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Abstract: In recent years, reducing energy consumption has been relentlessly pursued by researchers
and policy makers with the purpose of achieving a more sustainable future. The demand for data
storage in data centers has been steadily increasing, leading to an increase in size and therefore
to consume more energy. Consequently, the reduction of the energy consumption of data center
rooms is required and it is with this perspective that this paper is proposed. By using Computational
Fluid Dynamics (CFD), it is possible to model a three-dimensional model of the heat transfer and air
flow in data centers, which allows forecasting the air speed and temperature range under diverse
conditions of operation. In this paper, a CFD study of the thermal performance and airflow in a real
data center processing room with 208 racks under different thermal loads and airflow velocities is
proposed. The physical-mathematical model relies on the equations of mass, momentum and energy
conservation. The fluid in this study is air and it is modeled as an ideal gas with constant properties.
The model of the effect of turbulence is made by employing a k–ε standard model. The results indicate
that it is possible to reduce the thermal load of the server racks by improving the thermal performance
and airflow of the data center room, without affecting the correct operation of the server racks located
in the sensible regions of the room.

Keywords: energetic sustainability; computational fluid dynamics; data center; air flow and thermal
energy management; information and communication technologies; computer room air conditioning

1. Introduction

In the last few decades, the increase in energy consumption due to a rising utilization of information
and communication technologies (ICT) is a difficult challenge, from the energetic, ecological and
economical points of view, which compromises sustainability [1]. The creation and rapid dissemination
of grid and cloud computing [2], in recent years, has led to an increase in the number of data centers as
well as in their size [3].

A data center is a physical site that comprises ICT installations with the main function being the
storage and distribution of data through Internet access or an internal network. Data centers throughout
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the world host on their servers organizations with databases, every Internet website, and cloud services.
Data centers are consuming more and more electricity worldwide [4–6]. In 2012, the entire consumption
of data centers was assessed to be near 270 TWh [7]. ICT are responsible for roughly 10% of worldwide
power consumption and 13–15% of this consumption is due to data centers [8–11]. It is expected that
this consumption will only grow in the near future, thus challenging sustainability goals [12]. In a
study where projections up to 2030 are made, data centers could consume, in the best case scenario 3%
and in the worst case scenario 13% of the worldwide electricity production [13]. The main factor of
such a high level of energy use is the consumption of air conditioning systems, which, given the type
of ICT equipment, could account for 24–60% of the entire data center’s energy consumption [14].

Data centers are required to follow rigorous technical specifications with the purpose of
guaranteeing their optimal operation and security, and engineers need to sure that the ICT equipment
should operate without experiencing any loss of performance or interruption. Thus, thermal engineers
have a crucial importance in the design of data centers. The reason is that data centers generate a high
quantity of heat and need to be refrigerated in order to avert any loss of performance or failures, thus
signifying that the power consumption is high [15].

Data center rooms are comprised of racks hosting servers with distinct configurations and
distinct capacities. To keep the productivity and operating efficiency of the server racks, the thermal
management of the room has to be adequate. Therefore, the highest amount of the consumed energy
is for the purpose of cooling the data center rooms with the aid of computer room air conditioning
(CRAC) units [16,17]. However, as a path to move towards sustainability, by managing the cooling
properly, as much as 10–15% of energy can be saved. Keeping the surface temperature of the server
racks within the admissible limits is a significant challenge for the thermal management of data
centers [18]. Two strategic solutions are given by researchers for reducing the cooling system’s energy
cost: improve the airflow and optimize the refrigeration system.

By managing the airflow efficiently, it is possible to cool the server racks of the data center without
major investments or having to upgrade the cooling system. In many cases, data center managers
invest in additional cooling systems without knowing that the current equipment by being optimized
is enough [16].

During the last decade, the trend has been of a constant decrease in size of the server and a
constant growth of the power density of the server, thus generating more heat, which requires more
and more energy. This represents a challenge for the CRAC engineers since the purpose is designing
a cooling system that keeps the operating temperature of the server racks within the specification
limits regardless of the power density of the server. However, the challenge is also reducing the
overall energy consumption of the CRAC units. More efficient thermal management, cooling, and air
distribution are needed to overcome such challenges [15].

According to specialists and researchers, the most effective manner for the CRAC units to cool the
air of the server racks is through the use of perforated tiles located under the floor. The purpose is to
cool the server racks from beneath. However, this becomes more challenging when a high number of
processors are situated in a single server rack, which generates high heating loads. To dissipate such
types of loads, a system which distributes the cool air to the racks is utilized [19]. The air bypass and
recirculation around the server racks is the most challenging obstacle to the efficient operation of data
centers. Consequently, with the purpose of overcoming such types of challenges, Computational Fluid
Dynamics (CFD) simulations and studies are employed to assess the airflow and thermal performance
in data centers [20–22].

The focus on studies of the airflow and thermal performance of data center processing rooms
has been increasing and has been drawing attention of researchers and policy makers alike. As such,
several reviews were made in the recent years concerning the efficient thermal management of data
centers [23–25], of the airflow distribution [14] and cooling strategies [23,26]. In [22], the authors created
and studied a Data Center CFD model and validated in experiments the airflow. The authors of [3]
simulated the thermal distribution and the airflow to study the efficiency of the energy consumption
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in data centers with a reduced size. The authors of [27] proposed a simplified physical model to
simulate the air and heat transfer in data centers by employing real-time sensor measurements.
In [28], the authors studied the CFD of liquid rack cooling in data centers where a liquid loop heat
exchanger is connected at the back of server racks. The authors of [29] aimed to find and quantify how
many fan-assisted perforations represent a capable and fitting cooling system in a data center with
certain amount of leakage. An study focusing on the consequences of plenum depths on the thermal
management in data centers and on the air flow is made in [30]. A study focusing on several estimation
metrics of the thermal management in data centers by using exergy analysis is proposed in [31].
The authors of [32] studied the thermal performance of a data center for different aisles separation
and different configuration of CRAC units. An experimental study is performed in on the thermal
management of small container data center with the support of CFD [33]. Several simulations are
made in [34] to analyze and visualize the thermal status in data centers with the purpose of decreasing
the overall energy consumption. The effect of the layout of CRAC units on the thermal management
of data centers is addressed in [35]. The authors of [36] studied a fan-assisted cooling system by
employing the Taguchi method in closed and open data centers. However, all the aforementioned
works study a relatively simplistic data center model with a reduced number of server racks.

In this study, CFD simulations of the thermal performance and airflow in a real existing data
center processing facility with 208 racks were made. The physical-mathematical model relies on the
equations of mass, momentum and energy conservation. The fluid in this study is air and it is modeled
as an ideal gas with constant properties. The model of the effect of turbulence is made by employing a
k–ε standard model. A comparison of the numerical results is made to assure with a fair certainty the
details that define the air flow in the room of the data center, as well as the temperature distribution
and identification of hot spots. This paper is based on the result analysis of a parametric study by
CFD, comprised of four case studies. Two of these case studies have varying thermal loads along the
corridors, i.e., among the server racks that are located at the end, the intersection and at the center of the
corridor. The other two case studies have a constant thermal load established for all racks, one being
the usual thermal load and the other the maximum thermal load. Every model was simulated under
the maximum and minimum air flow velocity conditions. ANSYS™ software and the ANSYS Fluent™
package software tools were used to simulate and study the airflow and heat transfer processes in the
data center room. It is a powerful and flexible general-purpose computational fluid dynamics software
package used to model flow, turbulence, heat transfer, and reactions for industrial applications using
the finite volume method through the control volume technique.

This paper is organized as follows. In Section 2, the methodology is presented. In Section 3,
the numerical model of the data center is thoroughly described. A detailed description of the modeled
case studies is completed in Section 4. A comprehensive result analysis and discussion can be observed
in Section 5. The overall conclusions are stated in Section 6.

2. Methodology

In this section, the mathematical formulations describing the air flow, heat transfer and the
model of turbulence used for this study are presented. When analyzing any air flow problem, it is
necessary to establish the conservation laws that are represented mathematically and physically by the
governing equations.

The governing equations are composed of the state equation, continuity equation, momentum
equation, and energy equation. In this paper, a three-dimensional case is considered, where the
working fluid is assumed to be an ideal gas. The air flow regime is assumed to be turbulent and the
heat transfer process is assumed to be steady.
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The state equation is a constitutive relation of a fluid which relates several properties.
In engineering, the substances of interest are mostly gases, with moderate pressures and temperatures.
In this paper, as mentioned above, an ideal gas is used, and the equation of state is given as follows [37]:

ρ =
pMm

RuT
(1)

in which ρ is the specific mass and is given in kg·m−3, the pressure is given by p and it is measured in
Pa, Mm represents the molar mass of the gas and it is measured in kg·kmol−1, the ideal gas constant is
represented by Ru and it is measured in J·mol−1

·K−1, and the temperature T is given in K. Modeling
the air as an ideal gas allows taking into account the buoyancy effect.

The continuity equation, also referred to as the mass conservation equation, expresses that the
mass entering a control volume is equal to the mass exiting that control volume. Consequently,
no losses occur in this process. The continuity equation is expressed as follows [3]:

∂(ρu)
∂x

+
∂(ρv)
∂y

+
∂(ρw)

∂z
+
∂ρ

∂t
= 0 (2)

where t is the time in seconds, x, y and z are the Cartesian coordinates and u, v and w are the
corresponding velocity components in m·s−1.

The equation of momentum can be obtained through Newton’s second law, which asserts that
the outcomes of the forces applied to a particle is equal to the rate of change of its linear momentum.
These equations are presented as follows [37]:

ρ

(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

)
= −

∂p
∂x

+ µ

(
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

)
(3)

ρ

(
∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

+ w
∂v
∂z

)
= −

∂p
∂y

+ µ

(
∂2v
∂x2 +

∂2v
∂y2 +

∂2v
∂z2

)
(4)

ρ

(
∂w
∂t

+ u
∂w
∂x

+ v
∂w
∂y

+ w
∂w
∂z

)
= ρg−

∂p
∂z

+ µ

(
∂2w
∂x2 +

∂2w
∂y2 +

∂2w
∂z2

)
(5)

where µ is the dynamic viscosity in kg·m−1
·s−1 and g is the gravitational acceleration in m·s−2.

The gravitational force term is included in the z momentum equation.
The energy equation is the mathematical expression based on the First Law of Thermodynamics

which asserts that the degree of change of the internal energy of a system is equal to the difference
between the heat exchange with the external medium and the work done by it, whose expression is
given by the following equation [38]:

∂
∂t
(ρCaT) +

∂
∂x j

(
ρu jCaT

)
−

∂
∂x j

(
λ
∂T
∂x j

)
= ST (6)

where Ca represents the specific heat in W·kg−1
·K−1,λ represents the thermal conductivity in W·m−1

·K−1,
and ST represents the source term of heat generation, measured in W·m−3.

Turbulence Model

According to Almoli et. al [28], the thermal air flows in data centers are generally complex, with
a Reynolds number, Re, based on the air velocity at the inlet air vent openings at around 1 m·s−1

with server racks with a height of around 2.4 m, a Re = 105 is obtained, which indicates that the air
flow regime is turbulent. When the studies performed in CFD in data centers are analyzed, it can be
observed that the model that provides more accurate forecasts makes use of the Reynolds Averaged
Navier–Stokes (RANS) turbulence model, as was the case in [39].



Appl. Sci. 2019, 9, 3850 5 of 30

In this study, the turbulence k–ε standard model is based on the conservation equations of
continuity, momentum and energy in conjunction with the turbulence k–ε standard model, where k
and ε are the variables kinetic turbulent energy and turbulent dissipation, respectively. According to
the authors of [39], this model is more suited to turbulent flow due to the way it calculates turbulent
viscosity and conductivity. It is also the most widely validated and frequently used in commercial CFD
codes. In addition, according to Alkharabsheh et al. [40], previous studies have shown that the k–ε
turbulent model displays a better performance and results when compared to the SST, k–ω, RSM and
RNG k–ε models.

The mathematical expressions that characterize the model proposed and used in this study are
based on the ones presented in [41] and are given as follows:

∂ρk
∂t

+ div(ρUk) − div
[(
µ+

µT

σk

)
grad(k)

]
= Pt − ρε (7)

∂ρε

∂t
+ div(ρUε) − div

[(
µ+

µT

σε

)
grad(ε)

]
= C1ε

ε
k

Pt −C2ερ
ε2

k
(8)

where k is kinetic turbulent energy m2
·s−2, U represents the velocity vector in m·s−1, µT represents

the turbulent viscosity in kg·m−1
·s−1, σk gives the turbulent Prandtl number for turbulent kinetic

energy, Pt characterizes the turbulent energy production in kg·m−1
·s−3, ε gives the turbulent kinetic

energy dissipation in m−2
·s−3, the Prandtl number for turbulent energy dissipation is given by σε,

and finally C1ε and C2ε are the constants of the production term and dissipation term, respectively.
The abovementioned constants σk, σε, C1ε, and C2ε assume the values of 1, 1.3, 1.44, and 1.92,
respectively, as in the work of Hoang et al. [41].

Finally, the turbulent viscosity is defined by Equation (9) [41]:

µT = ρCµ
k2

ε
(9)

where Cµ is the constant of the turbulent viscosity term. In this study, Cµ = 0.09.

3. Numerical Model of the Data Center

The geometric model was developed taking into account the characteristics of the computational
processing in order to avoid complications during the developed simulations. Thus, the three-
dimensional geometry was simplified to avoid that the mesh generated by the software being very
refined. To achieve this, the server racks are represented as parallelepipeds, and the cables, rails, access
doors and fixtures have been concealed to facilitate the construction of the mesh. In the case of lamps,
these were concealed not only by the complexity they would generate in the developed mesh, but also
because they were disconnected during the operation of the ICT room, generating no heat production.
Figure 1 shows the three-dimensional geometry developed for the present study.

The computational mesh is composed of control volumes so that the equations of continuity,
momentum and energy, presented in Section 2, could be solved. A mesh that has high quality is
very important for the accomplishment of the simulations proposed in this paper, because this is
fundamental for the numerical solution to converge and so that the achieved results are consistent
and trustworthy. The resulting mesh consists of tetrahedral (cold corridors) and hexahedral (hot
corridors and server racks) elements. This solution was adopted because the mesh would have a high
number of control volumes if a mesh composed of only one type of elements were used. Additionally,
as the air flow changes from horizontal direction when crossing the racks to vertical direction when
going through the air outlet vent areas, the use of tetrahedral elements is required to reduce false
mathematical diffusion and thus improve the accuracy of the numerical predictions. Figure 2 shows
the mesh resulting from the study in an isometric perspective. Table 1 presents the characteristics of
the computational mesh.
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Table 1. Characteristics of the generated computational mesh.

Constants Values

Nodes 1,183,613
Number of Control Volumes 2,341,172

Aspect Ratio 1.645
Skewness 0.177

The mesh density is an important metric and it is utilized for controlling accuracy and a high-density
mesh delivers results with high accuracy. The meshes creation was an iterative process as its quality
plays a significant role in the accuracy and stability of the numerical computation. The attributes
associated with mesh quality are node point distribution, smoothness, and skewness. The quality of
the mesh elements was assessed during the meshes creation in order to balance the results accuracy
with the computational cost and simulation time. Three key parameters were analyzed to measure
the mesh quality: aspect ratio, skewness and orthogonal quality. The aspect ratio is a measure of the
stretching of a cell. It is computed as the ratio of the largest and smallest dimensions of the edges of
the faces of the control volume. A good aspect ratio has a value close to one. Skewness is defined as
the difference between the shape of the cell and the shape of an equilateral cell of equivalent volume.
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The mesh quality improves as skewness value approaches the null value. The orthogonal quality for
cells is computed using the face normal vector, the vector from the cell centroid to the centroid of
each of the adjacent cells, and the vector from the cell centroid to each of the faces. The orthogonal
quality for a cell is computed as the minimum of these quantities. The mesh quality increases as the
value of orthogonal quality is towards unity. Several computational meshes were created until the
size of mesh elements provided a good aspect ratio, a small skewness and a good orthogonal quality,
ensuring a good relation between the computational cost and the accuracy of the results. Although
there are perceptible steps in the predictions of temperature and velocity fields, it is necessary to
highlight that the selected meshes present a reasonable solution considering the results accuracy and
the computational time required. Additionally, it must be noted that the numerical results simulate a
real physical situation and their analysis and conclusions are in accordance with the computational
resources required and computational time suitable for an engineering application.

The equations described in Section 2 were solved by a numerical process where the control
volume technique was used. This technique is used when the differential equations have no analytical
resolution and the numerical model must allow the discretization of the equations. To achieve a
possible resolution of the numerical method, the computational domain was first divided into 2,341,172
control volumes. As stated above, a high-density mesh delivers results with high accuracy.

The second- order UpWind Scheme was applied to momentum, turbulent kinetic energy, turbulent
dissipation rate, and energy to achieve more precise results. The accuracy of this method is reached on
the faces of the control volumes by the expansion of the Taylor Series of the solution centered on the
control volume compared to its centroid [42].

The PREssure STaggering Option (PRESTO!) interpolation method was used for pressure
discretization. Its use is justified for controlling the sudden pressure variations between the centroids
of the control volumes, considerable body forces, the presence of flows involving porous medium
and other situations. It is based in the adoption of a staggered grid to calculate the pressure via a
discrete continuity balance. In the staggered grid, the values of pressure in the center are known and
these are the values at the interfaces in the normal grid. The PRESTO! scheme uses this technique,
which resembles in characteristics the staggered-grid schemes used with structured meshes proposed
by Patankar [42]. The Semi-Implicit Method for Pressure Linked Equations-Consistent (SIMPLEC)
algorithm, published by Van Doormal and Raithby [43], was chosen in detriment to the Semi-Implicit
Method for Pressure-Linked Equations (SIMPLE) algorithm for the pressure–velocity coupling [42],
by allowing the convergence of the solution more quickly and ensuring the stability of the method.

3.1. Boundary Conditions

The boundary conditions defined in the numerical models were based on the data collected in the
studied real data center. To the values collected was also added the value of pressure loss in the server
racks, which are provided in [44].

It is important to point out that, from now on all, coordinate values and parameters are presented
with dimensionless quantities to simplify the comparison between case studies. Dimensionless values
are identified with a subscript “adm” in all equations of this study. The dimensionless quantities range
from 0 to 1. It should be noted that, in the case of the temperature, the maximum value corresponds to
a temperature value exceeding the operating specifications of the server racks. It is an air temperature
value with the capacity to cause malfunctions or to damage to the equipment present in the ICT rooms,
while this equipment is intended to operate uninterruptedly.

In this study, as previously mentioned, the PRESTO! interpolation method was used mainly due
to the presence of porous medium [45]. The porous medium is an agglomerate of particles that are
close, leaving small voids between them. Due to the existence of these voids, it is allowed to circulate
liquid or gaseous elements that can fill them. Thus, the larger are these voids, the greater is the porosity
of this material, that is, a greater amount of another element is required to fill them. In this study,
only porosity was considered for the server racks, due to micro perforated doors that allow air to be
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introduced into the server rack. Besides the porosity present in the doors of the server rack, there are
still the components inside that occupy the empty space inside the server rack, thus not allowing free
air circulation. Therefore, for this study, the porosity of the server rack was considered as a whole
(carcass and elements) and with the value of 80%, provided by the data center.

Due to the existence of porous media, it is necessary to calculate the coefficient of inertial loss “C2”
applied to the server racks [45], which is given by the following expression:

KL′ =
∆p

1
2ρv2

(10)

where KL’ is the loss factor, ∆p is the loss variation in Pa, and v is the velocity, in m·s−1. The coefficient
of inertial loss, C2 is expressed as follows:

C2 =
KL′

thickness o f the porous medium
(11)

The coefficient of inertial loss (C2) is measured in m−1. For the resolution of Equation (10),
the pressure variation value of 7.5 Pa was adjusted to the velocity of m·s−1 at the velocities present
in [44].

The equations presented in Section 2 are solved in the fluid zone. The fluid zone was considered
having an initial dimensionless temperature of 7.09 × 10−4, that is, the average dimensionless
temperature measured within the ICT room.

The turbulence intensity and the hydraulic diameter are the parameters that allow the iterative
calculation of the turbulent kinetic energy and the coefficient of dissipation of the turbulent kinetic
energy. Regarding the intensity of turbulence, it indicates the direction of the flow. Generally it is
considered 1% for low turbulence intensity and for high turbulence intensity it is considered 10% [45].
In this study, a turbulence intensity of 5% was considered in the extraction zone, as it is located in the
containment zone of the hot aisles, which provides a well-defined direction of air flow. Concerning
the intensity of turbulence in the air vent area, 5% was also considered since the air vent grids allow
directing the air. These values were based on the experimental and numerical results provided
in [46–49].

The boundary conditions are presented in Table 2 and are characterized by dimensionless values.
The area of air vents presents values that are always equal, while in the extraction area different values
occur, since one of the elements that compose this area is smaller.

Table 2. Boundary conditions imposed in the air vent and extraction areas.

Magnitude Area

All Air Vents Extraction Smaller Extraction

Turbulence intensity It = 5% It = 5% It = 5%
Hydraulic diameter Dh,adm = 0 Dh,adm = 1 Dh,adm = 0.736

3.2. Solution Convergence

The convergence of the solution is obtained through the relaxation of the variables, decreasing the
abrupt variations during the iteration. It is considered that a solution converges when all the residuals
reach the stopping criterion, λ = 1 × 10−4 for all variables, except for the energy variable that assumes
a stop criterion of λ = 1 × 10−6. In order for a solution to be considered convergent. there are several
aspects to consider, such as refinement of the computational mesh, established numerical methods,
relaxation factors and the number of imposed iterations. There are cases where it is not possible to
achieve the convergence established by the stopping criterion, because the residuals stabilize before
this criterion, thus assuming that the solution obtained is the possible convergence for the numerical
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method under analysis. The relaxation factors have no influence on the numerical solution’ they only
change the time of the iterative process. Table 3 presents the various relaxation factors applied to the
numerical methods, following the data provided in [46–49].

Table 3. The relaxation factors applied to the numerical methods.

Magnitude Relaxation Factor

Density 0.3
Pressure 1

Body Forces 1
Amount of movement 0.7

Turbulent kinetic energy 0.8
Turbulent dissipation rate 0.8

Turbulent Viscosity 1
Energy 1

The iterative process of the various numerical models was defined for 1500 iterations, since
the solution would not reach the stopping criteria, only if it could reach the possible convergence.
The authors ran few scenarios with 7500 iterations, and no divergence was verified. However, due to
the reason that these simulations took a high amount of time to compute, the authors decided to run the
simulation up to 1500 iterations, since the variable residuals accomplished the possible convergence.
Thus, this number of iterations was established to reduce the processing time of the simulation. Each
case took about 14 h to complete all the iterations on a work station with two 3.47 GHz processors with
16 cores and with a memory of 48 GB of Random-access memory (RAM).

4. Description of the Modeled Case Studies

In this section, we present the parametric studies performed by changing different parameters
that allowed the analysis of a good operation of an ICT room. For this analysis, the temperatures of the
server racks and the hot aisles were studied, as well as the airflow in the ICT room. The investigated
parametric studies differed among them, due to the variation of the thermal load of the server racks.
Four case studies with different thermal loads were studied.

Cases 1 and 2 represent a usual thermal load distribution in the data center, especially Case 2.
This objective was to have a study that closely resembles the reality of the operation of the server racks
located in the data center. Meanwhile, Cases 3 and 4 represent a more academic approach. The thermal
is not usually constant throughout the row since the servers do not usually operate at the same level of
thermal load. However, the values of the thermal load in Cases 3 and 4 are close to the reality since
these servers do not usually operate at maximum performance.

Each thermal load was simulated with the maximum and minimum air flow velocity.
The dimensionless values are identified with a subscript “adm”. Figure 3 shows the upper plan view
of the TI room, where the numbering corresponds to the server rack number, ranging from 1 to 208.
In this figure, it is also possible to observe the hot aisle/cold aisle configuration of the data center.
The smaller extraction aisle, mentioned in Table 3 and seen in Figure 3, is the one of the ranging racks
from 181 until 208.
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In all four case studies addressed in this study, a dimensionless thermal load was used, qadm.
In Case 1, different thermal loads imposed at the boundary conditions of the heat flow were applied
symmetrically to every row of all server racks, as shown in Figure 4a. The thermal load is as follows:
at the end of the rows of the server racks, 90% of the maximum thermal load was applied, while
70% of the maximum thermal load and 50% of the central racks were imposed on the intermediate
server racks. For each case, the maximum and minimum air flow velocity was applied, simulated
and studied. The purpose was to observe the behavior of the temperature and air flow in the room.
To better understand how the loads were applied along the rows, a single row of server racks is shown
in Figure 4 for each of the four case studies, where each color represents a value of the thermal load.
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Case 2 is similar to Case 1. However, in this case study, the thermal load applied on the end of
the server racks is exchanged with the one of the central server racks, that is, the central server racks
had a maximum heat load of 90% and the end server racks dissipated 50% of the maximum heat load.
For Case 3, the thermal load applied was 75% of the maximum thermal load in the heat flow frontier
condition, q. It was applied equally in every server rack, for the maximum and minimum velocity of
the air flow. Finally, Case 4 is similar to Case 3, the difference being only the applied thermal load,
which in this case was equal to the measured and nominal load value of the data center room.

5. Result Analysis

5.1. Case 1

In Case 1, several simulations were made with different thermal loads that were applied in the
boundary conditions of the heat flow. The loads imposed were applied symmetrically along the rows,
as shown in Figure 4a. The boundary conditions taken in account for these simulations are as follows:
at the end of the rows of the server racks, 90% of the maximum thermal load was applied, while 70% of
the maximum thermal load and 50% of the central racks were applied: qadm = 0.892 (90%), 0.676 (70%)
and 0.460 (50%), respectively. The minimum air flow dimensionless velocity was set to be as follows:
vadm = 0. By observing Figures 5 and 6, the temperature field predictions of the y and z planes can
be seen, respectively. These temperature fields predict the set of temperature values at all points in a
given space at a given instant. For these specific cases, in steady-state conditions, the temperature field
is independent of time.
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In the case of the maximum air flow dimensionless velocity, vadm = 1, the temperature field
predictions can be seen in Figures 7 and 8 for the y and z planes, respectively.
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More than a few hot spots are foreseen to arise at the termination of every server rack line,
as illustrated in Figures 5 and 6. These spots are easily spotted if noticing the colors related to the
values which are higher than the dimensionless temperature, Tadm = 0.350, visible on the left scale,
except for the hot spots in the extraction zone, which is Tadm = 0.125. Through a careful analysis of
Figure 6a, a greater heat intensity is foreseen to occur at the bottom the racks located at the end ow
every row. It can be deduced that the airflow is inadequate in this area. The justification behind this
inadequacy is that the airflow intensity is higher in the center of the air vents than at the bottom and
the top. Figure 6a–c also shows that for this case study hot spots can be predicted in the extraction
zone and at the termination of all the rows.

In Figure 7a,c, which have server racks at the end of the rows (yadm = 0.100 and yadm = 0.900),
the temperatures are expected to be very close to the hot spot limit, with Rack 2 exceeding that limit at
the base. As far as the plan representing the central server racks is concerned (Figure 7b), it is expected
that the temperature does not vary much from the inlet air temperature.

By observing Figure 8, it can be seen that there is a possibility of hot spots in a few server
racks, such as racks located at the extremity of each row. As far as the extraction zone is concerned,
the probability of hot spots is very high, since the mean temperatures shown in Figure 8d are very
close to the inlet air temperature.

5.2. Case 2

In Case 2, the applied loads were applied symmetrically along the rows, as shown in Figure 4b.
The boundary conditions set for the simulations performed in this studies are as follows: at the end
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of the rows of the server racks, 50% of the maximum thermal load was applied, while 70% of the
maximum thermal load and 90% of the central racks were applied: qadm = 0.460 (50%), 0.676 (70%) and
0.892 (90%), respectively. The minimum air flow dimensionless velocity was set as follows: vadm = 0.
The results from the simulations of the temperature field can be seen, respectively, in Figures 9 and 10
for the y and z planes.

Figures 9 and 10 show the temperature field predictions for the case study. The temperature fields
are presented with the same planes as in Case 1.

By observing Figure 9, the probability of hot spots on the server racks can be accurately assessed.
In the plans of Figure 9, it can also be easily noticed that the average of the non-dimensional temperature
values in the extraction zone exceeds Tadm = 0.125. Therefore, the minimum air flow dimensionless
velocity is not sufficient to successfully cool all the racks and, thus, avoid the occurrence of any type
of hotspots.

By analyzing Figure 10, it can be seen that a few server racks can reach temperatures that exceed the
minimum limit considered for a hot spot. In the extraction zone, the mean value of the dimensionless
temperature in this zone is expected to exceed Tadm = 0.125 (the hot spot for this area), which means
that hot spots in the extraction zone are very likely to occur.

In the case of the maximum level of air flow dimensionless velocity, vadm = 1, the results from
the simulations of the temperature field can be seen, respectively, in Figures 11 and 12 for the y and
z planes.
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As shown in Figure 11b, the predicted dimensionless temperature does not exceed Tadm = 0.150.
The zone that can reach this temperature is very small and very close to the base. In the other planes,
the dimensionless temperature does not exceed Tadm = 0.200, which is also only reached at or near the
base of the server racks.

Due to the increase in inlet air flow velocity, the temperature fields shown in Figure 12 predict
that the average temperature in the data center room is similar to the inlet air temperature and that the
formation of hot spots is almost non-existent, since the predicted maximum dimensionless temperature
is Tadm = 0.250. As mentioned for Case 1, the hot spots can be easily spotted by noticing the colors
related to the values, which are higher than the dimensionless temperature, Tadm = 0.350. In addition,
no hot spots are expected in the extraction zone.

5.3. Case 3

For Case 3, the conditions of the boundary were set as follows: 75% of the maximum heat load
in the heat flow boundary condition was imposed symmetrically, meaning that qadm = 0.729. As in
previous cases, the minimum and maximum air flow velocity were applied. In the case of the minimum
air flow velocity, the temperature field predictions can be seen, respectively, in Figures 13 and 14 for
the y and z planes.
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In Figure 13, it is possible to observe the temperature of the server racks above the established
value for hot spots and average dimensionless temperatures in the hot aisles of Tadm = 0.350. Several
hot spots occur with the minimum air flow velocity. It is possible to observe in Figure 14 that, for a
minimum air flow velocity, when 75% is set for the maximum load, several hot spots are foreseen,
as confirmed by Figure 13, in the server racks at the end of all the rows. Regarding the extraction
temperature, an average dimensionless temperature around Tadm = 0.200 is expected, and, since it is
higher than Tadm = 0.125, it leads to the prediction of hot spots.

When the air flow velocity is simulated at the maximum level, the temperature field predictions
show a different result, as can be seen, respectively, in Figures 15 and 16 for the y and z planes.

By observing Figure 15, it is possible to assess that some of the racks in the data center room
exhibit temperature values similar to the inlet air temperature, especially in the intermediate server
racks of each row.

As shown in the plane temperature fields of Figure 16, when applying the maximum level of air
flow velocity, the thermal behavior of the data center room does not provide hot spots, neither for
the server racks nor for the extraction zone, which has an average temperature similar to the inlet air
temperature. Both figures confirm that no hot spots occur in this scenario.
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5.4. Case 4

In Case 4, the nominal thermal load in the heat flow frontier condition, as mentioned in Section 4,
and provided by the data center room, is qadm = 0.340. As in previous cases, the maximum and
minimum air flow velocity were applied. The scale was changed for Case 4 and it does not present
the maximum value existing in the other three cases. The reason is that this case study has lower
temperatures and small differences would not be perceptible. By focusing on a narrower scale, it is
possible to differentiate between slight changes in temperature.

The result of simulations for the minimum level of air flow velocity and the obtained temperature
field predictions can be seen, respectively, in Figures 17 and 18 for the y and z planes.
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In the planes shown in Figure 17, it can be observed that the greater development of hot spots
occurs at the terminations of the rows of the server racks. The temperature fields of the x–y planes
(Figure 18) represent the temperature prediction for a usual thermal load with minimum air flow
velocity. Due to the normal operation of the server racks, the air flow velocity is insufficient to avoid
the formation of hot spots in several server racks. In the extraction zone, hot spots are not expected
since the average dimensionless temperature does not exceed Tadm = 0.125.
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By analyzing both Figures 17 and 18, it can be assessed that the server racks at the end of the rows
reach higher temperatures, meeting the dimensionless temperature value of Tadm = 0.400. The hot
aisles are expected to reach the maximum average mean temperatures, Tadm = 0.120.

The result of simulations for the maximum level of air flow velocity and the obtained temperature
field predictions can be seen, respectively, in Figures 19 and 20 for the y and z planes.

By observing Figure 19, it is possible to assess that the values obtained in the dimensionless
temperature range of the server racks do not exceed the value, Tadm = 0.160. In the extraction zone,
the simulations show that hot spots are not foreseen to occur, since the value of the dimensionless
temperature field does not exceed the value of Tadm = 0.06.

Figure 20 shows the absence of hot spots, since the inlet air flow velocity proves to be oversized
for this case study, which naturally leads to the prediction of low values in the extraction zone. It can
be seen that server racks at the end of the rows are very close to the values of the central server racks,
since the scale does not present the maximum value existing in the other three cases. Thus, it can be
seen that there are no hot spots in any server rack. The value of the temperature range in the extraction
zone is almost identical to that of the inlet air temperature.  Appl. Sci. 2019, 9, x FOR PEER REVIEW 22 of 30 
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5.5. The Velocity Vectors

A study of the velocity vectors is also presented in this subsection. In the four case studies
addressed in this section, the minimum and maximum air flow velocity were applied, thus the behavior
of the velocity vectors was equal in all of them. The only noticeable difference is in the minimum
and maximum air flow velocity. Thus, only for these two cases are the velocity vectors illustrated.
A representation of three-dimensional geometry of velocity vectors in the data center room can be
observed in Figure 21.

 Appl. Sci. 2019, 9, x FOR PEER REVIEW 23 of 30 

 
Figure 21. The representation of three-dimensional geometry of velocity vectors for: (a) maximum air 
flow velocity; and (b) minimum air flow velocity. 

5.5.1. Minimum Air Flow Velocity 

In the case of the minimum air flow velocity, the velocity vectors predictions can be seen in 
Figure 22–24 for the x, y and z planes, respectively. 

 
Figure 22. The results of the dimensionless velocity vectors for the minimum air flow velocity in the 
y-z plane represented through the planes: (a) xadm = 0.042; (b) xadm = 0.116; (c) xadm = 0.526; (d) xadm = 
0.589; (e) xadm = 0.779; and (f) xadm = 0.842. 

Figure 21. The representation of three-dimensional geometry of velocity vectors for: (a) maximum air
flow velocity; and (b) minimum air flow velocity.

5.5.1. Minimum Air Flow Velocity

In the case of the minimum air flow velocity, the velocity vectors predictions can be seen in
Figures 22–24 for the x, y and z planes, respectively.

It is possible to observe in Figure 22b,d for xadm = 0.463 and xadm = 0.716 that near the inlet air flow
vent the air collides with the plates at the extremity of the server racks. Thus, it becomes noticeable
that the air flow gains speed at the end of each row.

By observing Figure 23a–c, it is expected that air recirculation will occur in some racks. This is
due to the difficulty that air has in entering them, since the injected inlet air collides with the plates at
the extremity of the server racks as mentioned above. In Figure 23b, it is predicted that the air flow
will follow the desirable path. In this plan, it is possible to understand the behavior of the air flow
in most of the server racks present in the data center room. It can be seen in the hot aisles that the
prediction of the flow direction of the air exiting the server racks follows the desirable path to the
extraction zone, with the exception of the air adjacent to the ends of the aisles, which tends to enter the
exit of the server racks.

By observing Figure 24a,b, it is predicted that, in the mid-height of the inlet air flow vent area,
more pronounced values of air velocity can be noticed. In the inlet air flow vent area, vortices and
small air recirculation are expected to occur due to the amount of movement blown in by the air vents.
Air is still expected to be diverted from the desirable path towards the cold aisles as it collides with the
plates at the extremity of the server racks and with the containment doors. Due to deviations in the
trajectory, the air increases its velocity at the beginning of the cold aisles, gradually losing it as it moves
towards the center of the cold aisle. It is also predicted that the floor and ceiling of the data center
room will experience slower air flow velocities.
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5.5.2. Maximum Air Flow Velocity

In the case of the maximum air flow velocity, the velocity vectors predictions can be seen,
respectively, in Figures 25–27 for the x, y and z planes.

In this case, the prediction is very similar to that of the minimum air flow velocity, since the air
flow behaves in the same way. However, in this case, the velocity of the air flow is higher than the
minimum air flow velocity scenario. Figures 25 and 27 indicate that the behavior of the air flow is
similar to the minimum air flow velocity scenario. Figure 26 shows the prediction of airflow in the hot
aisles. It can be seen that in these planes the air in the center of the hot aisles is correctly directed to
the extraction zone, as it can be seen in Figure 26b. However, at the end of the hot aisles, as seen in
Figure 26a,c, the air has a horizontal direction, since in the server racks at the end, the flow is made in
reverse because the problem mentioned in Section 5.5.1 occurs in the cold aisles. Figure 25b,d and
Figure 27b demonstrate the prediction of the air flow velocity increases since near the inlet air flow
vent the air collides with the plates at the extremity of the server racks. Due to the increase of this
velocity, the air near the server racks located at the end experiences circulation difficulties.

The results show that the airflow could be better close to the end of the rows of the server racks.
Such a phenomenon occurs because the layout of the data center room is imperfect. This imperfect
cooling can be noticed by observing the enhanced section of Figure 26a, where the air inadequately
flows, from the hot aisle, in the direction of the cold aisle. Nevertheless, as reinforced by the information
conveyed by the planes in Figures 25 and 27, the cooling is significantly more efficient in the middle of
the room, as demonstrated by the air flow represented in the enhanced section of Figure 26b, in which
the air adequately flows in the direction of the hot aisle from the cold aisle.
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5.6. Result Discussion and Analysis

Due to changes in the boundary conditions imposed on the heat flow and the different applied air
flow velocities, the case studies differ with respect to the temperature fields, which can cause a few hot
spots in the server racks. Figure 28 represents the maximum dimensionless temperature predicted in
each case study. In this figure, the temperature limit of hot spots in the server racks can be observed.
When analyzing the case studies and Figure 28, it is predicted that not all generate hot spots in server
racks, especially in the cases with the maximum air flow velocity.
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In this sense, it is possible to reduce the thermal load of the server racks by improving the overall
thermal performance of the processing room, without jeopardizing the correct operation of the server
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racks located in the sensible regions of the data center room and increasing the sustainability of the
entire data center. It can also be observed that Case 4 is the one that displays the best behavior and in
which there is a lower probability of hot spot occurrence.

As stated in Section 4, the maximum airflow dimensionless velocity, vadm, is 1, a velocity that is
not a common practice in the studied data center. The velocity is set only in cases when the demand
for the rack services and operation is greater than usual and the larger part of the racks function at
full capacity. By setting the CRAC units to a maximum airflow velocity, the data center room can be
successfully cooled, yet this refrigeration is achieved at a high cost since it is accomplished through the
consumption of a high quantity of energy. Thus, as an alternative to upgrading the existing CRAC
units, which could signify high expenses, a possible and more sustainable resolution can be altering
the way the racks are arranged inside the data center room. The purpose is optimizing the existing
layout with the aim of efficiently refrigerating the server racks. One of these alterations could be the
removal of a few server racks located at the extremity of the line and consequently avoiding hot spots
by improving the air flow.

6. Conclusions

A parametric study was made by employing CFD modeling for a real data center room comprising
more than 200 server racks with the purpose of studying the thermal performance and airflow. Four case
studies with distinct thermal loads were addressed in this study. Several scenarios were simulated for
the heat flow limit condition and the results for four case studies were obtained and then analyzed for
the maximum and minimum air flow velocity. The main results are as follows:

• For all four case studies, the results predict the occurrence of several hot spots in the case of the
minimum air flow velocity.

• By analyzing the results, no hot spots materialize in the case of the maximum air flow velocity
except in Case 1.

• Case 4 shows the best solution. Conversely, refrigerating through these means is unsustainable
and consumes a great amount of energy.

• From the results, it can also be deduced that every predicted hot spot is situated at the end of
the aisles. The reason behind this occurrence is the ineffective refrigeration of the data center
server racks as a result of an inappropriate position of the CRAC units and this happens in every
case study.

• Having to always use the maximum air flow velocity, as in Cases 1–3, is not the best solution.
The airflow is suboptimal close to the end of the rows since the layout of the data center room is
imperfect. This challenge can be overcome by withdrawing a few server racks located at the end
of the aisles. Such a solution could signify a much better airflow and could even allow a reduction
of the air flow velocity, thus diminishing the overall cost with entire cooling operation.
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