
applied  
sciences

Review

Energy Management in Microgrids with Renewable
Energy Sources: A Literature Review

Yimy E. García Vera 1, Rodolfo Dufo-López 2,* and José L. Bernal-Agustín 2

1 Electronic Engineering, San Buenaventura University, Bogotá 20, Colombia; yegarcia@usbbog.edu.co
2 Electrical Engineering Department, University of Zaragoza, 50018 Zaragoza, Spain; jlbernal@unizar.es
* Correspondence: rdufo@unizar.es

Received: 24 July 2019; Accepted: 11 September 2019; Published: 13 September 2019
����������
�������

Abstract: Renewable energy sources have emerged as an alternative to meet the growing demand
for energy, mitigate climate change, and contribute to sustainable development. The integration of
these systems is carried out in a distributed manner via microgrid systems; this provides a set of
technological solutions that allows information exchange between the consumers and the distributed
generation centers, which implies that they need to be managed optimally. Energy management in
microgrids is defined as an information and control system that provides the necessary functionality,
which ensures that both the generation and distribution systems supply energy at minimal operational
costs. This paper presents a literature review of energy management in microgrid systems using
renewable energies, along with a comparative analysis of the different optimization objectives,
constraints, solution approaches, and simulation tools applied to both the interconnected and isolated
microgrids. To manage the intermittent nature of renewable energy, energy storage technology
is considered to be an attractive option due to increased technological maturity, energy density,
and capability of providing grid services such as frequency response. Finally, future directions on
predictive modeling mainly for energy storage systems are also proposed.

Keywords: microgrids; energy management; renewable energy; optimization; photovoltaic;
energy storage

1. Introduction

The exponential demand for energy has led to the depletion of fossil fuels such as petroleum, oil,
and carbon. This, in turn, increases the greenhouse effect gases. Energy systems have incorporated
small-scale and large-scale renewable sources such as solar, wind, biomass, and tidal energy to mitigate
the aforementioned problems on a global scale [1]. Global energy demand will grow by more than
a quarter to 2040, when renewable sources are expected to represent 40 percent of the global energy mix.
The reliability of the renewable sources is a major challenge due mainly to mismatch between energy
demand and supply [2]. Renewable energy resources, distributed generation (DG), energy storage
systems, and microgrids (MG) are the common concepts discussed in several papers [3]. The increase
in the demand for energy and the rethinking of power systems has led to energy being generated
near the places of consumption. This energy is derived from renewable sources, which are becoming
increasingly competitive due to a drop in prices, especially in the case of photovoltaic solar and wind
energies [4].

Due to strong dependency on climatic and meteorological conditions, in many cases the optimal
system is a hybrid renewable energy system (considering one or more renewable sources) with battery
storage systems (and in some cases including diesel generator) [5]. The hybrid energy systems are
typically used for electricity supply for several applications such as houses or farms in rural areas
without grid extension, telecommunication antennas, and equipment, and many other stand-alone
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systems [6,7]. In many cases these hybrid systems imply the highest reliability and lowest costs
compared to systems with only one energy source [8,9].

A microgrid consists of a set of loads, energy storage equipment, and small-scale generation
systems [10]. It can be defined in a broader sense as a medium or low distribution grid, which has
distributed generation including renewable and conventional sources (hybrid systems) with storage
units that supply electrical energy to the end users. The reliability of the microgrid is improved by
the storage and it is used to complement the intermittency of the PV and wind output power [11–13].
These microgrids have communication systems that are necessary for real time management [14].
Microgrids can also operate either in isolation or when connected to a grid [15]. Based on the type of
source they manage, microgrids can be classified as direct current line (DC), alternating current line
(AC), or hybrid (shown in Figure 1).
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In a microgrid, it is essential to maintain the power supply-demand balance for stability because
the generation of the intermittent distributed sources such as photovoltaic and wind turbines is difficult
to predict and their generation may fluctuate significantly depending on the availability of the primary
sources (solar irradiation and wind). The supply-demand balancing problem becomes even more
important when the microgrid is operating in stand-alone mode where only limited supply is available
to balance the demand [16]. Energy management optimization in microgrids is usually considered as
an offline optimization problem [17].

Microgrids supported with renewable energies can be classified as smartgrids, which provide
a set of technological solutions to allow information exchange between the consumers and the
distributed generation. An energy management system (EMS) is defined as an information system,
which provides the necessary functionality when supported on a platform to ensure that generation,
transmission, and distribution supply energy at minimal cost [18]. Energy management in the
microgrids involves a control software that permits the optimal operation of the system [19]. This is
achieved by considering the minimal required cost and two microgrid operation modes (isolated
and interconnected). The variability of resources such as solar irradiation and wind speed must be
accounted for when considering microgrids with renewable energy sources [20].

A review on the studies related to the energy management of microgrids can be found in [21].
A few authors have solved the problem of energy management using different techniques to achieve
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an optimal microgrid operation. However, these techniques must incorporate better solution strategies
due to the integration of distributed generation, storage elements, and electric vehicles.

Other recent papers [22] have reviewed various integration methods for renewable energy
systems based on storage and demand response. This covers two main areas, namely (1) the optimal
usage of storage, and (2) improvement of user participation via demand response mechanisms
and other collaborative methods. The authors in [23] reviewed energy management strategies for
hybrid renewable energies. The above review covered different configurations of stand-alone and
grid-connected hybrid systems. Other review papers [24] have shown the control objectives of the
microgrid supervisory controllers (MGSC) and energy management systems (EMS) for microgrids.
Table 1 shows the contributions of the review papers related to the energy management of microgrids.
Unlike the cited papers, this paper focuses on the incorporation of better strategies for the control
of energy (both heat and electrical) flow between the hybrid system sources and load. Furthermore
methods of energy management in stand-alone hybrid microgrid considering the battery degradation
are also discussed.

Table 1. Microgrids energy management review papers.

Reference Contributions

[21]
Authors presented a comparative analysis on decision making strategies for
microgrid energy management systems. These methods are selected based on their
suitability, practicability, and tractability, for optimal operation of microgrids.

[22]
Energy management integration methods, demand response, and storage systems are
reviewed. Authors used more accurate models for storage including key factors such
as the derating factors due temperature charge/discharge rate and ageing.

[23] Authors presented a review on strategies and approaches used to implement energy
management in stand-alone and grid-connected hybrid renewable energy systems.

[24]
Authors showed an extensive review on energy management methodologies applied
in microgrids. EMS for real-time power regulation and short-/long-term energy
management are reviewed.

[25]
Authors showed previous solutions approaches, optimization techniques, and tools
used to solve energy management problem in microgrids. It includes heuristic,
agent-based, MPC, evolutionary algorithms, and other methods.

[26] Authors showed an overview of the latest research developments using optimization
algorithms in microgrid planning and planning methodologies.

[27] Authors presented an overview of current hybrid microgrids and optimization
methods and applications.

[28] Authors showed in detail the optimization of distributed energy microgrids in both
the grid-connected and stand-alone mode.

2. Microgrid Optimization Techniques

Energy management of a microgrid involves a comprehensive automated system that is primarily
aimed at achieving optimal resource scheduling [25–27]. It is based on advanced information technology
and can optimize the management of distributed energy sources and energy storage system [28].
The microgrid optimization problem typically involves the following objectives:

Maximize the output power of the generators at a particular time;
Minimize the operating costs of the microgrid;
Maximize the lifetime of energy storage systems;
Minimize the environmental costs.

Some of the classic optimization methods include mixed integer linear and non-linear
programming. The objective function and constraints used in linear programming are linear functions
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with real-valued and whole-valued decision variables. Dynamic programming methods are used to
solve more complex problems that can be discretized and sequenced. The problem is typically broken
down into sub-problems that are optimally solved. Then, these solutions are superimposed to develop
an optimal solution for the original problem.

Metaheuristics is another important alternative in microgrid optimization. Heuristic techniques are
combined to approximate the best solution using genetic algorithms, biological evolution, and statistical
mechanisms for achieving optimal operation and control of microgrid energy.

Predictive control techniques are used in applications where predicting the generation and loading
is necessary to guarantee effective management of stored energy. This typically combines stochastic
programming and control. The most remarkable among these techniques are the ones to predict the
deterioration of elements of the grid, mainly storage systems.

Optimization methods based on a multi-agent used on microgrids allow a decentralized
management of the microgrid and consist of sections having autonomous behavior to execute the tasks
with defined objectives. These agents, which include loads, distributed generators and storage systems,
communicate with each other to achieve a minimal cost.

Stochastic methods and robust programming are used to solve the optimization functions
when the parameters have random variables, particularly in artificial neural networks, fuzzy logic,
and game theory.

A few more methods can be derived from a combination of the aforementioned techniques such
as stochastic and heuristic methods and enumeration algorithms.

3. Microgrid Energy Management with Renewable Energy Generation

A microgrid is composed of different distributed generation resources that are connected to the
utility grid via a common point. Figure 2 shows a microgrid energy management mode along with
several features that are modules of human machine interfaces (HMI), control and data acquisition,
load forecast, optimization, etc. [29].
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Many researchers have addressed energy management by implementing different approaches.
However, all approaches have focused on determining the most optimal and efficient microgrid
operation. The following sub-sections discuss and classify these strategies and solutions.

3.1. Energy Management Based on Linear and Non-Linear Programming Methods

Ahmad et al. [30] presented a technical and economic method to optimize a MG based on
mixed integer linear programming (MILP). This paper presents the advantages of programming the
generation of distributed sources, managing the intermittency and volatility of this type of generation,
and reducing load peaks. The cost function is solved via linear programming based on a general
algebraic modeling system (GAMS). Simulations to optimize MG size are performed via software
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called HOMER. Taha and Yasser [31] presented a robust algorithm based on a predictive control model
for an isolated MG. The model incorporates multi-objective optimization with MILP, which minimizes
the cost, energy consumption, and gas emission due to diesel generation in the MG.

Sukumar et al. [32] proposed a mixed method for MG energy management. This was achieved
by combining the utility grid and fuel cell power. The problem is solved using linear optimization
methods, and the on/off states of the utility grid are solved via MILP. A particle swarm optimization
(PSO) method was used to obtain an optimal energy storage system size.

Tim et al. [33] proposed a system for energy management in an interconnected MG that adopted
a centralized approach based on the concept of flexibility for the final users. An optimal economic
dispatch was obtained using quadratic programming. This grid was integrated with a photovoltaic
system and the constraints must satisfy the demand. The algorithm was tested on an IEEE 33 node
modified grid.

Delgado and Domínguez-Navarro [34] presented an algorithm based on linear programming for
MG energy management that allowed the optimal operation of either generators or controllable and
non-controllable loads. The optimization problem involves the optimal dispatch of generators (diesel)
while meeting the operational and economic constraints imposed by the purchase and sale of energy
corresponding to each component (generators, storage systems, and loads).

Helal et al. [35] analyzed an energy management system for a hybrid AC/DC MG in an isolated
community that employs a photovoltaic system for desalination. The proposed optimization algorithm
was based on the mixed integer non-linear programming, wherein the objective function minimizes
the daily operating costs.

Umeozor and Trifkovic [36] researched the energy management of a MG based on MILP via the
parametrization of the uncertainty of solar and wind energy generation in the MG. The optimization
is achieved at two levels. First, the parametrization scheme is selected; second, the operational
decisions are made the problem considers the variation in market prices and the disposition of the
storage systems.

Xing et al. [37] presented an energy management system based on multiple time-scales.
The optimization problem considers two aspects: A diary static programming and dynamic
compensation in real time. This is solved via a mixed-integer quadratic programming method
using optimal load flows, and the load state of the batteries are predicted using wind and solar
radiation data.

Correa et al. [38] proposed an energy management system based on a virtual power plant
(VPP). The studied MG has solar panels and storage systems and works in an interconnected manner.
These elements are programmed/modeled using linear programming methods to minimize the
operating costs. Renewable energies are incorporated into an energetic model, similar to the Colombian
one, and are mainly based on hydric resources.

Cardoso et al. [39] analyzed a new model to observe the battery degradation of a MG. The problem
is solved using stochastic mixed-integer linear programming, taking several factors such as loads
and different sources of energy generation, costs, constraints, grid topology, and local fees for energy
into consideration.

Behzadi and Niasati [40] analyzed a hybrid system that consists of a photovoltaic (PV) system,
battery, and fuel cells. Performance analysis was conducted using the TRNSYS software, and the
sizing was determined either using the genetic algorithm in the HOGA software (now called iHOGA),
manual calculations, or the HOMER software. Three energy management strategies were tested for
energy dispatch in this hybrid system. The excess energy was checked in each system and a decision
was taken to either produce hydrogen or charge the battery or both.

3.2. Energy Management Based on Metaheuristic Methods

Dufo-López et al. [41] proposed a control strategy for the optimal energy management of a hybrid
system based on genetic algorithms. The system is composed of renewable sources (PV, wind,
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and hydro), an AC generator, electrolyzer, and fuel cells. Energy management is optimized to minimize
the operating costs, which enables the use of the excess energy generated by the renewable sources to
charge the batteries or produce hydrogen in the electrolyzer. The load that cannot be supplied by the
renewable sources can be obtained by either discharging the battery or using fuel cells.

Das et al. [42] studied the effect of adding internal combustion engines and gas turbines to
a stand-alone hybrid MG with photovoltaic modules. A multi-objective genetic algorithm was used to
optimize this system based on the energy costs and overall efficiency. Two strategies, both electric and
thermal, were used to track the load. All the analyzed systems satisfied the electrical demand when
combined with both heating and cooling.

Luna et al. [43] presented an energy management system that operates in real time. Three cases
were studied considering the perfect, imperfect, and exact predictions. The employed optimization
model was tested in both a connected and an isolated MG, with large imbalances between the generation
and load.

An economic dispatch and battery degradation model has been proposed in [44], wherein genetic
algorithms were used for energy supply options via a diesel generator. The results showed that
an increase in the battery lifespan decreases the operational costs of a MG. This method was validated
in a hybrid MG composed of a diesel generator and photovoltaic system.

Chaouachi et al. [45] proposed a multi-objective, intelligent energy management system for a MG
that minimizes the operational costs and environmental impact. An artificial neural network has been
developed to predict the photovoltaic and wind power generation 24 and 1 h in advance, respectively,
along with the load demand. The multi-objective intelligent energy management system is composed
of multi-objective linear programming. The battery scheduling is obtained using a fuzzy logic-based
expert system.

Li et al. [46] presented a study on MG optimization based on the particle swarm algorithm that
can operate a connected or isolated MG. The proposed approach considers the fluctuations in the
renewable sources and load demands in the MG, with appropriate advance (24 h) forecasts available to
overcome these fluctuations.

Nivedha et al. [47] analyzed a MG containing/supporting wind power generation, fuel cells,
a diesel generator, and an electrolyzer. A fuel cell is used when the energy demand is not covered by
the wind turbine, to ensure energy balance when operating diesel generators to reduce the operational
costs. The fuel cell operates to meet the high load demand, resulting in economic MG operation with
a ~70% cost saving using the particle swarm optimization algorithm.

Abedini et al. [48] presented an energy management system for a photovoltaic/wind/diesel
stand-alone hybrid MG, which is optimized using a particle swarm algorithm with Gaussian mutation.
This study minimizes both the capital and fuel costs of the system.

Nikmehr et al. [49] studied an optimal generation algorithm applied to a MG based on optimization
via the imperial competitive algorithm. This algorithm solves the load uncertainty and distributed
generators, along with the economic dispatch of the generating units. This algorithm is comparable to
methods such as the Monte Carlo method, and has been tested in interconnected MGs.

Marzband et al. [50] presented an energy management system for an isolated MG using the
artificial bee colony algorithm (ABC). A stochastic approach is required to analyze the economic
dispatch of the generating units inside a MG, given the intermittent nature of solar energy resources
and wind generation. The results showed a 30% decrease in costs. The non-dispatchable generation
and load uncertainty are managed using neural networks and Markov chains.

Kuitaba et al. [51] presented a new method to optimize an interconnected MG, which combines
an expert system based on fuzzy logic and a metaheuristic algorithm known as Grey Wolf optimization.
This method involves minimizing both the costs of the generating units and the emission levels of the
fossil fuel sources. This method lowers MG costs by considering the optimal capacity of the batteries
and reducing the consumption of fossil fuels.
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Papari et al. [52] analyzed energy management in a MG connected to a direct current utility grid.
The optimization is implemented using the crow search algorithm (CSA), which is a metaheuristic
optimization method that imitates the behavior of a crow to store and hide food.

Wasilewski [53] presented a metaheuristic optimization method to optimize a MG. The methods
include the evolutionary and particle swarm algorithms. These methods account for the fact that
the deterministic conditions assumed in the problem impose an important limit on the employed
methodology. However, it also recognizes the uncertainty of using renewable energies.

Ogunjuyigbe et al. [54] presented a technique based on a genetic algorithm for the optimal location
of both renewable generation and batteries in a stand-alone MG. The proposed multi-objectives are to
reduce operational and life cycle costs, and dump energy. The optimization allows variations in the
radiation and wind sources, and extracts data from a load profile to optimize the MG.

Kumar and Saravanan [55] proposed an algorithm based on the demand prediction over 24 h
in a MG using the artificial fish swarm optimization method. Thus, the demand can be planned in
advance, considering both renewable and non-renewable generation. The algorithm is used to program
the sources, load, and storage elements. They system includes a wind turbine, two photovoltaic
generators, a fuel cell, a micro-turbine, and a diesel generator.

A particle swarm algorithm has been proposed in a recent paper by Hossain et al. [56] for energy
management in a grid-connected MG. A model for charging and discharging a battery has been
formulated. The proposed cost function reduces costs by 12% over a total time horizon/period of 96 h,
with time intervals of one hour. These results can be adjusted in real time.

Azaza and Wallin [57] studied energy management in a MG with a hybrid system consisting of
wind turbines, photovoltaic panels, diesel generator, and battery storage. A multi-objective particle
swarm optimization is used, which evaluates the probability of losing energy supply over a time
horizon/period of 6 months each during summer and winter.

Motevasel and Seifi [58] presented an expert system for energy management (EEMS) in a MG that
contains wind turbines and photovoltaic generation. Neural networks are used to predict wind turbine
generation. The bacterial foraging algorithm is used for the optimization, while the optimization
of the multi-objective problem is obtained by the EEMS module by applying an improved bacterial
foraging-based fuzzy satisfactory algorithm.

Rouholamini and Mohammadian [59] proposed optimal energy management for a grid-connected
hybrid generation system, including PV generator, wind turbine, fuel cell, and electrolyzer. This system
trades power with the local grid using real time electricity pricing over a 24-h time horizon/period based
on the simulation results. The interior search algorithm was used to optimize the energy management
in the above case.

3.3. Energy Management Based on Dynamic Programming Techniques

Shuai et al. [60] proposed an energy management system for a MG based on dynamic programming
and mixed-integer non-linear programming optimization. The MG is interconnected to the grid and
decisions are made using the Bellman equation. Historical data are used off-line, while considering the
power flow and battery storage as constraints. Using the algorithm in multiple MGs simultaneously is
a feasible possibility.

Almada et al. [61] proposed a centralized system for energy management of a MG either in the
stand-alone or interconnected modes. In the stand-alone mode, the fuel cell only works if the battery is
less than 80%. In the interconnected mode, a 60% threshold is required to ensure reliable behavior.

Wu et al. [62] proposed an algorithm based on dynamic programming for the management and
control of stand-alone MGs. The deep learning algorithm works in real time, which permits intra-day
scheduling to obtain a control strategy for MG optimization, while sending information from local
controllers within the framework of centralized management.

Zhuo [63] proposed an energy management system using dynamic programming to manage a MG
with renewable generation sources and batteries. The objective was to maximize the benefits from the
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sale of renewable energy and minimize the cost required to satisfy the energy demand. The author
used a non-regulated energy market where electricity prices fluctuate and the battery control actions
are determined by dynamic programming.

Choudar et al. [64] presented an energy management model based on the battery state of charge
and ultra-capacitors. The hierarchic structure of optimal MG management has four states or operating
modes: Normal operating mode, photovoltaic limitation mode, recovering, and stand-alone modes.

Marabet et al. [65] proposed an energy management system for a laboratory scaled hybrid MG
with wind, photovoltaic, and battery energy. The control and data acquisition system are operated in
real time. The energy management system is based on a set of rules, and optimizes the MG performance
by controlling and supervising the power generation, load, and storage elements.

Luu et al. [66] presented a dynamic programming method and methodology based on the
rules applied to a stand-alone MG containing diesel and photovoltaic generators, and a battery.
The constraints are governed by the power balance between generation and consumption, along with
the capacity of each distributed generator. Dynamic programming is used to minimize the operational
and emission costs. The constraints are the power balance between offer and demand, along with the
operating capacity of each distributed generator.

3.4. Energy Management Based on Multi-Agent Systems

Boudoudouh and Maâroufi [67] proposed an energy management system in a MG with renewable
energy sources. Simulations were run using the Matlab-Simulink and java platform for agent developers
(JADE) software. The reliability of this model was validated by fulfilling requirements such as autonomy
and adaptability in the MG management system with load variation.

Raju et al. [68] studied energy management in a grid outage divided into two MGs, which contains
two photovoltaic and wind generators each and a local load. A multi-agent management system based
on the differential evolution algorithm in JADE was used to minimize the generation costs from the
intermittent nature of the solar resource and randomness of load. This system also addressed the price
variation in the grid, and the critical loads were considered while selecting the best solution.

Bogaraj and Kanakaraj [69] presented an energy management proposal based on intelligent
multi-agents for a stand-alone MG, which maintains the energetic balance between the loads, distributed
generators, and batteries. The agents consist of photovoltaic systems, wind turbines, fuel cells,
and battery banks. Loads are divided in three groups based on their priority. The auto-regressive
moving average models (ARMA) were used to predict the generation. Cases covering high and low
irradiation, and low wind were analyzed. The system used a dynamic compensator to balance the
reactive power.

Anvari-Moghaddam et al. [70] presented an energy management system for a microgrid that
includes houses and buildings. The optimization process for the energy management system involves
the coordination of management in distributed generation (DG) and response to the demand. The main
objectives of the cost function are to minimize the operating costs and meet the thermic and electrical
needs of the clients. The communication platform used by the agents is based on the hypertext (HTPP)
communication protocol.

In the study investigated in [71], Nunna and Doolla used an energy management system based
on multi-agents, which considers different types of load patterns and the energy available from
the distributed energetic resources. They proposed a novel mechanism that encouraged clients
to participate. This proposal was validated in interconnected grids using the JADE programming
language. The management system reduces the consumption peaks and offers the clients an attraction
benefit–cost ratio.

Dou and Liu [72] presented a decentralized multi-objective hierarchical system based on the
agents in an interconnected smart MG, minimizing the operating and emission costs and line losses.

The authors in [73] researched decentralized energy management based on the multi-agents
contained in a MG, using cognitive maps with fuzzy logic. The intelligent agents refer to the distributed
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generators, batteries, electrolyzer, and fuel cells. Centralized and decentralized approaches were
compared and it showed that the decentralized approach offers the advantage of partial operation
under certain circumstances such as during a system malfunction or failure.

Mao et al. [74] presented a hybrid energy management system for a MG based on multi-agents,
which incorporates both the centralized and decentralized approaches and optimizes the economic
operation of the MG. A novel simulation platform for energy management systems was designed
based on the client-server framework and implemented in the C++ environment.

Netto et al. [75] developed a real time framework for energy management in a smart MG in the
islanded mode using a multi-agent system. The RSCAD software was used to simulate the MG using
the TCP/IP protocol for the purposes of testing and real time operation.

3.5. Energy Management in Microgrids Based on Stochastic Methods and Robust Programming

Che Hu et al. [76] showed an energy management model for a MG wherein the uncertainty in the
supply and energy demand are taken into account. Uncertainty in wind and photovoltaic generation,
and demanded energy is considered. The stochastic programming of two states was formulated using
the GAMS and was tested on a real grid at the Nuclear Energy Research Centre in Taiwan. The battery
capacity was optimized in the first stage, while an optimal operation strategy for the MG was evaluated
in the second stage.

The author in [77] presented an optimization system for a hybrid MG using a multi-objective
stochastic technique. The objective function presented in this study minimizes the system losses and
reduces the operating cost of the renewable resources, which were used at different points of the MG.
The problem was formulated using the weighting sum for the total operating cost and losses of the
feeding systems. The proposed scheme was solved using mixed integer linear programming and
tested on the IEEE 37 node distribution system.

Lu et al. [78] proposed a dynamic pricing mechanism that achieves an optimal operating
performance. This mechanism was applied to a grid composed of multiple MGs, to evaluate the
uncertainty of renewable energy integration on a large scale. An optimization scheme was developed
at two levels: The pricing mechanism guaranteed the market operator’s energy operation in the upper
level, while in the lower level the MG transactions were developed.

Xiang et al. [79] proposed an optimization model for an interconnected MG based on a model
using the Taguchi orthogonal matrices. The uncertainty in the renewable energy and load demand
were determined by an interval based on error prediction.

Hu et al. [80] introduced an optimization method for an interconnected grid that is divided
in two stages. A conventional generator is used in the first stage, while the second stage ensures
an economical dispatch of the conventional and distributed generation using hourly marketing.
This combination permits management of the uncertainty in renewable generation using the Lyapunov
optimization method.

Shen et al. [81] presented a stochastic energy management model for an interconnected MG.
The uncertainty level is managed using Latin hypercube sampling based on the Monte Carlo method,
which generates various scenarios for the distributed resources, load, and electricity price. A sensitivity
analysis is performed to determine the standard deviation of the expected price and level of reliability.

Rezai and Kalantar [82] proposed a stochastic energy management system for a stand-alone MG
based on the minimization of frequency deviations. Operating costs of the MG include conventional
and distributed generation, and reserves and incentives for generation using renewable sources.
The outputs of the conventional generators were also analyzed for various contingencies to demonstrate
the robustness of the proposed approach.

Su et al. [83] studied a model for the efficient programming of an interconnected MG,
which minimizes the operating costs of the conventional generators, battery degradation,
and commercial costs corresponding to the energy from the utility grid. This model follows two stages.
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The first stage involves optimization of the MG, while the second stage involves analysis of the power
output to calculate the MG energy losses in real time.

Farzin et al. [84] proposed an energy management system for an isolated MG. The islanding event
was treated as a normal probability distribution of the failures in the utility grid. The objective was to
minimize the MG operating costs. This included costs associated with the microturbine operation,
wind turbines, batteries, and load disconnection.

Liu et al. [85] proposed an energy management system for an interconnected MG considering
renewable energies and load uncertainties. The energy management is divided in two sub-problems:
The first involves scheduling within the defined energy boundaries for system protection, while the
second evaluates the real time energy capacity deviation limit for frequency regulation. The presented
approach was found to be more cost effective.

Kuztnesova et al. [86] proposed a decentralized energy management system for an interconnected
MG using agent-based modeling and robust optimization. The MG performance was evaluated in
terms of the cost from the power imbalances associated with the uncertainty of renewable generation
and load power demand.

Zachar and Daoutidis [87] proposed a hierarchic control mechanism to regulate and supervise the
loads and dispatchable energy inside a MG. Stochastic optimization was used on a low scale to avoid
errors in the forecast of renewable energies. Deterministic optimization was realized on a fast scale to
update the optimal dispatch conditions.

Battistelli et al. [88] proposed an energy management system for a remote hybrid AC/DC MG,
which ensures economical dispatch in spite of the uncertainties associated with the use renewable
energy sources. A load control is determined (thermic and electric vehicles) based on the demand,
while taking the limits of the generators, controllable loads, and charge and discharge of batteries
into consideration.

Lujano et al. [89] developed an optimal load management method for hybrid systems composed
by the wind tubine, battery bank, and diesel generator. The autoregressive moving average (ARMA)
was used to predict the wind speed.

The results showed that the load management strategy improved wind power usage by shifting the
controllable loads to the wind power peaks, thus increasing the charge in the battery bank. This research
contributed strategies for the energy management of hybrid MGs.

3.6. Energy Management Using Predictive Control Methods

Zhai et al. [90] proposed a predictive robust control that can be applied to a stand-alone MG.
The management model employed mixed integer programming. The MG is composed of wind and PV
generators, batteries, and loads.

Zhang et al. [91] presented a model predictive control (MPC) method to manage a MG that
integrates both distributed and renewable generation. The model’s objective is to reduce the costs and
constraints in both generation and energy demand.

Minchala Ávila et al. [92] proposed a methodology based on predictive control for energy
management in a stand-alone MG. The controller operates the battery energy in a centralized manner
and performs a load elimination strategy to ensure balance in the MG power output.

Ju et al. [93] investigated an energy management system for a hybrid MG taking the degradation
costs of the energy storage systems into consideration. The proposal consists of a two-layer predictive
control for the hybrid MGs, which use batteries and supercapacitors as storage systems. An important
contribution of this work is that the degradation costs of the supercapacitors and batteries were
modeled, which allows more accurate assessment of the MG operating costs.

Valencia et al. [94] proposed an energy management model for a MG that uses predictive control,
which involves the prediction of the intervals using fuzzy logic. This allows the representation of the
non-linearity and dynamic behavior of the renewable sources.
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Genesan et al. [95] presented an energy management system for a MG based on a control algorithm
to integrate and manage various types of generation such as the PV, distributed generation, energy
storage systems, and UPS from the supply grid and different loads. The transition problem between
the storage systems and PV generation is solved via control and communication, which functions on
a TCP/IP protocol.

García Torres and Bordons [96] introduced optimal programming in a hybrid MG, based on
a predictive control model that is solved using mixed integer quadratic programming. They integrated
the operating costs and MG optimization, which includes the degradation costs of all the components
of the hybrid system, mainly the hydrogen-based storage systems.

Solanki et al. [97] presented a mathematical model of the smart loads and energy management of
a stand-alone MG. Loads are modeled using neural networks. Energy management is realized with
the predictive control method, which performs an optimal power dispatch taking the elements and
controllable loads into consideration.

Oh et al. [98] proposed a multi-step predictive control model for a MG over a time horizon/period
of 180 min in 15 min steps. This includes conventional and renewable energy generators, energy
storage elements, and both critical and non-critical loads. The cost function was formulated considering
the costs associated with fuel consumption, renewable energy reduction, battery state of charge,
and amount of load shedding.

A proposal has been presented by Prodan et al. [99] for the energy management of a MG based on
a fault-tolerant predictive control design. One of their many contributions includes the extension of
the useful battery life by decreasing the charge and discharge cycles.

Wu et al. [100] presented an optimal solution for the operation of a hybrid system using solar
energy and battery storage. The battery plays a significant role in the storage of grid power during
off-peak periods and supply of power to the customers during peak demand. Thus, scheduling the
hybrid system leads to the minimal power consumption from the grid and reduces a customer’s
monthly cost.

Thirugnanam et al. [11] proposed a battery strategy management. The main objective tries to
reduce the fuel consumption in DG, reduce fluctuating PV power, and control the battery charge
and/or discharge rate to improve the battery life cycle. The battery charge/discharge rate control model
considers the battery SOC limits, wherein the batteries are not charged or discharged beyond the
specified limits.

Dufo-López et al. [101] presented a technique to optimize the daily operation of a diesel-wind-PV
hybrid, using MPC with forecast data of the irradiation, wind speed, temperature, and daily load.
The main contribution of this work is daily optimization that accounts for the degradation of the
lead-acid battery by corrosion and capacity losses, using the advanced model presented by Schiffer et
al. [102]. This parameter is important when considering the operating costs of the MG, as the useful
life and replacement of the batteries can be estimated more accurately. The optimization is executed
using genetic algorithms.

3.7. Energy Management Based on Artificial Intelligence Techniques

Elseid et al. [103] defined the role of energy management in a MG as a system that autonomously
performs the hourly optimal dispatch of the micro and utility grids (when interconnected) to meet the
energy demand. In the above study, the authors used a CPLEX algorithm developed by IBM.

Mondal et al. [104] proposed an energy management model for a smart MG based on game theory,
using a distributed energy management model. In this scheme, the MG selects a strategy to maximize
its benefits with respect to the cost and adequate use of energy.

Prathyush and Jasmín [105] proposed an energy management system for a MG using a fuzzy
logic controller that employs 25 rules. The main objective is to decrease the grid power deviation,
while preserving the battery state of charge.
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Leonori et al. [106] proposed an adaptive neural fuzzy inference system using an echo state
network as a predictor. The objective was to maximize the income generated from energy exchange
with the grid. The results showed that the energy management performance improved by 30% over
a 10 h prediction horizon/period.

De Santis et al. [107] introduced an energy management system for an interconnected MG
using fuzzy logic based on the Mamdani algorithm. The main objective is to take decisions on the
management tasks of the energy flow in the MG model, which is composed of renewable energy
sources and energy storage elements. The optimization was realized in a scheme that combines fuzzy
logic and generic algorithms.

Venayagamoorthy et al. [108] proposed an energy management model for a MG connected to
the main power grid. The MG maximizes the use of renewable energies and minimizes carbon
emissions, which makes it self-sustainable. The management system is modeled using evolutionary
adaptive dynamic programming and learning concepts using two neural networks. One of the
neural networks is used for the management strategy, while the other used to check for an optimal
performance. The performance index is evaluated in terms of the battery life, use of renewable energy,
and minimization of the controllable load.

Ma et al. [109] proposed an algorithm using game theory based on the leaders and followers for
energy management. This approach aims at maximizing the benefits available to active consumers of
the MG, while keeping the Stackelberg balance to ensure an optimal distribution of benefits.

Jia et al. [110] formulated an adaptive intelligence technique for the energy management of
an interconnected MG, which uses energy storage elements. The objective is to minimize any load
fluctuations due to uncertainties in the renewable energy generation. The load profile is managed by
storage elements and ultra-capacitors.

Arcos-Avilés et al. [111] presented an energy management algorithm based on low-complexity
fuzzy logic control for a residential grid-connected MG, which includes renewable distributed
generation and batteries.

Aldaouab et al. [112] proposed an optimization method using genetic algorithms for residential
and commercial MGs. The MG uses PV-solar energy, microturbines, a diesel generator, and an energy
storage system.

Liu et al. [113] proposed a Stackelberg game approach for energy management in a MG.
A management system model that takes the fee for the PV energy into account was introduced,
which includes the profits from the MG operator and a utility model for the PV consumers.

Nnamdi and Xiaohua [114] proposed program consisting on an incentive-based demand response
for the operations of the grid connected MG. The game theory based demand response program
(GTDR) was used to investigate the grid connected operational mode of a MG. The results showed that
lower costs could be achieved in the MG when the DG benefit of the grid operator is maximized at the
expense of minimizing the fuel/transaction costs.

3.8. Energy Management Based on Other Miscellaneous Techniques

Astaneh et al. [115] proposed an optimization scheme to find the most economic configuration for
a stand-alone MG, which has a storage system with lithium batteries, and considered different control
strategies for energy management. The lifetime of lithium batteries is estimated using an advanced
model based on electrochemistry to evaluate the battery longevity and its lifetime.

Neves et al. [116] presented a comparative study on the different objectives of the optimization
techniques for the management of stand-alone MGs. This approach is primarily based on linear
programming and genetic algorithms. The results showed that the optimization of the controllable
loads could result in an operating cost reduction and inclusion of renewable energies.

Wei et al. [117] proposed an iterative and adaptive algorithm based on dynamic programming
to enable optimal energy management and control a residential MG. The charge/discharge level of
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the battery is treated as a discreet problem in hourly steps. The decisions on the energy supply for
a residential load with respect to the energy fee are made in real time.

Yan et al. [118] studied the design and optimization of a MG using a combination of techniques
such as mixed integer programming for the optimization of energy management, and the probabilistic
Markov model to represent the uncertainty of PV generation. The design included a linear model to
evaluate the MG lifetime.

Akter et al. [119] proposed a hierarchic energy management model for an interconnected residential
MG serving prosumers, which includes a local control mechanism that shares information with a central
controller for energy management.

In the research presented in [120], an energy management system was designed for a hybrid
system combining wind, PV, and diesel generation. The system operates both on- and off-grid. Thus,
there exists a control mechanism within the inverter for transfers between the micro and utility grids.

Lai et al. [121] proposed a techno-economic analysis of an off-grid photovoltaic with
graphite/LiCoO2 storage used to supply an anaerobic digestion biogas power plant (AD). The main
contribution is the economical study of the hybrid system including the battery degradation costs.
An optimal operating regime is developed for the hybrid system, followed by a study on the levelized
cost of electricity (LCOE).

Figure 3 presents a summary of the energy management methodologies used for the MGs based
on the above-reviewed literature. Different researches have proposed several methodologies related to
energy management in MGs. Many methods are based on classical approaches such as mixed integer
linear and nonlinear programming. Linear programming can be considered a good approach depending
on objective and constraints, while artificial intelligence methods are focused to approach situations
where other methods lead to unsatisfactory results, including renewable generation forecasting and
optimal operation of energy storage considering battery aging, among others.
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3.9. Optimization Techniques

Different optimization techniques are generally applied to maximize the power output of each
particular source, minimize electricity costs, or maximize storage systems. Figure 4 presents the
most commonly employed optimization techniques and algorithms presented in the literature review.
Main advantages and disadvantages are briefly presented in Table 2.

Various techniques have been used by different researches. Energy management and the
optimization of control in a MG can have one or more objective functions. These functions can vary
depending on the optimization problem presented. This can result in a mono-objective or multi-objective
problem, which can include the minimization of costs (operation and maintenance cost, fuel cost,
and degradation cost of storage elements such as batteries or capacitors), minimization of the emissions
and minimization of the unmet load. Table 3 shows a comparison between the different optimization and
management methods used in the MGs. Different researchers have proposed metaheuristic techniques
to solve the problem of optimization due to multi-constraints, multi-dimensional, and highly nonlinear
combinatorial problems. Other authors presented stochastic dynamic programming methods for
optimizing the energy management problem with multidimensional objectives. Game theory has been
proposed for some researchers to solve problems with conflicting objective functions.Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 27 
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Table 2. Comparative analysis of optimization mathematical models.

Optimization
Mathematical Model Advantages Disadvantages

MILP

Linear programming (LP) is a fast way to solve the
problems and the linear constraints result in

a convex feasible region, being guaranteed in many
cases to obtain the global optimum solution.

Reliability and economic stochastical
analysis. Limited capabilities for

applications with not differentiable
and/or continuous objective functions.

MINLP

It uses simple operations to solve complex
problems. It can obtain more than one optimal
solution to choose from, which is an advantage

over the MILP formulation.

High number of iterations (high
computational effort).

Dynamic programming
(DP)

It can split the problem into subproblems,
optimizing each subproblem and therefore solving

sequential problems.

Complex implementation due to high
number of recursive functions.

Genetic algorithms (GA)

Population-based evolutionary algorithms that
include operations such as crossover, mutation, and

selection to find the optimal solution. Adequate
convergence speed. Widely used in many fields.

Crossover and mutation parameters,
and population and stopping criterial

parameters must be set.

Particle swarm
optimization (PSO)

Good performance in scattering and optimization
problems. High computational complexities.

Artificial bee colony Robust population-based algorithm simple to
implementate. Adequate convergence speed. Complex formulation.

Artificial Fish Swarm Few parameters, fast convergence, high accuracy,
and flexibility.

Same advantages of GA but without
its disadvantages (crossover and

mutation).

Bacterial foraging
algorithm

Size and non-linearity of the problem does not
affect much. Converge to the optimal solution

where analytical methods do not converge.
Large and complex search space.
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Table 3. Analysis of microgrid optimization techniques.

Reference Optimization Technique Contributions Constraints Drawbacks Single/Multi-objective

[31] No linear and mixed integer
programing

Robust optimal EMS MPC-based to obtain
the optimal power scheduling for the

different generators, including deferrable
and dump loads.

Power balance
Battery

Diesel Generator
Renewable Sources

Load

Demand and power losses are not
considered. Multi-objective

[32]
Linear and mixed integer

linear
programming

Energy management strategy based on the
combination of three operating strategies

(continuous run mode, power sharing
mode, and ON/OFF mode).

Battery
Generation dispatch

Battery degradation costs in the
optimization models are not

considered.
Multi-objective

[35] Mixed integer no linear
programming

Reduced the overall operational costs
while maintaining a secured operation of

the stand-alone MG.

AC power
DC power

Converter power
Load

Distributed generators power

Battery storage systems are not
considered. Emission cost of

distributed generation based on
biomass is not considered.

Mono-objective

[45] Linear programming
Integration of linear programming-based
with artificial intelligence techniques to

sole multi-objective optimization.

Power Balance
Generation limits of distributed generation

High computational complexity.
Battery degradation cost is not

considered.
Multi-objective

[46] Particle swarm algorithm
(PSO)

Combination of two optimal storage
energy units.

Less computation time than GA.

Power of the generators
Power exchange with the grid

Charge/Discharge of the storage units
Supply and demand balance

Emission cost of the conventional
generator is not considered. Multi-objective

[48]
Particle swarm algorithm

(PSO) with Gaussian
mutation

PSO variant new algorithm.
Active power

Voltage
Current

Power losses are not considered.
Emissions of distributed

generation are not considered.
Mono-objective

[50] Artificial bee colony Two layer control model used to minimize
operational cost of a microgrid.

Power balance
Dispatchable resources

Non-dispatchable resources
Storage elements

Complex formulation. Emission
cost of a dispatchable

microturbine is not considered.
Mono-objective

[51] Fuzzy logic (Grey Wolf
Optimization)

Optimization of the size of the battery
energy storage and of the generation plan.

Power balance
Power of the generators

Battery load

Battery degradation cost is not
considered. Multi-objective

[53]

Evolutionary algorithm
(EA) and the particle swarm

optimization (PSO)
Algorithm

Application of an energy hub model for
optimization of a multicarrier MG.

Power balance
Voltage in the transformers

Deterministic conditions
assumed are a limitation. Mono-objective
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Table 3. Cont.

Reference Optimization Technique Contributions Constraints Drawbacks Single/Multi-objective

[55] Artificial fish swarm
optimization

An energy management planning of a MG
including storage for a whole day is

optimized, considering dynamic pricing
and demand side management.

Power balance
Conventional power generation
Conventional power generators

Energy storage
Utility grid power

Battery degradation cost is not
considered. Mono-objective

[57] Particle swarm algorithm
(PSO)

Three different objectives are considered:
Reliability,

cost of operation, and environmental
impact.

Not specified Battery degradation cost is not
considered. Multi-objective

[58] Bacterial foraging algorithm

Optimized the exchanging power with the
grid and the generators and battery

setpoints.
Fast convergence.

Power balance
Generation limits of distributed generators

Storage limits
Power loss not considered. Multi-objective

[60] Mixed-integer nonlinear
programming (MINLP)

Reduced dependency on forecast
information.

Different battery models compared.

Charge flow
Dispatch of generators

Generator on/off programming
Charge/Discharge of batteries

Battery lifetime prediction is
ignored. Multi-objective

[61] Dynamic Rules MG management system uses different
limits for the SOC of the batteries bank.

Battery
Power balance

Battery cost and degradation are
not considered. Mono-objective

[64] Dynamic programming
Energy management strategy for PV.

Batteries to stabilize and permit PV to run
at a constant and stable output power.

Charge/Discharge of batteries Battery degradation and lifetime
prediction are not considered. Multi-objective

[70] Multi-agents
Efficient strategy for real-time

management of energy storage used to
compensate power mismatch optimally.

Charge/Discharge of batteries
Load Scheduling
Power Balance

Prediction of battery ageing is not
included. Multi-objective

[72] Multi-agents Control scheme composed of several levels
with coordinated control. Charge/Discharge of batteries High complexity control scheme. Multi-objective

[73] Multi-agents
Battery energy storage system,

optimization problem based on distributed
intelligence, and a multi-agent system.

Not specified Battery degradation is not
considered. Multi-objective

[80] Mixed integer
programming

Dual-stage optimization. First stage
determines hourly unit commitment of the

generators, the second stage performs
economic dispatch of the generators and

batteries.

Startup costs of renewable energy and
conventional generators

Power losses are not considered.
Battery degradation is not

considered.
Mono-objective
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Table 3. Cont.

Reference Optimization Technique Contributions Constraints Drawbacks Single/Multi-objective

[84] Stochastic
A simple method to incorporate the impact
of the scheduling in stand-alone mode on

the grid-connected operation.

Power balance
Dispatchable Distributed generation

Renewable power generation
Load

Charge/Discharge of batteries

Battery ageing model is not
considered.

Emission cost of DG are not taken
into consideration.

Mono-objective

[89] Robust programming Optimization of load management for
hybrid Wind–Battery–Diesel systems.

Power Diesel Generator
Power wind turbine
Power battery bank

Controllable loads shifting can be
non-optimal. Mono-objective

[91] Mixed Integer Quadratic
Programming

Integrated stochastic energy management
model, simultaneously considering unit
commitment for generators and demand

side management.

Power balance
Generation

Demand
Reserve capacity

Computational time is higher
than that of deterministic model.

Emission cost of conventional
generators and DG are not taken

into consideration.

Mono-objective

[92] Model predictive control
Automated load shedding of noncritical

loads when foreseeable power unbalances
could affect the stability of the MG.

Power distributed generators

The charging and discharging
rates of the batteries were not

considered.
It does not consider

communication delays.

Multi-objective

[97] Model predictive control

A comprehensive mathematical
formulation of the optimal EMS for

stand-alone microgrids, considering power
flow and unit commitment operational

constraints.

Power balance
Reserve

Unit commitment
Energy storage

Grid
DG

Higher computational burden
and complexity.

Emission cost of conventional
generators is not considered.

Mono-objective

[101] Model predictive control

The main contribution of this work is daily
optimization that accounts for the

degradation of the lead-acid battery by
corrosion and capacity losses.

Not specified Lithium battery model is not
considered. Multi-objective

[103] Genetic algorithm
A novel cost function is including costs of
selling and buying power, and the start-up

costs of distributed resources.

Power balance
Emissions

Battery storage
Startup and downtime of generators

Distributed sources and battery
state of charge are not considered.

The uncertainty in energy
generation by the MGs and the

uncertainty in customers are not
considered.

Mono-objective

[104] Game theory In multiple MGs, distributed energy
management schedule.

Energy exchange with the grid
Generation capacity of the MG

Computational complexity is not
discussed. Multi-objective
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Table 3. Cont.

Reference Optimization Technique Contributions Constraints Drawbacks Single/Multi-objective

[111] Artificial Intelligence
(Fuzzy logic)

Simple implementation, improved the grid
power profile quality. Charge/Discharge of batteries

Only the battery
charger/grid-connected inverter

is controllable.
Battery degradation is not

considered.

Multi-objective

[114] Game theory Minimize fuel cost and trading power cost.

Power balance
DG

Conventional generator power
Limit for the transferable power between

The main grid and MG

Emission cost of conventional
generators is not considered. Multi-objective

[118] Markov decision process Linear model to evaluate the MG lifetime
cost.

Gas turbine capacity
Gas turbine emissions

Number of possible combinations
of sizes is limited. Mono-objective

[121] Rule-based

Study on the economic projection of the
hybrid system with the battery

degradation costs. An optimal operating
regime is developed for hybrid system,

followed by a study on the levelized cost
of electricity (LCOE).

Accuracy of degradation costs of the
energy storage.

Power balance
SOC battery

Temperature not considered in
the capacity fade model.

Dynamic state of charge cycling
conditions not considered.

Multi-objective
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3.10. Microgrid Operating Modes

A considerable number of papers have been published on interconnected microgrids,
while discussing various modes of microgrid operation. On the other hand, the stand-alone mode is
considered by many authors as an alternative supply measure mainly in the rural areas or regions with
no conventional grids [122]. Thus, both the on- and off-grid operating modes are a feasible alternative.
Table 4 summarizes the above considerations.

Table 4. Microgrid operating modes.

Reference Microgrid Mode Operation

[11,20,30,32,33,36–39,45,49,51–53,55,56,58,59,63,67–71,
74,77–81,83,85–87,91,93,94,96,99,100,103–114,117,118] Grid-Connected

[9,31,34,40,42,44,47,48,50,54,57,60,62,65,66,72,73,75,76,
82,84,88–90,92,97,98,101,102,115,116,119,121] Off-Grid

[8,15,19,35,43,46,61,64,95,120,122] Grid-Connected/Off-Grid

3.11. Modelling and Simulation Tools

Table 5 presents a summary of the most popular simulation tools, wherein tools such as
Matlab/Simulink (MathWorks, Natick, MA, USA) and MATPOWER have particular importance.
Matlab is a numerical computing environment of 4th generation programming language, it can
interface with other languages such as C, C++, C#, Java, Fortran, and Python. MATPOWER is an
open-source tool that is used to simulate optimal power flows, which uses Monte Carlo to evaluate the
performance of MG. Alternately, other tools such as GAMS, which is an optimization language for
linear, nonlinear, and mixed programming, have been used by many authors to solve the uncertainty
problem in energy management and for optimal dimensioning of the microgrid. Other tools such as
CPLEX have been employed, which is an optimizer based on the C language and is compatible with
other languages like C++, Java, and Python.

Table 5. Simulation software and tools used in the management of microgrids.

References Tools Characteristics

[61] PSCAD/EMTDC Simulation software power systems, power electronics, HVDC,
FACTS, and control system.

[11,32,33,35,38,62,64,65,
67,70,77,93,97,104,109,

110,121]

MATLAB/Simulink
MATPOWER

Matrix based programming language used by engineers in
power systems, power electronics, telecommunications, and
control, among others. Compatible with other programming

languages (C++, Java, and fortran).

[30,76] GAMS (GAMS Development Corp.,
Fairfax, VA, USA)

High level language for mathematical optimization of mixed
integer linear and nonlinear.

[74] C++ Application development environment of C++ for Windows.

[40]

TRNSYS (Thermal Energy System
Specialists, LLC, Madison, WI, USA)

HOMER
HOGA

Simulation software to model hybrid systems of energy
generation.

Hybrid Optimization by Genetic Algorithms.

[75]

RSCAD (RTDS Technologies Inc.,
Winnipeg, MA, Canada)

JADE (Jade, Christchurch, New
Zealand)

Real time simulator for power systems.

[67,68,71,72] JADE Java environment platform for multi-agents.

[30,118,122] HOMER Simulation software to model hybrid systems of energy
generation.

[36,83,103] CPLEX (IBM, Armonk, NY, USA) Optimization software compatible with C, C++, Java,
and Python languages.
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The simulation and modeling of microgrids has been analyzed with programs such as Simulink
and PSCAD/EMTDC (Manitoba Hydro International Ltd., Winnipeg, Manitoba, Canada). Both tools
are used for power control and energy management in microgrids.

Software such as HOMER (Pro Version, HOMER Energy LLC, Boulder, CO, USA), HOGA (or
its updated version iHOGA) (Pro+ Version, University of Zaragoza, Zaragoza, Spain), or HYBRID2
(University of Massachusets, NREL/NWTC, Golden, CO, USA) also deserve a mention, which can be
used to optimize the operation and energy management of hybrid systems with renewable energies.

4. Conclusions and Future Research

The literature review highlighted two approaches for microgrid energy management:
The centralized and decentralized approaches. The first incorporates optimization using the available
information in the absence of a coordination strategy between the actors in a microgrid. A computer
centre transmits the optimal settings to each participant. The second approach implements optimization
using partial information and a strategy for coordinating the microgrid participants; each participant
evaluates its own optimal settings. Centralized management is mostly implemented in metaheuristic
methods, and decentralized management is frequently implemented in methods based on multi-agents.
Many publications have proposed centralized management for microgrids. However, the incursion of
distributed energy resources (DER) may cause this type of management to face issues when implemented
in a centralized information system because there might be a demand for high computational cost due
to the large quantity of data. Distributed energy management may be an alternative solution to this
problem. It solves the problem of data processing and reduces processing needs by using distributed
controllers that manage the data in real time and require communication equipment that might result
in additional costs (for e.g., Bluetooth, Wi-Fi, wireless networks, and IoT).

An energy management model for a microgrid includes data acquisition systems,
supervised control, human machine interface (HMI), and the monitoring and data analysis of
meteorological variables.

The literature review mainly presented management methods based on foresight and short-term
management. The choice of centralized or decentralized management ensures that the microgrid
designer and operator realize a cost–benefit balance. This enables one to determine the management
model that is most convenient for the microgrid. Though decentralized management offers more
flexibility, an integral analysis is necessary to ensure reliable and safe system operation.

The energy management problem or optimization control in a microgrid becomes a mono-objective
management/optimization model when a single cost function is presented. This function typically
corresponds to the operating cost of the microgrids. The problem becomes a multi-objective
management/optimization model when it simultaneously presents a solution to the technical, economic,
and environmental problems. Based on the literature, different authors have addressed the problem
and provided solutions using methods such as the classic ones with linear and nonlinear programming,
heuristic methods, predictive control, dynamic programming, agent-based methods, and artificial
intelligence. These methods are chosen based on their practicality, reliability, and resource availability
in the microgrid environment.

With regard to storage systems in microgrids, lithium batteries can be an important alternative to
lead-acid batteries in the future. The advantages of Li-ion batteries compared to lead-acid batteries are
a long cycle life, fast charging, high energy density, and low maintenance. Currently, lead acid batteries
are economically better than Li-ion batteries when used in microgrids, but a decrease in the acquisition
cost of lithium batteries is expected in the coming years that will cause them to be competitive with
those of lead-acid. Thus, further research on the optimal energy management of energy systems and
the management of lithium batteries is required while considering more accurate degradation models
to accurately predict the battery lifetime in real operating conditions.
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MG Microgrid
AC Alternating current line
ARMA Auto-regressive moving average models
CSA Crow search algorithm
DC Direct current line
DG Distributed generation
DER Distributed energy resources
EEMS Expert system for energy management
EMS Energy management system
GAMS General algebraic modeling system
HMI Human machine interfaces
HOGA Hybrid optimization by genetic algorithms
HOMER Hybrid optimization model for multiple energy resources
iHOGA Improved Hybrid optimization by genetic algorithms
JADE Java platform for agent developers
MGSC Microgrid supervisory controllers
MILP Mixed integer linear programming
MO Multi-objective
MPC Model predictive control
PSO Particle swarm optimization
PV Photovoltaic
VPP Virtual power plant
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