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Abstract: The existing thermal infrared (TIR) ship detection methods may suffer serious performance
degradation in the situation of heavy sea clutter. To cope with this problem, a novel ship detection
method based on morphological reconstruction and multi-feature analysis is proposed in this
paper. Firstly, the TIR image is processed by opening- or closing-based gray-level morphological
reconstruction (GMR) to smooth intricate background clutter while maintaining the intensity, shape,
and contour features of ship target. Then, considering the intensity and contrast features, the fused
saliency detection strategy including intensity foreground saliency map (IFSM) and brightness
contrast saliency map (BCSM) is presented to highlight potential ship targets and suppress sea clutter.
After that, an effective contour descriptor namely average eigenvalue measure of structure tensor
(STAEM) is designed to characterize candidate ship targets, and the statistical shape knowledge is
introduced to identify true ship targets from residual non-ship targets. Finally, the dual method
is adopted to simultaneously detect both bright and dark ship targets in TIR image. Extensive
experiments show that the proposed method outperforms the compared state-of-the-art methods,
especially for infrared images with intricate sea clutter. Moreover, the proposed method can work
stably for ship target with unknown brightness, variable quantities, sizes, and shapes.

Keywords: thermal infrared (TIR) imaging; small ship target detection; sea clutter; gray-level
morphological reconstruction; saliency detection; multi-feature analysis

1. Introduction

Infrared ship target detection is an important technology for maritime search and track
applications [1,2], where both accuracy and robustness are indispensable. However, because of
the long imaging distance, for thermal infrared (TIR) images, the signal intensity of a small ship
target is usually very weak without sufficient texture and structure information. More importantly,
the complicated sea clutter such as sun glint, tail wave, island, sea fog and sea-sky line are usually
capricious without predictable shape, which reduces the accuracy of TIR ship target detection. Moreover,
the variable size and irregular shape of a ship target also further restrict the robustness of target
detection. For above-mentioned reasons, infrared ship detection has attracted many researchers and
a number of ship target detection algorithms are designed [3–5].
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The representative TIR ship detection algorithms can be roughly divided into two categories,
namely, detect-before-track (DBT) strategy and track-before-detect (TBD) strategy. By taking full
advantage of the continuity of moving target and the stationarity of background, the TBD-based
detection methods, such as frame difference method [6], three-plot correlation filter [7] and multi-stage
hypothesis test filter [8], have achieved outstanding performance for the ships with continuous trajectory.
However, in many maritime scenes, the background is changeable, and the target trajectory might
be discontinuous, so the performance of TBD methods would degrade sharply. Compared with TBD
strategy-based methods, the DBT-based methods have many advantages, such as less prior knowledge
and faster computational speed and can work stably for the target without continuous trajectory under
variable background. Therefore, the DBT-based ship detection methods are of great significance and
have been drawing much attention from researchers recently. The existing DBT-based ship detection
methods can be approximately classified into four categories: The target/background modeling-based
methods, the image segmentation-based methods, the human visual system (HVS)-based methods,
and the machine learning-based methods.

In the target/background modeling-based methods, the ship target and background are separated
by modeling the TIR imaging properties of ship target or background. Lagaras et al. [9] introduced
an end-to-end temperature difference model for the detection and classification of TIR ships at the
environmental conditions with an analysis-based scanning detector. Wang et al. [10] proposed a TIR
ship detection method by modeling ship radiation anomalies with a nonlinear statistical Gaussian
mixture model. These methods try to extract the ship target from background via modeling on the
premise of acquiring abundant knowledge about the infrared radiation characteristics of ship target
and background, but it is difficult to meet these requirements. To solve this problem, Kim et al. [11,12]
estimated the background and distinguished the target from sea clutter by using the heterogeneous
background removal filter. Furthermore, the statistical histogram curve transforms were also developed
for the infrared maritime target detection based on the model assumption that the ship target region is
much brighter than the background, such as the methods mentioned in [13,14]. These background
removal filters and statistical histogram curve transforms are excellent for the infrared point ship
target with relatively high positive contrast. However, for low contrast or negative contrast, the ship
targets are dim, and the background clutter is intricate, so these methods may rapidly reduce the
detection performance.

The image segmentation-based methods have the advantages of simplicity and efficiency, which
are widely used for ship detection in TIR images. The classical threshold segmentation methods
such as 2D Otsu [15], minimum error [16], and 2D maximum entropy [17] are well known in infrared
ship target segmentation for their simplicity and easy-implementation. Nevertheless, these classical
threshold segmentation methods are sensitive to noise and cannot detect small or low contrast ship
targets due to the fact that their performance is easily affected by the clutter intensity information.
To overcome the disturbance of noise and background clutter, the mean shift-based ship segmentation
algorithms developed in [18,19] have achieved considerable detection performance for infrared ship in
sea clutter. Whereas, because the mean shift methods are based on region clustering and merging, they
may obtain a wrong detection when the ship target has low contrast or point size. In addition, the active
contour-based Chan–Vese models [20,21] are also commonly used in the field of ship target detection
because they can effectively segment the targets in homogenous background by extracting topology
structure. Unfortunately, for complex background with heterogeneous sea clutter, the low-contrast ship
target and sea clutter might be similar in topology structure, so serious false detection might happen.

The human visual system-based methods are based on the local contrast measure and selective
attention mechanism of the ship target region, and therefore, the feature saliency map calculation
of infrared ship target is the foremost topic for HVS-based methods. Mumtaz et al. [22] adopted
graph-based visual saliency (GBVS) method to compute a saliency map, and then extracted the
ship target by using multilevel thresholding of the saliency map. The GBVS-based method may
extract strongly salient clutter regions and fail to detect real ship target when the sea clutter is heavy.
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To conquer this problem, Liu et al. [23,24] proposed an effective infrared ship target detection method
based on saliency map fusion by exploiting multi-features of ship target, including local contrast, edge
information, and brighter intensity. Following, Bai et al. [25] presented a new detection method for
low-contrast infrared ship targets by analyzing the fuzzy inference system that integrates both local
saliency information and global spatial feature. The two methods can acquire excellent performance
for the detection of infrared ships in complex background clutter. However, these methods are based
on the assumption that target regions are comparatively brighter than the dark sea surface, so they
cannot detect the negative-source dark ship targets submerged in relatively bright backgrounds.

In the machine learning-based methods, the infrared ship detection problem is considered as
a two-class (ship target and background) recognition problem. In these methods, the infrared images
are depicted by multiple feature vectors, and then the ship target class and background class can be
distinguished by classifiers, such as feedforward neural network [26], extreme learning machine [27],
artificial neural network [28], and convolutional neural network [29,30]. These machine learning-based
methods can easily detect diverse ship targets under intricate background clutter in some cases.
However, regrettably, these methods must spend plenty of time training samples and selecting features.
Moreover, in practical TIR maritime applications, these machine learning-based methods fail to
generate enough training samples due to the complexity and variability of the sea clutter, leading to
the deterioration of the ship target detection capability.

Comparing the advantages and disadvantages of above-mentioned methods, although many
studies have been focused on the detection of TIR ship targets against complex backgrounds in the
past decades, it is still an open issue. Actually, in TIR remote sensing images, the natural scene
background has strong local self-similarity, but the small ship target as a manmade object will destroy
these characteristics of background, so compared with the background clutter even for heavy sea
clutter, the ship target has solid intensity, contrast, contour, and shape features. To further overcome
the disturbance of heavy sea clutter on the detection of ship targets with low-contrast, multiple
targets, unknown brightness, and different sizes, we propose an effective and robust small ship
detection scheme, based on the morphological reconstruction and multi-feature analysis of TIR imaging
characteristics between ship targets and background clutter. Firstly, a pre-processing procedure based
on closing (opening)-based gray-level morphological reconstruction (GMR) is introduced to remove
noise and smooth intricate background clutter while preserving the ship target signals including
intensity, shape, and contour information. Secondly, according to the intensity and local region contrast
features of TIR ship targets, the intensity foreground saliency map (IFSM) and brightness contrast
saliency map (BCSM) are computed and fused to well enhance potential ship targets, and an adaptive
threshold is applied to segment candidate ship targets. Then, motivated by the contour characteristic
of target region in GMR pre-processed image, a novel contour descriptor of TIR ship target named as
average eigenvalue measure of structure tensor (STAEM) is proposed to characterize candidate ship
targets and eliminate residual clutter simultaneously. After that, based on the statistics and observation
of shape parameters of TIR ship targets selected from a comprehensive ship database namely visible
and infrared ships (VAIS) [31], shape knowledge is obtained and utilized to further distinguish true
ship targets from non-ship targets. Finally, the dual approach is adopted to detect both bright and dark
ship targets in TIR image simultaneously. Extensive experiments show that the proposed ship target
detection scheme outperforms the compared state-of-the-art algorithms under diverse backgrounds,
and is suitable for ship targets with unknown brightness, variable sizes, and quantities.

Figure 1 gives the flow chart of the proposed TIR small ship target detection method. The red
boxes have enlarged true ship targets, and the purple boxes have marked several highest STAEM
values of false targets. The STAEM value of ship target is 0.3281, and the four largest STAEM values of
false targets are 0.1431, 0.1149, 0.0960, and 0.0792, respectively. ⊗ denotes pixel-wise multiplication
manner, and ⊕ denotes pixel-wise addition manner. Figure 1a is the input TIR ship image, and the
final automatically detected ship target image is shown in Figure 1g. During this process, a dual
approach for both bright and dark ship target detection is introduced. Figure 1b1–b4 shows the
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GMR-based pre-processed images, and Figure 1c1–c4 gives the saliency detection results of IFSM and
BCSM. Figure 1(d1,d2) shows the final fused saliency maps of bright and dark ship target, respectively.
Figure 1(e1,e2) is the step of extracting candidate ship targets and eliminating residual clutter by
STAEM. Figure 1(f1,f2) shows the detected bright and dark ship target maps after two-step ship
verification method, respectively.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 29 

target, respectively. Figure 1(e1,e2) is the step of extracting candidate ship targets and eliminating 
residual clutter by STAEM. Figure 1(f1,f2) shows the detected bright and dark ship target maps after 
two-step ship verification method, respectively. 

0.0960averλ =

0.3281averλ =

(a) Input image

(b2) CGMR

(b3) OGMR

(c4) IFSMd

(c3) BCSMd

(c2) BCSMb

(c1) IFSMb

(d1) SMb

(d2) SMd

(e1) STAEM

(f2) detected dark 
Ship target map

(f1)  detected bright 
Ship target map

(g) Output image

Calculate the large eigenvalue maps of structure tensor 

(b1) OGMR

(b4) CGMR

(e2) STAEM

 
Figure 1. The flow chart of the proposed thermal infrared (TIR) small ship target detection method. 

There are four contributions in this paper: (1) Traditional infrared ship target detection methods 
suffer the disturbance of heavy sea clutter. In this paper, the GMR-based pre-processing procedure 
is introduced to efficiently remove noise and smooth intricate background clutter. Moreover, to 
deeply explore the intensity and local region contrast features of TIR ship targets after GMR-based 
pretreatment, the IFSM and BCSM are computed and fused to highlight potential ship targets and 
suppress sea clutter. As far as we know, it is the first time that gray-level morphological 
reconstruction is used for suppressing heavy sea clutter and perceiving the saliency map detection 
for potential ship targets. (2) The STAEM is presented as a valid contour descriptor to further depict 
the candidate ship targets and eliminate residual clutter simultaneously. The proposed STAEM is a 
novel measure to describe the contour information of a connected region. (3) Based on the statistics 
and observation of the shape parameters of TIR ship targets selected from VAIS database, a statistical 
shape knowledge is generated and utilized to further extract true ship targets from candidate targets. 
Because the VAIS database contains 1242 TIR ship images composed of 264 different types of ships 
captured during the daytime and nighttime with variable view-angles and diverse distances, the 
shape knowledge obtained by statistics and observation on this database could be more widely used 
in the field of TIR small ship detection. (4) Combining the above methods and their advantages, an 
efficient and robust infrared small ship detection scheme is developed and is superior to the state-of-
the-art ship target detection methods. 

The structure of this paper is organized as follows: The morphological reconstruction and multi-
feature analysis based on the intrinsic TIR imaging characteristics between ship targets and sea clutter 
are discussed in Section 2. The TIR ship detection algorithm based on morphological reconstruction 
and multi-feature analysis is proposed, and the whole details of the novel and robust scheme are 
shown in Section 3. Extensive experiments are included in Section 4 to evaluate the performance of 
the proposed algorithm, and the results show that the ship detection performance by the proposed 
method is significantly enhanced. Finally, Section 5 gives the conclusions of this paper. 

2. Morphological Reconstruction and Multi-feature Analysis for TIR Ship Images 

2.1. Characters of Small Ship Targets and Sea Clutter in TIR Image 

TIR images and visible (VIS) or near-infrared (NIR) images are both numerical representations 
of electromagnetic radiation in a specific wavelength region, so they have many common grounds. 
The VIS spectra are the visible part of the electromagnetic spectrum with a wavelength of 0.38~0.75 

Figure 1. The flow chart of the proposed thermal infrared (TIR) small ship target detection method.

There are four contributions in this paper: (1) Traditional infrared ship target detection methods
suffer the disturbance of heavy sea clutter. In this paper, the GMR-based pre-processing procedure is
introduced to efficiently remove noise and smooth intricate background clutter. Moreover, to deeply
explore the intensity and local region contrast features of TIR ship targets after GMR-based pretreatment,
the IFSM and BCSM are computed and fused to highlight potential ship targets and suppress sea
clutter. As far as we know, it is the first time that gray-level morphological reconstruction is used for
suppressing heavy sea clutter and perceiving the saliency map detection for potential ship targets.
(2) The STAEM is presented as a valid contour descriptor to further depict the candidate ship targets
and eliminate residual clutter simultaneously. The proposed STAEM is a novel measure to describe
the contour information of a connected region. (3) Based on the statistics and observation of the
shape parameters of TIR ship targets selected from VAIS database, a statistical shape knowledge is
generated and utilized to further extract true ship targets from candidate targets. Because the VAIS
database contains 1242 TIR ship images composed of 264 different types of ships captured during
the daytime and nighttime with variable view-angles and diverse distances, the shape knowledge
obtained by statistics and observation on this database could be more widely used in the field of TIR
small ship detection. (4) Combining the above methods and their advantages, an efficient and robust
infrared small ship detection scheme is developed and is superior to the state-of-the-art ship target
detection methods.

The structure of this paper is organized as follows: The morphological reconstruction and
multi-feature analysis based on the intrinsic TIR imaging characteristics between ship targets and
sea clutter are discussed in Section 2. The TIR ship detection algorithm based on morphological
reconstruction and multi-feature analysis is proposed, and the whole details of the novel and robust
scheme are shown in Section 3. Extensive experiments are included in Section 4 to evaluate the
performance of the proposed algorithm, and the results show that the ship detection performance by
the proposed method is significantly enhanced. Finally, Section 5 gives the conclusions of this paper.
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2. Morphological Reconstruction and Multi-feature Analysis for TIR Ship Images

2.1. Characters of Small Ship Targets and Sea Clutter in TIR Image

TIR images and visible (VIS) or near-infrared (NIR) images are both numerical representations
of electromagnetic radiation in a specific wavelength region, so they have many common grounds.
The VIS spectra are the visible part of the electromagnetic spectrum with a wavelength of 0.38~0.75 µm.
The infrared spectra can be roughly divided into: Near-infrared (NIR, wavelength 0.75~3 µm) and
thermal infrared (TIR, 3~15 µm). Radiation emitted by an object spans a series of wavelengths, but
because a specific sensor usually only collects radiation within a specific bandwidth, it is only interested
in a limited range of the spectrum. According to Wien’s displacement law [32,33], the peak emission
wavelength λmax of the radiation is inversely proportional to the absolute temperature T of the object,
and can be simply written as:

λmaxT = 2898.8 µm K (1)

According to this law, we can compute the temperature of blackbody radiation at each wavelength,
and the temperatures of blackbody of VIS, NIR, and TIR are listed in Table 1. As can be seen from
Table 1, the temperatures of blackbody of VIS and NIR spectra are very high, so they have little or
no thermal imaging characteristics in natural conditions. In fact, the VIS is visible to the human eye
with color perception. NIR is different from thermal imaging, and it is more like the extension of
the grayscale of VIS imaging, so NIR is sometimes called “reflected infrared”. Since the temperature
range of blackbody of TIR is −79.9~693.12 ◦C, it is often used as thermography in natural conditions.
Therefore, TIR imaging also has different physical characteristics from VIS light and NIR imaging.

Table 1. The temperatures of blackbody of visible (VIS), near-infrared (NIR), and TIR.

Radiations Wavelength (µm) Temperatures of Blackbody (K) Temperatures of Blackbody (◦C)

VIS 0.38~0.75 µm 3865.07~7628.42 3591.92~7355.27
NIR 0.75~3 µm 966.27~3865.07 693.12~3591.92
TIR 3~15 µm 193.25~966.27 −79.9~693.12

There are several special characteristics of small ship targets and sea clutter in TIR images. Firstly,
the pixel intensity value in TIR image has a different physical significance with the pixel value in VIS
or NIR images. The pixel intensity represents the thermal intensity (“heat”) of objects. In TIR images,
because different materials have different thermal radiation, the hotter object appears “white” while the
cooler object appears “black”. Due to this characteristic, the small ship targets as a manmade object in
sea clutter can naturally form bright or dark objects in the TIR image despite the ship camouflage colors
and the illumination condition in VIS or NIR images. Secondly, owing to the limited manufacturing
level of sensors, the TIR images are usually less informative than the images captured by VIS or NIR
optical sensors. In other words, the TIR images are relatively lower in resolution, contrast, and clarity,
resulting in the lack of textural and structural information about objects. Thirdly, because thermal
infrared radiation determines the temperature of objects, the infrared thermography can be used to
remotely detect the ship targets. To conclude, because of the long imaging distance for TIR images,
the signal intensity of a small ship target is usually very weak without sufficient texture and structure
information. Furthermore, in TIR images, the natural scene background has strong local self-similarity
even for sea clutter, but the small ship target as a manmade object will destroy these characteristics
of background. Therefore, the ship targets can be viewed as local bright or dark uniform abnormal
regions under the sea background clutter in TIR images due to long imaging distance, as illustrated in
Figure 2.

TIR small ship imaging results are complex and comprehensive processes, which are easily affected
by non-stationary inputs, such as atmospheric radiation, solar refraction and engine temperatures.
Therefore, detection is very important when the ship target is small and embedded in sea clutter.
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Figure 2 shows three representative TIR ship images with complex sea background clutter, in which
it is difficult to detect all small ship targets because of low signal-to-clutter ratio (SCR), fewer pixels,
heavy sea clutter, and lack of textural and structural information. The small ship targets are enlarged
as corresponding three-dimensional (3-D) mesh plots by red boxes. Nevertheless, according to above
character analysis, as the ship targets can be viewed as local bright or dark uniform abnormal regions
under the sea clutter in TIR images due to long imaging distance, the small ship targets still have
some solid features. Firstly, because the small ship targets (as a manmade object) and sea clutter
have different thermal radiation characteristics, the ship targets have a certain pixel intensity feature
against background sea clutter. Secondly, as depicted by the enlarged 3-D mesh plots in three TIR
images, as small ship target will destroy the local self-similarity characteristics of sea background
clutter, the ship targets have obvious local contrast and contour features compared with sea clutter.
Thirdly, as shown in Figure 2a,b, as the small ship targets are almost uniform regions in sea clutter, they
have obvious shape features. Therefore, based on these TIR imaging features of small ship targets and
sea clutter, we propose an effective TIR small ship target detection scheme by reasonably integrating
these features. As a primary step, a pre-processing procedure based on gray-level morphological
reconstruction is introduced to remove noise and smooth sea clutter. Next, according to the intensity
and local contrast features of ship targets, the IFSM and BCSM are presented and fused to well enhance
potential ship targets and suppress heavy sea clutter. Then, motivated by the contour feature of target
region, the STAEM-based contour descriptor is proposed to characterize candidate ship targets and
eliminate residual clutter simultaneously. After that, based on the statistics and observation of shape
parameters of TIR ship targets selected from VAIS dataset, the statistical shape knowledge is obtained
and utilized to further distinguish true ship targets from non-ship targets. Finally, the whole proposed
small ship target detection scheme is presented.
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Figure 2. The three representative TIR ship images with complex sea background clutter. (a) Original
image with a bright ship target submerged in long ribbon-like sea clutter, (b) original image with a dark
ship target buried in strongly fluctuant sun-glint clutter, (c) original image with multiple bright point
ship targets that appeared near the sea-sky line/coastline.

2.2. Gray-Level Morphological Reconstruction for Sea Clutter Suppression and Saliency Detection

2.2.1. Application of Classical Mathematical Morphology in TIR Image Processing

Mathematical morphology has become a well-known non-linear analysis tool in the field of digital
image processing due to its highly parallel processing properties and structured element set theory [34].
In general, the mathematical morphology is constructed with two parts: Structuring element and two
basic morphological operators (dilation and erosion). In grayscale TIR image, given the original image
f and the selected structuring element B, the two basic morphological operators of f (x, y) by B(m, n)
are defined as follows:

f ⊕ B(x, y) = sup
m, n ∈ Db
x, y ∈ D f

f (x + m, y + n), (2)
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f ΘB(x, y) = inf
m, n ∈ Db
x, y ∈ D f

f (x + m, y + n), (3)

here, the f ⊕ B(x, y) and f ΘB(x, y) are named as dilation and erosion operator of f at coordinate
pixel (x, y), respectively. D f is the domain of f , and DB is the domain of B. In our experiments, B is
selected as a 15-pixel disk-shaped structuring element. The dilation (erosion) operator makes the
image intensity bigger (smaller) than the original infrared image by using the supremum (infimum)
operation. Based on the two basic morphological operators, the definitions of the opening and closing
operation of the original image are expressed as:

f ◦ B(x, y) = ( f ΘB) ⊕ B(x, y), (4)

f•B(x, y) = ( f ⊕ B)ΘB(x, y), (5)

where the f ◦ B is the opening operation and the f•B is the closing operation of f . The opening and
closing operators can separately remove the bright and dark regions that are smaller than the selected
structuring element B. Therefore, the opening (closing) operators can be used to approximately forecast
the backgrounds in the infrared bright (dark) ship target image f . Then, the classical top-hat filter and
bot-hat filter of f , expressed as THF and BHF, are defined as:

THF(x, y) = f (x, y) − f ◦ B(x, y), (6)

BHF(x, y) = f•B(x, y) − f (x, y), (7)

therefore, the THF extracts bright interesting regions and BHF highlights dark interesting regions in
image f . In TIR ship image, the ship target is usually a bright (dark) region, so THF/BHF can be directly
used to detect ship targets [6,35]. For infrared ship image with high SCR, the classical THF/BHF filters
can achieve good detection performance. However, for low SCR, where the ship target is dim and the
sea clutter is heavy, the classical THF/BHF filters may suffer serious detection performance degradation,
as presented in Figure 3d–f.

Figure 3 shows the processing results of classical THF/BHF filters on three representative TIR ship
images with complex sea background clutter. The first row are the original TIR images. Figure 3d,f
are the results of Figure 3a,c directly filtered by classical THF, and Figure 3e is the result of Figure 3b
filtered by classical BHF. It can be seen from Figure 3d–f that classical morphological filter is robust to
the horizon line, island and sky region, but cannot sufficiently enhance weak ship target signal under
heavy sea clutter in three images. This is because the classical morphological filters simply adopt
local minima or maxima operation in selected structuring element to estimate background without
appropriately considering the differences between the target and surrounding sea clutter regions and
cannot effectively suppress sea clutter in the uneven maritime scenes. To overcome the shortcomings of
classical morphological filters and to accurately detect ship targets buried in heavy sea clutter, a robust
ship target detection method based on morphological reconstruction and multi-feature analysis is
proposed by fully considering the TIR imaging properties between ship targets and sea clutter.
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2.2.2. Pre-Processing and Intensity Foreground Saliency Detection

References [36,37] indicated that gray-level morphological reconstruction (GMR) can be used to
extract objects, which are connected components with the same intensity value and larger (smaller)
than the intensity value of the external boundary pixels, while keeping their intensity, shape, and
contour detail information and suppressing trivial background clutter and noise. Motivated by this
vision, as analyzed in above Section 2.1 part, since the ship target is also a small uniform region with
higher (lower) contrast compared with its surrounding backgrounds in TIR remote sensing image, we
adopt morphological reconstruction [38] on gray-level infrared images in a dual method to highlight
ship targets and remove sea clutter simultaneously. Concisely, we let the result of the opening operation
g = f ◦ B as the marker image, original TIR image f as the mask image, hence the opening-based
gray-level morphological reconstruction (OGMR) of f from g, denoted by OGMR f [g], is computed by
iterating elementary geodesic dilations of g under f until stability is reached:

OGMR f [g](x, y) = ∪
i≥1

gd(i)(x, y), (8)

where gd(i)(x, y) is the i-th iterating elementary geodesic dilation and the geodesic dilation is defined
as follows:

gd(i)(x, y) = [g⊕ B] ∩ f (x, y) = min[g⊕ B(x, y), f (x, y)], (9)

where intersection operation ∩ stands for pixel-wise minimum and union operation ∪ stands for
pixel-wise maximum. OGMR attempts to automatically restore the original image f from the result
image of the opening operation g by using an iterative process, and then the connected regions brighter
than the surrounding backgrounds in f will be fully removed, while the dark connected regions will
be restored completely with a fine shape-preserving capability, as illustrated in Figure 4c. Therefore,
considering the good performances of OGMR, the OGMR operation is used for pre-processing TIR dark
ship image in this paper to enhance ship targets and suppress heavy sea clutter and noise. In addition,
because ship target and sea clutter have different thermal radiation characteristics, the OGMR can also
be used to roughly estimate the background of infrared bright ship image, and then the proposed
intensity foreground saliency map (IFSM) for infrared bright ship image is defined as follows:

IFSMb(x, y) = ‖ f (x, y) −OGMR f [g](x, y)‖2, (10)
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where ‖·‖ represents `2-norm.
Similarly, let h = f•B, the closing-based gray-level morphological reconstruction (CGMR) of f

from h, denoted as CGMR f [h], is computed by iterating elementary geodesic erosions h above f until
stability is achieved:

CGMR f [h](x, y) = ∩
i≥1

ge(i)(x, y), (11)

where ge(i)(x, y) is the i-th iterating elementary geodesic erosion, defined as:

ge(i)(x, y) = [hΘB] ∪ f (x, y) = max[hΘB(x, y), f (x, y)], (12)

CGMR tries to automatically restore the original image f from the result image of closing
operation h by using an iterative process, and then the connected regions darker than the surrounding
backgrounds in f will be fully removed, while the bright connected regions will be restored completely
with a fine shape-preserving capability, as Figure 4b demonstrates. Accordingly, CGMR operation can
be used for pre-processing infrared bright ship image to enhance a ship target and suppress sea clutter.
Meanwhile, the CGMR can also be used to roughly estimate the background of infrared dark ship
image, and then the IFSM for dark ship image is derived as:

IFSMd(x, y) = ‖ f (x, y) −CGMR f [h](x, y)‖2. (13)
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deviation of 10. (b) The pre-processing result for bright ship target image filtered by closing-based 
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image filtered by opening based gray-level morphological reconstruction (OGMR). 

Figure 4 shows the illustration of pre-processing results of a synthetic TIR ship image based on 
opening or closing GMR. Their corresponding 3-D mesh plots are shown in the second row. The 
bright ship targets are labeled in boxes and the dark ship targets are labeled in circles. Figure 4a is 
the original synthetic TIR image including three bright ship targets and three dark ship targets, which 
are polluted by heavy white Gaussian noise at the standard deviation of 10. Figure 4b is the pre-
processing result for bright ship target image filtered by CGMR, and Figure 4c is the pre-processing 
result for dark ship target image filtered by OGMR. The average pixel intensity of the background in 
Figure 4a–c is 165, 176, and 158, respectively. It can be seen from Figure 4b,c that after the simulated 

Figure 4. The illustration of pre-processing results of synthetic TIR ship image based on gray-level
morphological reconstruction (GMR). (a) Original synthetic TIR image that contains three bright ship
targets and three dark ship targets submerged in heavy white Gaussian noise at the standard deviation
of 10. (b) The pre-processing result for bright ship target image filtered by closing-based gray-level
morphological reconstruction (CGMR). (c) The pre-processing result for dark ship target image filtered
by opening based gray-level morphological reconstruction (OGMR).

Figure 4 shows the illustration of pre-processing results of a synthetic TIR ship image based on
opening or closing GMR. Their corresponding 3-D mesh plots are shown in the second row. The bright
ship targets are labeled in boxes and the dark ship targets are labeled in circles. Figure 4a is the original
synthetic TIR image including three bright ship targets and three dark ship targets, which are polluted
by heavy white Gaussian noise at the standard deviation of 10. Figure 4b is the pre-processing result
for bright ship target image filtered by CGMR, and Figure 4c is the pre-processing result for dark ship
target image filtered by OGMR. The average pixel intensity of the background in Figure 4a–c is 165,
176, and 158, respectively. It can be seen from Figure 4b,c that after the simulated TIR ship target image
filtered by CGMR (OGMR), the dark (bright) components, and heavy noise clutter are totally removed
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and the bright (dark) ship targets are completely restored with almost no loss of important signals.
Therefore, because the synthetic TIR image contains various types of ship targets and heavy noise,
the simulation results show that the OGMR- or CGMR-based pre-processing not only is robust to ship
targets with different quantities, sizes, and shapes contaminated by heavy noise clutter, but also has
fine intensity, shape, and contour-preserving capability.

To further illustrate the efficiency and robustness of the proposed method, we conducted
experiments on the three selected representative TIR ship images with complex sea scene clutter.
Figure 5 shows their corresponding pre-processing results for sea clutter removal based on GMR.
Figure 5d,f shows the pre-processing results of Figure 5a,c based on CGMR, respectively. Figure 5e
shows the pre-processing result of Figure 5b based on OGMR. By comparing Figure 5a–c with
Figure 5d–f, the sea clutter can be effectively removed and the detailed information of ship targets
can be completely retained by the GMR-based pre-processing. This benefits largely from the fact
that opening or closing marker-controlled GMR is a robust and flexible approach for removing local
maxima or minima regions of sea clutter with closed contours, where their boundaries are depicted as
ridges. Meanwhile, the opening or closing marker is used to reconstruct the original TIR image, so each
object including bright or dark ship targets on the desired ridges can be automatically separated to
preserve their boundaries.
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Figure 5. The pre-processing results for removing sea clutter based on gray-level morphological
reconstruction. (a–c) are selected three representative TIR ship images with complex sea background
clutter, (d) the pre-processing result of (a) filtered by CGMR, (e) the pre-processing result of (b) filtered
by OGMR, (f) the pre-processing result of (c) filtered by CGMR.
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Figure 6 shows the processed results of TIR ship images by IFSM. The estimated backgrounds
of original TIR ship images by OGMR or CGMR are shown in the first row of Figure 6. Figure 6d,f
are the results of Figure 5a,c processed by proposed IFSM for bright ship image, and Figure 6e is
the result of Figure 5b processed by IFSM for dark ship image. As can be seen from Figure 6d–f,
for these three complex maritime scenes, the IFSM can greatly suppress most sea clutter and highlight
the ship targets at the same time. This is because the OGMR or CGMR uses region merging and
iterative approach method to automatically estimate the gray level of backgrounds, just like a boundary
constrained region merging method, as presented in Figure 6a–c. Then according to the distinctive
gray intensity characteristics between ship targets and sea background clutter in TIR image, the square
of the difference between the original image and the estimated background is used to highlight the
intensity foreground saliency map. Therefore, even for chaotic sea clutter, the GMR can estimate
the local gray level of the background and IFSM can well highlight the foreground map of potential
ship targets.
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2.2.3. Brightness Contrast Saliency Detection 

As can be seen from Figure 5d–f, the pre-processed images based on OGMR or CGMR can 
efficiently remove dense and intricate sea clutter while completely preserving the ship target signals 
including intensity, shape, and contour information. Therefore, considering the favorable 
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Figure 6. The processed results of TIR ship images by intensity foreground saliency map (IFSM). (a) The
estimated background of Figure 5a by OGMR, (e) the estimated background of Figure 5b by CGMR,
(f) the estimated background of Figure 5c by OGMR, (d) the result of (a) processed by IFSMb, (e) the
result of (b) processed by IFSMd, (f) the result of (c) processed by IFSMb.

2.2.3. Brightness Contrast Saliency Detection

As can be seen from Figure 5d–f, the pre-processed images based on OGMR or CGMR can
efficiently remove dense and intricate sea clutter while completely preserving the ship target signals
including intensity, shape, and contour information. Therefore, considering the favorable performances
of OGMR or CGMR pre-processed images, we try to fully exploit the brightness uniformity and the
local region contrast of TIR ship target to further enhance ship target and suppress trivial clutter. Firstly,
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similar to cascade morphological operation, the opening or closing operation with selected structuring
element B is employed on the pre-processed TIR ship image obtained by CGMR or OGMR to perceive
trivial background clutter. Then, the proposed brightness contrast saliency map (BCSM) for bright
(dark) infrared ship image is defined as follows:

BCSMb(x, y) = CGMR f [h](x, y) −CGMR f [h] ◦ B(x, y), (14)

BCSMd(x, y) = OGMR f [g]•B(x, y) −OGMR f [g](x, y), (15)

By the definition of BCSM, the BCSM can be simply treated as two steps: The first step utilizes
CGMR or OGMR to efficiently remove heavy sea clutter according to region–neighbor contrast, and
the second step uses opening or closing operation to perceive trivial background clutter and pixel-wise
subtraction to probe bright or dark regions where potential ship targets may exist. Figure 7 shows
the processed results of TIR ship images by BCSM. The pre-processed infrared ship images based
on CGMR or OGMR are shown in the first row, and the second row displays their acquired BCSM
results, respectively. As can be seen by comparing Figures 7d–f and 3d–f, for these three images,
the proposed BCSM outperforms the classical morphological filters, because the proposed BCSM
algorithm fully exploits the information of the spatially local region contrast and brightness uniformity
of the ship targets.
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Figure 7. The results of TIR ship images processed by brightness contrast saliency map (BCSM). (a–c) are
pre-processed TIR images by gray-level morphological reconstruction, (d) the result of (a) processed by
BCSMb, (e) the result of (b) processed by BCSMd, (f) the result of (c) processed by BCSMb.
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2.3. Saliency Map Fusion Based on Gray-Level Morphological Reconstruction

The previous part has discussed in detail the computation process of the intensity foreground
saliency detection and brightness contrast saliency detection based on gray-level morphological
reconstruction, respectively. From the above mentioned, the IFSM depicts the distinctive gray intensity
features between TIR ship targets and sea background clutter. The BCSM describes the spatial
properties of TIR ship targets against background clutter, including brightness uniformity and local
region contrast features. The purpose of saliency map fusion is to improve the ship targets’ reliability
in an infrared image and reduce false alarms by utilizing the information of all feature saliency maps.
However, because the above two saliency maps have different magnitudes, we should normalize all
the saliency maps to the same range [0, 1] by maximum and minimum values of each map. Given
a saliency map S, its normalization operation can be expressed as:

N[S](x, y) =
S(x, y) − Smin

Smax − Smin
, (16)

where Smax and Smin are the maximum and minimum values of saliency map S. N[S](x, y) denotes the
normalized result of S at location (x, y). Accordingly, the normalized result of IFSM can be written as
N[IFSM], and the normalized result of BCSM can be written as N[BCSM]. Therefore, the proposed
final saliency map is generated by a pixel-wise multiplication fusion manner:

SMb(x, y) = N[IFSMb](x, y) ×N[BCSMb](x, y), (17)

SMd(x, y) = N[IFSMd](x, y) ×N[BCSMd](x, y), (18)

here, SMb and SMd represent the final saliency maps of infrared bright and dark ship images,
respectively. Then, the candidate ship targets can be separated and extracted from the final saliency
map SM by an adaptive threshold [4,24], and the adaptive threshold is determined as:

τ = SM + ε× σ(SM), (19)

where SM and σ(SM) are the mean value and standard deviation of the final saliency map SM,
respectively. ε is an experimentally selected constant and it can be chosen from the interval [10,15] for
most scenarios. Finally, the binary segmentation result BSM of the final saliency map is acquired:

BSM(x, y) =

1, SM(x, y) ≥ τ

0, otherwise
, (20)

Figure 8 gives the final results of saliency map fusion. The first row is the results of saliency map
fusion of Figure 5a–c, their corresponding 3-D mesh plots are shown in the second row, and the third
row is the binary segmentation result BSM of their final saliency maps. The red boxes have enlarged
point ship targets, and the purple boxes have enlarged small-size false targets. As shown in Figure 8a,c,
the proposed saliency map can be directly used for detecting TIR ship targets with different sizes
and quantities submerged in complex backgrounds with sea-sky line/coastline or long ribbon-like
sea clutter. Figure 8b demonstrates that for low-contrast ship targets buried in intricate backgrounds
with strongly rolling sun-glint clutter, the proposed saliency map can make ship targets stand out
but fail to distinguish real ship targets from chaotic sea clutter, because some strong clutter also has
non-negligible saliency even in the final saliency map. To cope with this problem, a two-step ship
verification strategy is introduced in the following Section 2.4 part based on contour feature description
and shape feature constraint.
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2.4. Ship Target Verification Based on Contour Description and Shape Constraint

2.4.1. Contour Description of TIR Ship Based on Eigenvalue Analysis of Structure Tensor

For TIR remote sensing images, the pixel intensities of small ship targets tend to be evenly
distributed, they have an appearance of high uniformity and will not show large gray scale changes.
Therefore, after GMR-based saliency map fusion, the contour information of ship targets can be
completely retained. Recall that the contours of ship target in the OGMR and CGMR preprocessed
images, as shown in Figure 5d–f, are depicted as ridges, like a simplified level-set model. Meanwhile,
inspired by the successful applications of closed contour extraction, such as Chan–Vese model in
ship detection [20,21], a novel contour measure based on GMR and eigenvalue analysis of structure
tensor is presented to characterize candidate ship targets and eliminate residual clutter simultaneously.
Structure tensor has become a powerful tool for edge analysis, and achieved some impressive results
for its good perceptivity on the dominant direction at the local image [39,40]. To investigate the local
contour information of TIR ship targets, the structure tensor ST is firstly calculated as:

ST(x, y) = Gσ ∗
{
∇u(x, y) × [∇u(x, y)]T

}
= Gσ ∗


(
∂u
∂x

)2 ∂2u
∂x∂y

∂2u
∂x∂y

(
∂u
∂y

)2

 =
[

ST11 ST12

ST21 ST22

]
, (21)

where Gσ is a Gaussian kernel with variance σ and ∗ is a convolution operator, u denotes pre-processed
infrared ship image after OGMR or CGMR operation. The Gaussian kernel can be considered as
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a window of ST to perceive the local information and σ determines the size of the window. The σ is
empirically set to 2. Then the normalized large eigenvalue of matrix ST is obtained:

λlarge(x, y) = N
[

1
2

(
ST11 + ST22 +

√
(ST11 − ST22)

2 + 4ST12ST21

)]
, (22)

here, we use normalized large eigenvalue λlarge of structure tensor to delineate the edges of an infrared
ship image. Because the large eigenvalue of structure tensor can indicate the predominate direction and
the coherence degree of the gradient trend, the eigenvalues λlarge of the closely adjacent surroundings
of infrared ship targets are almost the maximum values in the global eigenvalue image and present an
approximately closed contour. Based on this cue, the average eigenvalue measure of structure tensor
(STAEM) is proposed to characterize the contour feature of candidate TIR ship targets and eliminate
residual clutter simultaneously, and the STAEM can be defined as:

λaver =

∑
(m,n)∈Dcon

λlarge(m, n)∑
(m,n)∈Dcon

1
, (23)

where λaver denotes the STAEM value of the specified connected region. Dcon is the domain of binary
contour obtained by dilation of the connected region. On the right side of the formula, the numerator
is the total value of normalized large eigenvalues in the domain Dcon, and the denominator indicates
the total pixel number of the domain Dcon. Finally, any connected regions in the binarized final saliency
map whose STAEM value is larger than a distinctive threshold Thr∗ are retained, and all other pixels
are set to 0. The threshold Thr∗ is experimentally set to 0.2094 for most scenarios, and the threshold
selection will be discussed in detail in the Effects of Parameters part. Figure 9 illustrates the calculation
process of STAEM of a connected region. Figure 9a is the computed contour of the connected region by
grouping normalized large eigenvalues λlarge, and its binary contour Dcon is obtained by dilation with
three-pixel disk-shaped structuring element, as shown in Figure 9d.
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have enlarged true ship targets, and the purple boxes have enlarged small-size false targets. First row 
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simultaneously, and the third row gives the final detection results after the threshold division of 
STAEM values. As shown in Figure 10d–f, for these three complex infrared images, the STAEM 
values of ship targets are much larger than those of sea clutter, hence, the STAEM calculation can be 
used to distinguish candidate infrared ship targets from residual clutter by thresholding operation. 

Figure 9. The illustration of the calculation process of STAEM around TIR ship targets. (a) is the
contour computed by grouping normalized large eigenvalues, (b) binary ship target and its computed
contour, (c) the dilated binary ship target, (d) binary contour obtained by dilation of ship targets and its
true computed contour.

Figure 10 provides the final detection results according to STAEM calculation. The red boxes have
enlarged true ship targets, and the purple boxes have enlarged small-size false targets. First row is the
normalized large eigenvalue maps of structure tensor of pre-processed images in Figure 5d–f, then,
second row displays the binarized final saliency maps and the computed STAEM maps simultaneously,
and the third row gives the final detection results after the threshold division of STAEM values.
As shown in Figure 10d–f, for these three complex infrared images, the STAEM values of ship targets
are much larger than those of sea clutter, hence, the STAEM calculation can be used to distinguish
candidate infrared ship targets from residual clutter by thresholding operation. The reason can
be illustrated by the crucial differences between infrared ship targets and sea clutter in terms of
the thermodynamic character and the imaging procedure. In TIR remote sensing images, the pixel
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intensities of small ship targets have high uniformity, and their solid contours appear almost totally
closed and have larger eigenvalues in structure tensor map. While for sea clutter, due to their pixel
intensities are uneven, their contours present a semi-open form after saliency map fusion based on
gray-level morphological reconstruction.
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Figure 5. (d–f) display the binarized saliency map fusion and STAEM maps simultaneously, and the
STAEM values of true ship targets and some representative false alarms are marked, (g–i) the final
detection results after the threshold division of STAEM values.

2.4.2. Shape Constraint for TIR Ship Identification Based on Statistical Knowledge

After the above GMR induced operation steps, the binarized candidate ship targets are successfully
extracted from backgrounds, and their simple geometric shape parameters, such as Perimeter and Area,
are retained and rapidly obtained. The geometric shape feature not only can efficiently distinguish the
true ship targets from the non-ship targets, such as ocean waves, tail waves, sea-sky line/coastline, and
islands but also is less sensitive to the change of viewing angle and ship target size. As some previous
studies [23,41] mentioned that the ship target usually appears as a long narrow body, and the main
body of the ship target has a regular shape feature. Hence, three widely used shape descriptors are
adopted in this paper:

Ratiomami =
Lmajoraxes

Lminoraxes
, (24)

Compactness =
(Perimeter)2

Area
, (25)
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Rectangularity =
Area

Rectangle
, (26)

where Lmajoraxes and Lminoraxes are the lengths of the major axes and minor axes, respectively. Rectangle
indicates the circumscribed rectangle of the candidate region. The ratio of major to minor axes Ratiomami
can be used to describe its best fit ellipse because ship targets are usually long and thin. The Compactness
depicts the degree of circular similarity by fully considering the influence of object boundary changes
on the average radius. The Rectangularity represents the degree of rectangular similarity by assuming
the values in the range of [0, 1], and 1 indicates the perfect rectangular region.

Shape feature constraint methods are widely used to identify a ship target in the field of infrared
ship target detection [14,23], and those methods roughly set a large constraint range of shape parameters
according to the statistics of ship shape parameters in their own datasets to output the final detected
ship targets. However, because small ship targets are captured by long-distance TIR imaging sensors,
the dynamic range of their shape parameters is relatively small and specific. By analyzing the TIR
imaging characteristics of small ships and the statistics and observation of small ships in our datasets,
it was found that the main distribution range of their shape parameters is similar to that of most
TIR ships in VAIS database [31]. The VAIS database contains 1242 sliced TIR ship images, which
are composed of 264 different types of ships captured during daytime and nighttime with variable
view-angles and diverse distances. Therefore, in order to further identify true ship targets according to
shape features, we randomly select 700 TIR ship targets from VAIS database to compute and count their
shape parameters. Through the statistics and observation of the shape parameters of selected TIR ship
targets, the statistical shape knowledge is reliably obtained and can be effectively utilized to further
distinguish true ship targets from non-ship targets. Figure 11 shows some representative TIR ship
targets selected from VAIS database and their corresponding binary images (manually labeled). Table 2
shows the statistical measurements of three shape descriptors on 700 TIR ship targets selected from VAIS
database. Additionally, according to the statistical knowledge in Table 2, in order to further accurately
identify small ship targets with shape feature, the ranges of Ratiomami, Compactness and Rectangularity
in our paper are also empirically set to 1.1002~8.7857, 11.2813~118.6254, and 0.3826~0.8769, respectively.
This means that if the shape parameters of the candidate region are within these ranges, it will be
regarded as ship target to be output, and if its parameters are not within these ranges, it will be
regarded as a non-ship target to be discarded. The three shape parameters of small ship target in
Figure 10g are 2.8824, 27.6935, and 0.4900, respectively. The three shape parameters of small ship target
in Figure 10h are 4.1144, 31.9385, and 0.5591, respectively. The shape parameters of these two ship
targets are within the ranges of Table 2, so they will be output as the final detected ship targets. Note
that point ship targets whose area is smaller than 30 pixels do not have obvious shape information,
thus the statistical shape knowledge constraint will not be applied in the identification of ship target if
their area is less than 30 pixels. Therefore, the dim point ship targets shown in Figure 10i will also be
output as the detected ship targets.
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Table 2. The statistical measurements of three shape descriptors of 700 TIR ship targets selected from
VAIS database.

Measure Min Average Max

Ratiomami 1.1002 3.5105 8.7857
Compactness 11.2813 48.1344 118.6254

Rectangularity 0.3826 0.6025 0.8769

3. Ship Target Detection based on Morphological Reconstruction and Multi-feature Analysis

3.1. Proposed Bright Ship Target Detection in TIR Images

Most studies [11,23,25] indicated that the background is the comparatively dark sea surface
and the ship targets might be relatively local brighter regions. According to these above-mentioned
methods and theories, the accurate bright ship target detection algorithm for TIR image is established.
Firstly, we perform the opening operation on the original TIR image and reconstruct the original image
from the result image after the opening operation by OGMR. Therefore, the background of the bright
ship target image is estimated by OGMR, and then the IFSM is computed and normalized. Meanwhile,
we perform the closing operation on the original image, and reconstruct the original image from the
image after closing operation by CGMR. Accordingly, the pre-processing result of bright ship image
is obtained by CGMR, and then the BCSM is calculated and normalized. Next, the final saliency
map is generated by fusing normalized IFSM and normalized BCSM in a pixel-wise multiplication
fusion manner, and the binary segmentation result of the final saliency map is acquired by an adaptive
threshold. The whole of the proposed saliency map fusion algorithm for TIR bright ship image based
on GMR is summarized in Algorithm 1. It is noteworthy that the Algorithm 1 not only can be used to
highlight the potential bright ship targets buried in extremely serious rolling sun-glint clutter, but also
can be used to directly detect the ship targets submerged in common sea clutter.

Algorithm 1. Proposed saliency map fusion algorithm for TIR bright ship image

Input: TIR ship target image f , structuring element B.
Output: Binary final saliency map for bright ship target image BSM.
Step 1: Perform the opening operation with structuring element B on f to acquire g using (4).
Step 2: Compute the elementary geodesic dilation gd(i) according to (9).
Step 3: Reconstruct f from g based on OGMR OR f [g] derived from (8).
Step 4: Obtain the intensity foreground saliency map IFSMb of f according to (10)
Step 5: Normalize the intensity foreground saliency map N[IFSMb] using (16).
Step 6: Perform the closing operation on f to acquire h using (5).
Step 7: Compute the elementary geodesic erosion ge(i) according to (12).
Step 8: Acquire the pre-processing result by reconstructing f from h based on CGMR OR f [h] derived from (11).
Step 9: Calculate the brightness contrast saliency map BCSMb on pre-processed image OR f [h] using (14).
Step 10: Normalize the brightness contrast saliency map N[BCSMb] according to (16).
Step 11: Generate the final saliency map SMb based on pixel-wise multiplication fusion manner according
to (17).
Step 12: Calculate the adaptive threshold τ according to (19).
Step 13: Acquire the binary segmentation result BSM of the final saliency map SMb according to (20)

In order to further identify the true ship targets from residual clutter, a reliable two-step ship
verification method for TIR ship images is presented. Firstly, we compute the normalized large
eigenvalue map of structure tensor of CGMR pre-processed image and calculate the STAEM values
of each labeled connected region in the binary segmentation result of the final saliency map. Then,
the map of candidate ship targets is obtained by eliminating the connected regions where the STAEM
value is smaller than an experimentally distinctive threshold Thr∗. Finally, the output detected infrared
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ship target map and target position are acquired by excluding the non-ship targets if their computed
shape description parameters are not within the ranges of Table 2. The whole of the proposed two-step
ship verification strategy for TIR bright ship image based on contour feature representation and shape
feature constraint is summarized in Algorithm 2.

Algorithm 2. Proposed two-step ship verification strategy for TIR ship image

Input: Pre-processed image u, binary final saliency map for ship target image BSM, and the distinctive
threshold Thr∗.
Output: Detected TIR ship target map.
Step 1: Compute the regularized structure tensor ST of pre-processed image u according to (21).
Step 2: Calculate the normalized large eigenvalue map λlarge of matrix ST according to (22).
Step 3: Label the connected regions of BSM with numbers, and obtain the total number TN of connected
regions in BSM.
Step 4: for label index k = 1:TN do

Compute the average eigenvalue measure of structure tensor (STAEM) λaver of k-th connected region
according to (23).

Eliminate the k-th connected region if the λaver is smaller than distinctive threshold Thr∗.
end for

Step 5: Obtain the map of candidate ship targets and acquire the total number SN of candidate ship targets.
Step 6: for candidate ship index t = 1:SN do

Compute the shape description parameters of t-th candidate region according to (24)–(26).
Exclude the non-ship targets if their computed shape description parameters are not within the ranges

of Table 2.
end for

Step 7: Acquire the output detected ship target map and target position

3.2. Proposed Small Ship Target Detection in TIR Images

Currently, studies mostly focus on bright infrared ship target detection. However, in real cases,
dark ship targets whose infrared radiation is lower than surroundings also exist in the backlighting
infrared images. To detect dark infrared ship targets, Equations (4), (9), (8), and (10) in the Steps 1–5 of
Algorithm 1 can be replaced by Equations (5), (12), (11), and (13), respectively, to compute normalized
IFSM of dark ship image. Meanwhile, Equations (5), (12), (11), and (14) in the Steps 6–10 of Algorithm
1 can be replaced by Equations (4), (9), (8), and (15), respectively, to compute normalized BCSM of
dark ship image. Then, the binary segmentation result of the final saliency map of dark ship image is
obtained according to the Steps 11–13 of Algorithm 1. Finally, the two-step ship verification strategy
according to Algorithm 2 for TIR ship image is adopted to distinguish true ship targets from non-ship
targets, and the output detected dark ship target map and target position are reliably acquired.

In the real-world maritime scenes, the local-contrast brightness of ship targets is unknown, so the
small ship target detection for both bright and dark ones in infrared image remains to be worthy of
further investigation [5,42]. As discussed above, the bright and dark infrared ship target maps can be
separately detected by parallel processing algorithms on both sides. The final detected ship target map
is obtained by directly adding both bright and dark infrared ship target maps, and the flow chart of
the proposed small ship target detection method is illustrated in Figure 1. Therefore, the proposed
small ship target detection method has the potential ability for real-time application due to the highly
parallel computing properties of multichannel image-processing and mathematical morphology in
multicore hardware systems [43,44].

4. Experimental Results

In this section, a series of experiments on TIR ship images with various maritime scenes are
performed to validate the accuracy and effectiveness of the proposed small ship target detection
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algorithm. Furthermore, some classical algorithms and state-of-the-art algorithms are selected for
performance comparison.

4.1. Test Dataset

The test dataset is composed of 9 TIR maritime sequences, and each sequence represents a typical
scenario in TIR ship detection applications. These TIR ship image sequences are labeled as Seq1–9.
Figure 12 shows the representative images of the TIR ship image sequences used for performance
evaluation. Figure 12a displays a bright ship target located in a relatively mild sea and sky background.
Figure 12b represents a bright ship target under a heterogeneous background with sea, sky, and islands.
Figure 12c shows a low-contrast bright ship target submerged in long ribbon-like sea clutter. Figure 12d
depicts a dark ship target against strong backlighting sea-sky background. Figure 12e is a dark ship
target disturbed by huge rolling ocean waves. Figure 12f depicts a low-contrast dark ship target buried
in strongly fluctuating sea clutter and sun glints. Figure 12g includes two fast-moving ships with
strong long-tail wave interferences [45]. Figure 12h is the case where both bright and dark ship targets
appear under heavy sea fog. Figure 12i represents multiple dim bright point ship targets appearing
near the sea-sky line/coastline. Table 3 lists the detailed information about the test image sequences.
Accordingly, the test images are variable in scene type, clutter type, target type, target shape, and target
quantity. Testing on this dataset proves that the algorithm is suitable for many TIR maritime scenarios.
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Figure 12. The illustration of test images. (a) the 25th frame of Seq1, (b) the 21st frame of Seq2, (c) the
450th frame of Seq3, (d) the 12nd frame of Seq4, (e) the 112nd frame of Seq5, (f) the 301st frame of Seq6,
(g) the 26th frame of Seq7, (h) the 275th frame of Seq8, (i) the 181st frame of Seq9.
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Table 3. The detail information of the test image sequences.

Sequences Seq1 Seq2 Seq3 Seq4 Seq5 Seq6 Seq7 Seq8 Seq9

Image size 640 × 480 640 × 480 640 × 480 320 × 240 640 × 480 640 × 480 640 × 480 640 × 480 640 × 480
Sea clutter complexity Medium Medium High Medium High High High Low High

Target area 112~308 355~513 323~487 781~1557 95~291 246~767 195~304 279~1034 6~50
Target brightness Bright Bright Bright Dark Dark Dark Bright Bright/dark Bright

Target number 1 1 1 1 1 1 2 2 5
Total images 500 500 500 500 500 500 500 500 500

4.2. Results of TIR Ship Detection

4.2.1. Effects of Parameters

According to the above Section 2.4.1 part analysis, the STAEM values of ship targets are almost all
much larger than those of non-ship targets. Accordingly, in the experiment, we randomly selected
500 ship target blocks and 500 non-ship target blocks and calculated their STAEM values one by one.
The calculated STAEM values of the selected blocks are shown in Figure 13. The blue point line
denotes the STAEM values of ship targets, and the red point line denotes the STAEM values of non-ship
targets. As can be seen from Figure 13, because the STAEM values of ship target blocks and non-ship
target blocks have a distinctive distinguishability, the OTSU method [46] is utilized to find the optimal
threshold:

Thr∗ = OTSU(STAEM), (27)

where STAEM = [STAEM1, STAEM2, . . . , STAEM j, . . . , STAEM1000] is the group of STAEM values of
selected blocks, and j denotes the index of the selected block. Then, the computed distinctive threshold
Thr∗= 0.2094 can be used to clearly discriminate ship targets and non-ship targets, as shown by the
purple line in Figure 13. Therefore, the distinctive threshold is empirically set Thr∗= 0.2094 in our
experiments to reliably separate candidate ship targets and non-ship targets.
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4.2.2. Visual Comparison to TIR Ship Target Detection Baseline Methods

In this part, four classical ship target detection methods and four state-of-the-art ship target
detection methods are introduced in the comparison experiments to evaluate the performance of
the proposed TIR ship target detection method. The top-hat/bot-hat filters (THF/BHF) [6,35], 2-D
maximum entropy (2DME) [17], 2-D Otsu (2DO) [15] and mean shift segmentation (MSS) [19] are chosen
as representative classical ship target detection methods. The iterative multi-feature segmentation
(IMFS) [23], improved fuzzy C-means clustering (IFCM) [3], Chan–Vese model (CVM) [21] and
histogram cyclic shift transformation (HCST) [13] are selected as representative state-of-the-art methods.
Because those methods have been well studied, they can be used for assessing the performance of the
new ship target detection method.
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Figure 14 shows the ship target detection results of different methods for Figure 12. In the detection
result images of Figure 12i, the point ship targets are enlarged for better observation and marked by
red boxes. The classical THF/BHF is a commonly used method for background suppression and target
enhancement for its simple computation and easy implementation. However, it is vulnerable to heavy
clutter and may not perform well for ship targets submerged in heavy sea clutter. It can be seen from
Figure 14b1–b9, the detection results of classical THF/BHF can perceive the ship targets but suffer from
extremely serious residual clutter. The 2DME and 2DO both are threshold processing methods based
on 2-D histogram analysis of the image. When the contrast between the ship target and the background
is high, the two methods can be directly used to segment the ship targets. However, these methods
are sensitive to the contrast and pixel percentage of ship target and background. Therefore, it can be
seen from Figure 14c1–c9,d1–d9 that those two methods obtain the worst detection results in all nine
scene images. The MSS is a feature-space analysis algorithm based on graph region merging, so it can
efficiently extract the regions of ship targets against a homogenous background. Nevertheless, the MSS
does not work well for ship target detection in infrared images with heterogeneous background,
as shown in Figure 14e1–e8. More importantly, the MSS method cannot detect point-size ship targets
because the point ship targets will be eliminated when regions are merging, as Figure 14e9 illustrates.

The IMFS method reasonably uses two approaches including iterative global thresholding and
ship target shape constraint to segment ship targets, hence the IMFS presents better performance than
the above four classical methods, as Figure 14f1–f3,f7–f9 shows. The IMFS is based on the assumption
that the ship target region is much brighter than the background, so it completely discards the true
dark ship targets buried in a brighter sea background, as shown in Figure 14f4–f6. In the IFCM
method, the Gaussian filter and top-hat transform are firstly used to smooth background, and then the
modified fuzzy C-means clustering (FCM) is applied for ship target segmentation. It uses nonlocal
spatial information and spatial shape information effectively to improve the performance of FCM to
efficiently suppress noise interference, as depicted in Figure 14g2,g4, g8, g9. However, the top-hat
transform and unsupervised fuzzy clustering are both highly sensitive to sea clutter and tail waves,
as presented in Figure 14g1,g3,g5–g7. The CVM extracts ship targets through seeking the closed
contours of relatively even regions by curve evolution and iterative convex optimization, and it can
successfully segment ship targets with clear contour information, as presented in Figure 14h1,h4,h7,h8.
Whereas, because heavy clutter can destroy the topology structure of ship targets and the islands may
also have strong contour information, the detection results of CVM method will be greatly affected
by heavy sea clutter and islands, as Figure 14h2,h3,h5,h6,h9 demonstrates. The HCST is a non-linear
histogram curve transformation for maritime target detection based on background modeling, and the
effect is excellent for targets with obvious local contrast, as depicted in Figure 14i4,i7–i9. However, for
the environmental maritime conditions with multiple background types, the HCST method obtains
poor detection performance, as presented in Figure 14i1–i3,i5,i6.

It is noteworthy that those compared methods all fail to detect ship targets for Figure 14a3,a5,a6,a8,a9.
Nevertheless, from Figure 14j1–j9, it can be seen that the proposed method can precisely detect all the
ship targets with lowest false alarms and is more robust than other compared eight methods. This
robustness is attributed to the dual approach with reasonable integration of multiple features after
gray-level morphological reconstruction, including intensity, local contrast, contour, and shape features.
Considering the intensity and local contrast of TIR ship targets, the IFSM, and BCSM are fused to
differentiate potential ship targets and suppress heavy sea clutter. Additionally, considering the contour
and shape features of TIR ship targets, the STAEM and the statistical shape knowledge constraint are
introduced to characterize true ship targets and eliminate residual non-ship targets. Besides, a dual
approach is adopted to simultaneously detect both bright and dark ship targets in TIR image.
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Figure 14. The detection results of different methods for the Figure 12. (a1–a9) show the representative
frames of the nine TIR sequences, respectively, (b1–b9) are the detection results of THF/BHF, (c1–c9) are
the detection results of 2DME, (d1–d9) are the detection results of 2DO, (e1–e9) are the detection results
of MSS, (f1–f9) are the detection results of IMFS, (g1–g9) are the detection results of IFCM, (h1–h9) are
the detection results of CVM, (i1–i9) are the detection results of HCST, (j1–j9) are the detection results
of proposed method.

4.2.3. Quantitative Comparison to TIR Ship Target Detection Baseline Methods

To evaluate the performance of TIR ship target detection methods in the experiments,
misclassification error (ME) [3], relative foreground area error (RAE) [3], missing alarm ratio (MAR) [4]
and false alarm ratio (FAR) [4] are utilized as quantitative evaluation metrics. ME denotes the
percentage of pixels that are wrongly classified, that is, the background misclassified as foreground
and the foreground misclassified as background. RAE represents the detected area accuracy between
the detected image and the ground-truth image. MAR reflects the probability of missed targets among
which ship targets truly exist and FAR illustrates the rate of detected targets where ship targets do not
exist. Hence, smaller ME, RAE, MAR, and FAR imply the better results, and defined as:

ME = 1−
|BO ∩ BT |+ |FO ∩ FT |

|BO|+ |FO|
(28)

RAE =

AO−AT
AO
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AT
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, (29)

MAR =
MT

MT + DT
, (30)

FAR =
FD

DT + FD
, (31)

where BO and FO are the background pixels and ship target pixels in the ground-truth image (manually
labeled), respectively. BT and FT are the background pixels and ship target pixels of detected image,
respectively. |·| represents cardinality of a set. AO is the area of true target (manually labeled), and AT

is the area of detected ship target. MT is the number of missed targets, DT is the number of detected
targets, and FD is the number of false detection results. The average values of ME, RAE, MAR, and FAR
of different methods for various sequences are listed in Table 4. Table 4 shows that the proposed method
obtains smaller average values for ME, RAE, MAR, and FAR on all nine sequences than the other
compared eight methods. Consequently, the experimental results verify that the proposed method
not only has better ship target detection capability compared with other classical and state-of-the-art
methods, but also can work stably for different complex maritime scenarios.
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Table 4. The detection performance of different methods for various sequences with 4500 TIR
ship images.

Metrics Methods Seq1 Seq2 Seq3 Seq4 Seq5 Seq6 Seq7 Seq8 Seq9 Average

ME THF/BHF 0.0826 0.1341 0.3606 0.0545 0.2172 0.2433 0.0383 0.0126 0.0882 0.1368
2DME 0.3133 0.4516 0.6720 0.2610 0.5216 0.2858 0.0815 0.0097 0.1849 0.3090
2DO 0.4017 0.4194 0.3531 0.7029 0.7139 0.4183 0.0710 0.6084 0.2778 0.4729
MSS 0.4589 0.4214 0.1508 0.0517 0.3813 0.3370 0.1094 0.5073 0.1365 0.2838
IMFS 0.0048 0.0032 0.0191 0.0170 0.0243 0.0289 0.0030 0.0018 0.0009 0.0114
IFCM 0.0405 0.0047 0.0522 0.0091 0.0462 0.0899 0.0217 0.0022 0.0014 0.0298
CVM 0.0018 0.0257 0.0954 0.0105 0.2143 0.0523 0.0597 0.0016 0.0013 0.0514
HCST 0.1285 0.3937 0.1069 0.0062 0.1635 0.2187 0.0315 0.0025 0.0011 0.1170

Proposed 0.0016 0.0023 0.0031 0.0045 0.0104 0.0047 0.0018 0.0012 0.0005 0.0033

RAE THF/BHF 0.3978 0.6005 0.3553 0.3297 0.3099 0.4198 0.9341 0.3456 0.7458 0.4932
2DME 0.1705 0.8735 0.9774 0.2953 0.1065 0.0064 0.8817 0.2447 0.9999 0.5062
2DO 0.2294 0.3887 0.8650 0.9629 0.9869 0.5350 0.8243 0.7093 1.0000 0.7224
MSS 0.1152 0.1918 0.1198 0.1551 0.0856 0.1168 0.9049 0.7077 1.0000 0.3774
IMFS 0.1731 0.1817 0.1905 0.9930 0.9962 1.0000 0.5285 0.6018 0.3077 0.5525
IFCM 0.2196 0.2784 0.4267 0.2558 0.0208 0.0525 0.8772 0.5963 0.4223 0.3500
CVM 0.2607 0.2865 0.1570 0.3008 0.1106 0.2683 0.2836 0.1527 0.5982 0.2687
HCST 0.1667 0.2809 0.1878 0.1103 0.3830 0.3252 0.1175 0.6994 0.0217 0.2547

Proposed 0.1203 0.1523 0.0992 0.0874 0.0213 0.0040 0.0204 0.0092 0.1112 0.0695

MAR THF/BHF 0.5220 0.0000 0.4620 0.3540 0.4480 0.5440 0.8900 0.5070 0.0000 0.4141
2DME 0.2160 0.7560 1.0000 0.0460 0.4120 0.4320 0.6850 0.5320 0.6412 0.5245
2DO 0.4480 0.4740 0.7260 0.6640 1.0000 0.5120 0.6033 0.7870 1.0000 0.6905
MSS 0.2020 0.3200 0.2480 0.0780 0.3340 0.3980 0.8233 0.6630 1.0000 0.4518
IMFS 0.0000 0.0000 0.0640 1.0000 1.0000 1.0000 0.0000 0.5000 0.0200 0.3982
IFCM 0.0014 0.0000 0.1040 0.0400 0.1060 0.1560 0.3216 0.5000 0.0014 0.1367
CVM 0.0000 0.3480 0.1920 0.1240 0.2620 0.2800 0.0000 0.4190 0.0796 0.1894
HCST 0.0420 0.0220 0.0780 0.1020 0.1460 0.1880 0.0000 0.5020 0.0000 0.1200

Proposed 0.0000 0.0000 0.0760 0.0280 0.0720 0.0840 0.0000 0.0150 0.0010 0.0307

FAR THF/BHF 0.9688 0.8485 0.9661 0.9160 0.9574 0.9728 0.8925 0.9490 0.7959 0.9186
2DME 0.8734 0.8913 1.0000 0.8077 0.8987 0.9123 0.8758 0.7895 0.7756 0.8694
2DO 0.8667 0.7500 0.9627 0.7143 1.0000 0.9225 0.6667 0.7917 1.0000 0.8527
MSS 0.5455 0.6667 0.8285 0.7187 0.6875 0.8701 0.6364 0.8091 1.0000 0.7514
IMFS 0.3750 0.1255 0.8433 1.0000 1.0000 1.0000 0.2568 0.1395 0.3406 0.5645
IFCM 0.8990 0.3108 0.9190 0.5326 0.8724 0.9563 0.3529 0.4924 0.6058 0.6601
CVM 0.0556 0.4167 0.9074 0.4647 0.8362 0.8964 0.3726 0.1512 0.6551 0.5284
HCST 0.8592 0.4527 0.8571 0.2581 0.7742 0.9314 0.2863 0.1427 0.5739 0.5706

Proposed 0.0579 0.0338 0.2007 0.0000 0.1853 0.6717 0.1959 0.0285 0.1638 0.1708

5. Conclusions and Future Work

A new method based on gray-level morphological reconstruction and multi-feature analysis
is proposed in this paper to detect small ship targets under heavy maritime background clutter.
The proposed TIR ship target detection method can automatically segment the small ship target from
the sea background clutter which has intricate texture and strong contrast. By using the opening
or closing based GMR, the intricate sea clutter is removed while the intensity, shape, and contour
information of ship target are retained, so the proposed ship target detection method is robust to
heavy sea clutter. Considering the intensity and contrast features of TIR ship targets after GMR-based
pretreatment, the IFSM and BCSM are computed and fused, so the potential ship targets can be well
highlighted and the complex clutter can be suppressed simultaneously. Furthermore, considering
the contour and shape features of TIR ship targets, a two-step ship verification strategy including
STAEM-based contour descriptor and the statistical shape knowledge constraint is constructed, so the
true ship targets are efficiently extracted from residual non-ship clutter. Moreover, the dual approach
is applied by directly adding bright and dark ship target maps, so both bright and dark ship targets
in TIR image can be simultaneously detected. Extensive experiments verify that the proposed small
ship detection algorithm has a better detection performance than compared state-of-the-art methods,
including THF/BHF, 2DME, 2DO, MSS, IMFS, IFCM, CVM, and HCST. The experimental results also
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demonstrate that the proposed method can work stably for ship target with unknown brightness,
variable quantities, sizes, and shapes.

However, although the proposed method has achieved considerable detection results, the method
is based on the assumption that ship targets are viewed as uniform regions under the sea background in
thermal infrared images due to long imaging distance, so it cannot work well for segmenting the whole
ship target with uneven intensities in near-distance or near-infrared imaging. Therefore, combining
the proposed method with region growing method [47] to develop a high-quality ship segmentation
algorithm for ship targets with uneven intensities is one important direction in our future studies.
Besides, the proposed method can accurately detect both bright and dark ship targets by directly
adding bright and dark ship target maps in most cases but may cause some false alarms in the ship
target detection submerged in dense sun-glint clutter, as Figure 14j6 illustrates. Therefore, combining
multi-frame verification [48] or deep multi-feature fusion [27,49] strategy to recognize ship target
submerged in heavy sun-glint clutter is our another important research direction.
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