of time can guarantee end-user participation in the DRP. Thus, in TADP DRP, time-ahead
electricity pricing profile formulated as a function of the mismatch in the forecasted demand and
generated power is relayed to the end user an hour (one period) in advance.

3.3.1. Time-Ahead Dynamic Pricing Model

The electricity price for the next hour (Epr
TADP(t + 1)) is determined based on the difference

between forecasted total generation output power from renewable energy sources (PV and WT) and
the load demand L̂D(t + 1) using the following equation:

Epr
TADP(t + 1) = Epr

std(t + 1)

(
1 +

L̂D(t + 1)− (ŴTp(t + 1) + P̂Vp(t + 1))

L̂D(t + 1)

)
(12)

where P̂Vp(t + 1) and ŴTp(t + 1) represent the forecasted generation output power from the PV
and WT, respectively. Epr

std(t + 1) is the initial (standard) Kenyan electricity price initially present for
hour t + 1 before TADP DRP implementation. Epr

TADP(t + 1) is the next hour electricity price after the
implementation of TADP DRP.
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3.3.2. Time-Ahead Dynamic Pricing Demand Response Program Load Modeling

The electricity price determined one hour ahead of time for a specific period is the actual price that
would be adopted for that period. Based on the electricity price relayed in advance, the end-consumers
are either motivated/discouraged to shift their FDRs. The final economic load model after the TADP
DRP is implemented is expressed as:

LTADP
D (i) = LD(i)

{
1 + PEφ(i,i)

[Epr
TADP(i)− Epr

std(i) + pd(i) + ps(i)]

Epr
std(i)

+
T

∑
j=1,j 6=i

PEφ(i,j)
[Epr

TADP(j)− Epr
std(j) + pd(i) + ps(j)]

Epr
std(j)

}; for all i, j ∈ T (13)

where Epr
std(i) is the current (ith period) Kenyan electricity price before TADP DRP implementation.

3.3.3. Gradient Boosted Regression Trees (GBRT) Model for Time-Ahead Forecast of Generation

In this work, the forecasting tasks are treated as regression problems and machine learning
regression algorithms on scikit-learn package in Python are adopted to build the models using the
Gradient boosted regression trees (GBRT) algorithm. The GBRT algorithm has a superior advantage of
not requiring complex data pre-processing of dimension transformations or reduction and does
not suffer any loss of input variable interpretation [53]. The significant feature of the accurate
implementation of the GBRT algorithm is the parameter αgbr called the learning rates. The learning
rate is a scaling parameter that determines the individual contribution of each decision tree to the final
ensemble model. The accuracy of the model is continuously improved by fitting the residual decision
iteratively until the desired model is obtained for the best learning rate. Algorithm 1 illustrates the
GBRT pseudo code algorithm.

Algorithm 1: Gradient boosted regression trees (GBRT) pseudo code algorithm.
Start:
1. Precondition: Input the training data set M = (mi, oi);i = 1..n and

a differentiate loss function L f (oi, õ)
2. Initialization: Initialize the model with a constant value:

F0(m) = argmin ∑i=1
N L f (oi, õ)

3. Estimation: for i = 1...k; grow k trees
(i) Calculate the Pseudo residuals;

rik = −
[

∂L f (oi ,õ)
∂F(mi)

]
F(m)=F(mi)

i = 1..n

(ii) Fit a residual value regression decision tree I(m)

and establish the terminal leaves
for J = 1...jK; determine the output of each leaves

that minimizes;
õjk = argmin ∑miεRij

L f (oi, Fk−1(mi) + õ)
4. Update:

Fk(m) = Fk−1(m) + αgbr ∑
jk
j=1 õjk I(mεRjm)

End: For
5. Output Fk(m)

End: Terminate the Algorithm

In order ascertain the accuracy of forecasting algorithms, three performance evaluation metrics
are used: Mean Absolute Error (MAE), Root mean squared error (RMSE) and Coefficient of
Determination (r2).
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4. Optimal Design Problem Formulation

The multi-objective optimal design model is evaluated in terms of economic and reliability criteria
as presented in the objective functions defined below:

4.1. Economic Criteria: Total Life-Cycle Cost (TPC)

The objective function of the economic criterion is formulated as a cost minimization problem
of the net present value of the total life-cycle costs (TPC) of all system components alongside the
implementation of the flexibility requirements under different system scenarios. The decision variable
of the optimization problem is the capacity of the WT (CWT), PV (CPV) and ESS (CESS).

minimize TPC =
Z

∑
z=1

{
CIz +

n=N

∑
n=1

(O&Mz + RPz − RVz)

(1 + r)n

}
× Cz (14)

where z indexes the zth component and Cz is the decision variables that represent the optimum
component capacities of each of the system components (PV, ESS, and WT). The TPC components are
the capital costs (CIz), yearly operation and maintenance costs (O&Mz), replacement costs (RPz) and
the salvage value RVz, N is the project lifetime, n is the time step in the project life, i.e., a year and r is
the discount rate. The system components have a yearly operation and maintenances cost over the
project lifetime.

4.2. Reliability Criteria: Loss of Power Supply Probability (LPSP)

The second objective considers the loss of power supply probability as the system reliability
criteria. LPSP reliability index measures and ascertains the quality and reliability performance of the
power system design under the different scenarios considered in this study. LPSP is defined as the
ratio of the sum of all energy deficits (LPS) to the total power demand. Thus, LPSP can be evaluated
by using the following expression:

LPSP =
∑T

t=1 LPS(t)

∑T
t=1 LD(t)

(15)

where
LPS(t) = LD(t)−

[
WTp(t) + PVp(t) + (SOC(t− 1)− SOCmin)× βc

]
(16)

LPSP value ranges between zero and one; a value of 0 for LPSP implies that the load demand
will always be met or satisfied, and this is the most desired and preferred performance. The following
system DRP constraints are considered during the optimization procedure, alongside the other system
component constraints that are mentioned at each design stage.

PVp(t) + WTp(t) + ESSds
p (t)− ESSch

p (t) = LD(t); without DRP
PVp(t) + WTp(t) + ESSds

p (t)− ESSch
p (t) = LCPP

D (t); with CPP DRP
PVp(t) + WTp(t) + ESSds

p (t)− ESSch
p (t) = LTADP

D (t); with TADP DRP
(17)

4.3. Overview of the Optimization Tool: Multi-Objective Particle Swarm Optimization

PSO is a population-based approach for solving discrete and continuous optimizations problem
that stemmed from and mimic the navigation behavior of swarms of bees, flocks of birds, and schools
of fish. To obtain the optimal value of the objective function at each search, two different solution
points are obtained which are called the local best, Pbesti = (pi1, pi2, ..., pid) and the global best, is
Pbestg = gbest = (pg1, pg2, ..., pgd); and the positions of the particles for the next objective function
evaluation is estimated as given below:
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Vt+1
id = w× vk

id + c1 × rand1 × (Pbestid − Xid)

+ c2 × rand2 × (gbestd − Xid)
(18)

Xk+1
id = Xk

id + Vk+1
id (19)

w = wdamp ×
itermax − iter

itermax
+ wi (20)

iter is the iteration count, itermax is the total iterations. wi, w f are the minimum and maximum
range of the inertia weight. The multi-objective PSO approach adopted in this work is described [54].
The repository particles guides the search within the efficient, non-inferior and admissible pareto front by
sorting out the non-dominated solutions. The exploratory capacity of the algorithm is strengthened by
a special mutation operator just like in NSGA II algorithm as explained below. If ~f (~x) consists of n
objective functions each with m decision variables, then the multi-objective problem can be defined as
finding the vector ~x∗ = [x∗1 , x∗2 , ..., x∗m]T which minimizes ~f (~x) as shown:

minimize ~f (~x) = [ f1(~x), f~2(x), ... fn(~x)] for ~x∗ ∈ ε (21)

~g(~x) ≤ 0 (22)
~h(~x) = 0 (23)

~g and~h are sets of inequality and equality constraints, respectively. A point ~x∗ ∈ χ is pareto optimal if
for every ~x ∈ χ and I = 1, 2, ..., k either:

∀i ∈ I( fi(~x) = fi(~x∗)) (24)

or at least there is one i ∈ I such that
fi(~x) > fi(~x∗)) (25)

5. Research Case Study and Simulation Parameters

The proposed energy system planning and management approach are investigated on an
undeserved Marsabit county isolated microgrid in Kenya, which is currently served by conventional
diesel-based generators. The goal of this work is to investigate the best flexibility management
incorporated hybrid VRE energy supply combination that will completely replace the existing
diesel generators considering the cost and reliability criteria that are described above. The hourly
meteorological data of the locality (2.3369◦ N, 37.9904◦ E) was obtained from online sources [55,56] for
2015 to 2018. The meteorological data set consists of wind speed, wind direction, air pressure, relative
humidity, solar irradiance, and the temperature variables. The economic and technical parameters
were obtained from [57] through desk research and consultation with energy sector employees and
policymakers in the region. Table 1 shows the details of simulation parameters and Table 2 shows the
considered self and cross-price elasticity of demand, which is adopted from [52] modified to fit the
Kenyan case. The price elasticity of demand entails self and cross-elasticity; the self-elasticity defines
the sensitivity of demand with respect to price within the same pricing interval while cross-elasticity
(PEφ(i,j)) define the load demand sensitivity of the (ith) pricing period in response to the electricity
price variation in the (jth) pricing period. The cross-elasticity of demand is given by [50];
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Table 1. Technical, Cost & lifetime parameters of the system components.

System Component and Economic Indicators Specifications

Economics
Discount rate 4%
Inflation rate 3%
Lifetime of the project 20 years

Specification of the PV system
Capital costs 1691.5 US $/kW
O & M costs 26 US $/kW/yr
PV reduction factor 0.85
lifetime 20 years

Specification of the PHES
Round trip efficiency 70%
Power converters (Expander/compressor system) 400 US $/kW
Energy storage unit 15.08 US $/kWh
O&M (Power converters units) 12.76 US $/kW/yr
O&M (Thermal Energy unit) 0.03 US $/kWh/yr
self-discharge rate (hourly) dr 0.04%
Lifetime 20 years

Specification of the WT
Capital cost 2030 US $/kW
O& M 76 US $/kW/yr
lifetime 20 years
Wind speed (Cut-in): 4 m/s
Rated wind speed: 14.5 m/s
Cut-out wind speed: 25 m/s
Wind Shear Coefficient 0.143
Hub height: 50 m

Specification of the BESS
Capital Cost 300 US $/kWh
O & M 10 US $/kWh/yr
Round trip efficiency 85%
lifetime 5 years

Table 2. DRP self and cross-price elasticities of demand [49,50,52].

Off-Peak Period Peak Period

Off-peak period −0.1 0.016
Peak period 0.016 −0.1

The Kenyan tariff structure of 2018 was obtained from [58,59]. The current electricity rate of 15.80
US Cents per kWh for ordinary domestic consumers was considered to be the flat rate Epr

std. For this
work, the CPP DRP pricing scheme was considered to be 20.00 US Cents per kWh for peak period
from 7:00 p.m. to 10:00 p.m. while the rest of the day adopted a flat pricing of 15.80 US Cents per
kWh. TADP DRP implemented a time-ahead hourly variable pricing scheme with a maximum and
minimum electricity price of 20.00 US Cents per kWh and 10.00 US cents per kWh, respectively.

PHES has no geographical limitations [60] and have been found to be a viable ESS technology
option for both large and small-scale energy management applications. Its prospects in terms of
cost-effectiveness and flexibility provision has also been verified in [48], thus, it has been determined to
be one of the most suitable ESS options for application in isolated places such as the Kenyan microgrid
case under study. PHES stores electricity as sensible heat in thermally insulated and closed-looped
thermal storage systems which ensures that the system is isolated; hence, based on the design aspects
outlined in [47], there is a guarantee that the model is feasible for deployment for our case study. The
analysis of a proposed commercial PHES design with a maximum capacity of 16 MWh as detailed
in [45,61] has been adopted as the benchmark for many studies in the literature; thus, the system
technical and economic specifications are used in our work for the Kenyan microgrid under study.
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6. Simulation Results and Discussion

The simulation results are presented for three cases based on optimal capacity planning and
flexible operation feasibility using BESS and PHES, with and without DR. The optimal size of system
components is determined under each case at minimum investment costs and maximum supply
reliability (minimum LPSP) while satisfying the system operational and flexibility requirements.
The results of the considered three case simulation scenarios are outlined and discussed below:

• Case 1: Comparing BESS and PHES without DRP consideration.
• Case 2: Comparing BESS and PHES with CPP DRP consideration.
• Case 3: Comparing BESS and PHES with TADP DRP consideration.

6.1. Case 1: BESS versus PHES without DRP

Figure 4a,b shows the trade-off Pareto front plots for economic and reliability criteria with BESS
and PHES, respectively, under case 1. From Figure 4, as expected, the system reliability condition
improves (LPSP value decreases) as the total cost increases and vice visa. Hence, the cost-benefit
relationship at different LPSP values is analyzed and discussed using the investment cost-savings
approach. Table 3 summarizes the details of the cost-benefit analysis for case 1. The optimal selected
points are derived after multiples execution of the optimization program for LPSP values in the range
of 0% to 15%.
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Figure 4. Pareto front plots for case 1.

Table 3. Techno-economic analysis for case 1.

BESS-Based Microgrid PHES-Based Microgrid

LPSP 0% 5% 10% 15% 0% 5% 10% 15%

PV capacity (kW) 1422 1207 1003 1030 1699 1806 1652 1850
WT capacity (kW 1919 2120 2063 1774 1657 1376 1371 1108
ESS capacity (kWh) 6798 1800 900 411 7800 7546 6967 6925

TPC (US $) 1.38 × 107 1.05 × 107 9.28 × 106 8.06 × 106 9.06 × 106 8.38 × 106 8.03 × 106 7.59 × 106

A comparison of the two systems based on the ESS technology at maximum reliability condition
i.e., LPSP = 0%; it can be seen that the choice of PHES instead of BESS results in a total investment cost
reduction of about 34.28% from US $ 1.38 × 107 to the US $ 9.06 × 106. This a significant cost saving in
the microgrid planning. Hence, PHES has been shown more economical compared to BESS.

6.2. Case 2: BESS versus PHES with CPP DRP

In this case, the benefit of CPP DRP on capacity sizing optimization problem for both BESS and
PHES-based microgrid is investigated, and pareto fronts plotted. Figure 5a,b shows the Pareto front
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plots with CPP DRP considering BESS and PHES, respectively. For both cases, it can be observed from
the pareto plots that an increase in the LPSP value, the TPC decreases, this is due to the fact that the
reliability index (LPSP) and planning cost (TPC) are conflicting objective. Table 4 summarizes the
cost–benefits analysis for case 2 which involves the economic effects of critical peak pricing (CPP) DRP
for the BESS and PHES-based microgrid configuration.
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Figure 5. Pareto front for case 2.

Table 4. Techno-economic analysis for case 2.

BESS-Based Microgrid PHES-Based Microgrid

LPSP 0% 5% 10% 15% 0% 5% 10% 15%

PV capacity (kW) 1110 1027 958 1039 1826 1670 1754 1671
WT capacity (kW) 2165 2184 2054 1808 1561 1498 1230 1195
ESS capacity (kWh) 6436 1170 670 132 7789 7311 6986 6414

TPC (US $) 1.37 × 107 9.91 × 106 9.00 × 106 7.99 × 106 9.02 × 106 8.48 × 106 7.78 × 106 7.49 × 106

For the comparative analysis of the two systems configurations at LPSP = 0% (maximum reliability)
with the consideration CPP DRP; the selection of PHES as an ESS alternative to BESS in optimum
capacity resulted in 34.22% reduction in the total investment costs. This significant cost saving signifies
that PHES-based configuration is more economical and preferred investment option compared to
BESS-based microgrid.

6.3. Case 3: BESS versus PHES with TADP DRP

In this case, the prospects of TADP DRP in optimum component-sizing problem has been
investigated. The renewable energy generation forecasting is a subset feature of the TADP DRP
implementation. Hence, the GBRT prediction results for wind speed, solar irradiance and the
consequent WT and PV powers are validated using error metrics (MAE, RSME and r2) in order
to determine the suitable forecasting condition based on the learning rates αgbr. The total data set
contained 17,520 data points with an hourly resolution; from which 75% of the data are adopted for
training, and 25% are adopted for testing. Table 5 summarizes the forecasting results based on MAE,
RSME and r2 for the GBRT forecasting model under three αgbr values i.e., αgbr = 0.1, 0.3, 0.5. As it can
be noticed, the chosen value of αgbr significantly affects the precision of the GBRT forecasting model.
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Table 5. Forecasting results of GBRT model based on MAE, RSME and r2 considering three αgbr values:
αgbr = { 0.1, 0.3, 0.5 }.

GBRT Algorithm Error Metric αgbr = 0.1 αgbr = 0.3 αgbr = 0.5

Wind speed forecasts
MAE (m/s) 0.22 0.25 0.28
RMES (m/s) 0.27 0.33 0.39

r2 0.96 0.94 0.92

Wind power forecast
MAE kW 35.03 39.52 44.33
RMES kW 47.98 55.69 62.83

r2 0.96 0.94 0.92

Solar irradiance forecast
MAE W/m2 15.36 18.55 20.35
RMES W/m2 29.62 34.87 40.50

r2 0.99 0.98 0.98

Photovoltaic power forecast
MAE kW 17.43 21.05 23.08
RMES kW 33.60 39.55 45.94

r2 0.99 0.98 0.98

The best wind speed and wind power forecast results are realized when the αgbr value chosen
equals 0.1. The least error values indicated by MAE and RMSE of 0.22 (m/s) and 0.27 (m/s) for
wind speed prediction and 35.03 kW and 47.98 kW for wind power forecast respectively confirms the
consequences of the αgbr value chosen. The results accuracy are further validated using the r2 metric;
the highest value of r2 = 0.96 further establishes that the GBRT at αgbr = 0.1 is an appropriate model
for wind speed and wind power forecasting. Figure 6. shows a comparison of the actual wind speed
versus the predicted wind speed with one-hour-ahead rolling forecasting horizon using the GBRT
model when αgbr is set to 0.1 (for the best αgbr value).
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Figure 6. Comparison between the actual versus the predicted wind speed with one-hour-ahead rolling
forecasting horizon using the GBRT model at αgbr = 0.1 (from 1/12/2018 to 5/12/2018).

Also, for solar irradiance and PV power prediction, the best results are obtained when the αgbr
parameter is set to 0.1. The minimum error values indicated by MAE and RMSE of 15.36 (W/m2)
and 29.62 (W/m2) for solar irradiance prediction and 17.43 kW and 33.60 kW for PV power forecast,
respectively, validate the parameter selection. Also, the highest r2 metric of 0.99 shows the goodness
of fit and suitability of the model selection as being appropriate. Figure 7 shows a comparison of the
actual versus the predicted solar irradiances with one-hour-ahead rolling forecasting horizon using
the GRBT model when αgbr is set to 0.1 (for the best αgbr value).
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Figure 7. Comparison of the actual versus the predicted solar irradiances with one-hour-ahead rolling
forecasting horizon using the GRBT forecasting model at αgbr = 0.1 (from 1/12/2018 to 5/12/2018).

Figure 8a,b shows the Pareto front plots with TADP DRP considering BESS and PHES,
respectively; and Table 6 summarizes the cost–benefits analysis for the BESS and PHES-based
microgrid configuration.
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Figure 8. Pareto front plots for case 3.

Table 6. Techno-economic analysis for case 3.

BESS-Based Microgrid PHES-Based Microgrid

LPSP 0% 5% 10% 15% 0% 5% 10% 15%

PV capacity (kW) 1424 1191 1210 1193 1858 1831 1842 1826
WT capacity (kW) 1871 2020 1878 1655 1513 1363 1204 1048
ESS capacity (kWh) 5603 1341 460 181 7494 7326 7121 6397

TPC (US $) 1.28 × 107 9.82 × 106 8.78 × 106 7.83 × 106 8.93 × 106 8.38 × 106 7.89 × 106 7.34 × 106

According to the results of optimal capacity sizing considering TADP DRP at LPSP=0%, it can
be noted that adoption PHES-based configuration will results in about 30.23% investment costs
reduction compared to the BESS-based. Hence, PHES-based microgrid is the most cost-effective
microgrid configuration compared to the BESS-based microgrid design. For all the scenarios (case 1–3)
investigated, it is seen that PHES gives the lowest investment cost on ESS compared to BESS. Thus, for
a cost-effective long-term investment, it can be deduced that the selection of the PHES-based microgrid
has a better economic prospect compared to BESS-based configuration.

6.4. Techno-Economic Comparison for Each ESS Type Based on DRP Options at Maximum System Reliability
(LPSP = 0%)

In this section, different microgrid configurations based on the DRP options are evaluated based
on the net investment cost for different ESS types. The prospect of each configuration in the long-term
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microgrid planning with the possibility of high renewable energy fraction is reflected in the net
investment cost under each system configuration. Figure 9a,b shows the pareto front plots comparison,
without and with DRPs, for BESS and PHES-based microgrid design, respectively.
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Figure 9. (a,b) shows the Pareto front plots comparison for BESS and PHES-based microgrid design
respectively, based on the DRP flexibility options.

Table 7 summarizes the investment cost under each configuration and flexibility options.
The reference cases are the ones without DRP consideration (case 1) and the cost implication of
introducing different types of DRP for each ESS-type microgrid are duly analyzed in terms of
percentage cost reduction.

Table 7. Techno-economic analysis for each ESS type based on the DRP flexibility options.

BESS-Based Microgrid PHES-Based Microgrid

DRP type Case 1:
without DRP

Case 2:
CPP DRP

Case 3:
TADP DRP

Case 1:
without DRP

Case 2:
CPP DRP

Case 3:
TADP DRP

PV capacity (kW) 1422 1110 1424 1699 1826 1858
WT capacity (kW) 1919 2165 1871 1657 1561 1513
ESS capacity (kWh) 6798 6436 5603 7800 7789 7494
TPC (US $) 1.38 × 107 1.37 × 107 1.28 × 107 9.06 × 106 9.02 × 106 8.93 × 106

% cost saving - 0.53% 7.20% - 0.44% 1.48%

For the BESS-based microgrid, introducing CPP DRP results in a cost saving of 0.53% of the
investment from US $ 1.38 × 107 (without DRP) to 1.37 × 107; this cost saving is as a result of 21.59%
and 5.33% reduction in the PV and BESS component sizes, respectively. This is because CPP DRP
decreased the load demand and consequentially, the BESS dependency during the peak demand
periods. For the PHES-based microgrid, the introduction of CPP DRP results in 0.44% cost reduction
from US $ 9.06 × 106 to US $ 9.02 × 106. The cost-benefit is because of the 5.8% and 0.14% capacity
size reduction of WT and PHES, respectively, and an increase of 7.4% PV capacity. For the two cases,
It should be noted that there is a decrease in the investment costs as the CPP DRP shifts the FDR to
off-peak from the peak period of the system and ensure a more flattened load profile and prevent
sub-optimal capacity sizing.

The potential superiority of TADP DRP over CPP DRP for microgrid design for high renewable
energy penetration can be seen in the cost–benefits illustrated in Table 7. The inclusion of the TADP
DRP in the BESS-based system resulted in 7.2% cost saving in the total planning costs. The planning
cost reduction is due to a decrease of 17.58% and 2.5% for BESS and WT respectively with a slight
increase of 0.11% in PV component size. Similarly, this trend is noted for PHES-based system with
a total cost reduction of 1.48% resulting from 3.98% and 8.69% decrease in PHES and WT capacities,
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respectively. However, this results in an increase PV capacity of about 9.36%. Figure 10 illustrates the
role and impact of DRPs in minimizing the gap between total generated RES power and load demand
profiles. The prospects of TADP DRP over CPP DRP to reduce the mismatch between the load and
the RES generated power profiles has been vividly portrayed by significant optimum component size
reduction and hence the TPC minimization to realize the techno-economic benefit of a microgrid.

Figure 10. Role and impact of DRPs in minimizing the gap between total generated VRES power and
load demand profiles.

Therefore, for the two system and types of DRP investigated, it can be inferred that the application
of TADP DRP is more investment-worthy compared to the CPP DRP. TADP DRP short-term flexibility
option takes into account the varying generation profile of WT and PV from the forecasting results;
thus, the reason for its robustness.

7. Conclusions

This paper investigated the prospects of interlinking the cost of short-term flexibility management
of microgrid with the long-term optimal capacity planning models towards achieving a 100% green
microgrid by using DRP and forecasting. The long-term capacity planning of energy systems involves
the evaluation of the optimal size of each of the system component while the short-term flexibility
options are implemented within the optimal energy management strategies. The DRPs are incorporated
as flexibility options to minimize the gap between demand and supply, thus minimizing the overall
system costs. The forecasting provides an outlook of anticipated generated power proper scheduling for
the effective implementation of one of the DRPs employed in this work. The suggested methodology, in
this work, seeks to provide a sustainable and cost-effective transformative approach towards achieving
a 100% renewable energy generation for Marsabit county microgrid at a reduced cost of investment
by cutting down on excessive sizing of system components. This can serve as a benchmark for other
under-served isolated regions all over the world.

For the interlinked multi-objective optimization procedure, credible scenarios were investigated
considering two ESS technology-based configurations without and with the inclusion of the DRP.
DRPs were applied to provide the required operational flexibility that involves shifting the operation
of the FDRs from one period to another to minimize the gap between the generation and demand
profiles. The two objectives of the techno-economic optimization procedure are the minimization of
loss of load probability (LPSP), which is the system reliability criterion and the minimization of the net
present value of the investment costs, which is the economic criterion. The forecasting for TADP DRP
implementation was performed using the GBRT algorithm on scikit-learn in Python due to its precision
and less computational requirement compared to other algorithms, and the MOPSO was adopted
for the optimization procedure. The LPSP is set as the standard for economic comparison under
each scenario considered in this work. At LPSP = 0%, i.e., maximum system reliability, the potential
benefit of TADP DRP outperformed the CPP DRP as reflected on the investment cost component. Also,
for the ESS-type performance comparison, PHES was shown to be more cost-effective compared to
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BESS due to its low cost per kWh of storage capacity and its resultant economic effect on the whole
system configuration.
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Abbreviations

LCC Life cycle costs.
r discount rate (%).
REA Rural electrification authority.
ABE African business education.
J ICA Japan international cooperation agency.
DSM Demand side management.
DRP Demand response program.
PHES Pumped Heat energy storage.
ESS Energy storage system.
PV Photovoltaic system.
WT Wind turbine.
VRES Variable renewable energy sources.
BESS Battery energy storage system.
dr hourly self-discharge rate of ESS.
CPP Critical Peak Pricing.
TADP Time-ahead dynamic pricing.
FDR Flexible demand resources.
FDRmin Minimum FDR limit.
FDRmax Maximum FDR limit.
LD Load demand (kW).
Lcpp

D CPP load demand (kW).
LTADP

D TADP load demand (kW).
Epr

std Standard electricity price.
ETADP

pr TADP electricity price.
LPSP Loss of power supply probability.
PVp instantaneous power output of Photovoltaic system (kW).
WTp instantaneous power output of Wind turbine (kW).
SOCmin Minimum limit of the SOC.
SOCmax Maximum limit of the SOC.
SOC State of charge of ESS.
N Project lifetime
n year index
T Total number of time periods, i.e., in a year scheduling horizon
t instantaneous time index in the scheduling horizon
PVrtd

p installed rated power of PV (kW).
WTrtd

p installed rated power of WT (kW).
G incident solar irradiance (W/m2).
tpv temperature of PV module.
θt Temperature coefficient of the PV.
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fpv Power reduction factor of PV (%).
Gstd standard test condition incident solar irradiance (1000 W/m2).
Mr mass of PHES storage medium.
SHr specific heat densities of storage medium.
βch charging efficiency of the ESS.
βds discharging efficiency of the ESS.
βc power converters efficiency.
pd incentive payment.
ps penalty payment.
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