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Featured Application: The proposed system is suitable for low power applications such as a
mobile power source used in wearable smart devices or sensor devices.

Abstract: This paper presents a bidirectional wireless power transfer system for mobile power
applications. A novel 2-switch bidirectional wireless power transfer system with dual-side control is
proposed for mobile power applications. Although only two switches are adopted, the energy can be
transferred from the transmitter side to the receiver side and vice versa. The term bidirectional means
that the power-flow is bidirectional and also that the transmitter is also a receiver and the receiver is
also a transmitter. The output energy can be easily controlled by the duty ratios of the two switches.
Thus, the proposed bidirectional power transfer system uses only one circuit to achieve bidirectional
power transfer. Hence, the system cost and volume can be reduced so that the system is small and
convenient for mobile power systems, portable and/or wearable electronic devices. A prototype
system is constructed and the experimental results verify the validity of the proposed bidirectional
wireless power transfer system.

Keywords: bidirectional; wireless power transfer; transmitter; receiver; dual-side control; mobile
power system

1. Introduction

Wireless power transfer systems have been studied by many researchers due to the system merits
(WPT) such as cordless, wireless charging and safety in power transfer [1–6]. Wireless power transfer
has been applied to many applications including high power applications such as electric vehicle (EV)
chargers and low power applications such as mobile power systems, intelligent mobiles, wearable
electronic devices and sensors, etc. There are critical issues to be overcome in the practical design
of wireless power transfer systems. One of the issues is the position and shape of the magnetic
coupler. The most commonly used magnetic coupler structures in wireless charging are the circular
and rectangular types. Based on the magnetic dipole moment theory, the magnetic dipole moment is
proportional to the current magnitude and current loop area. Hence, the larger the current loop area is,
the larger the magnetic dipole moment. Therefore, if the circular diameter is the same as the length
and width of the rectangle, the rectangular type area is larger than 1.27 times the area of the circular
type. Some literatures [7,8] discussed the shape of the inductive coupler and coupler array to generate
better magnetic dipole moment to induce the desired energy.

In order to wirelessly deliver the energy from one side to the other side, except considering the
magnetic coupler position and shape, the wireless converter design for different applications is also very
important. Figure 1 shows a full-bridge bidirectional wireless power transfer EV charger system [9–12].
The system can transfer energy from the grid to the vehicle (G2V) as well as transfer energy from the
vehicle to the grid (V2G) [12–16]. In this case the EV can be seen as an energy storage system that
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provides active power or reactive power to the grid whereas renewable energies such as solar energy or
wind power are all in the power system. Bidirectional WPT is needed as well as unidirectional power
transfer [16]. Beyond the magnetic coupling and WPT circuit, the closed-loop control schemes are also
essential to realize the WPT converter function. Closed-loop control schemes can be classified into
three control types, including transmitter-side control [17], receiver-side control [18,19], and dual-side
control [20]. Receiver-side control is better than transmitter-side control and dual-side control in
maintaining the load requirement. The dual-side control is apparently more important for bidirectional
power flow control.

A novel bidirectional WPT converter with only two switches is introduced in this paper. Dual-side
control is also proposed for bidirectional power flow. Compared with the 8-switch full bridge
bidirectional WPT converter, as shown in Figure 1, which is often utilized in the EV charger system, the
proposed 2-switch bidirectional WPT converter is more suitable for mobile power systems, portable
and/or wearable electronic devices with low power applications. Figure 2 demonstrates the cell
phone power supply using mobile power with wireless power transfer technology for charging and
discharging. Up to now, there is usually unidirectional wireless power transfer application in the
mobile power supply. A bidirectional wireless power transfer technology for low power applications
using simple circuitry with only two switches is proposed.
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2. Analysis of Proposed Circuit Topology

The proposed bidirectional wireless power transfer circuit with primary side and secondary
side circuits is shown in Figure 3. Both the primary side and secondary side circuits can be the
transmitter (TX) or receiver (RX). In the proposed topology, there is a boost inductor, an active switch,
as well as a resonant capacitor and resonant coupled inductor in both the primary side and secondary
side. The primary side circuit and secondary side circuit are designed to be symmetric to each other.
However, the power direction is controlled by the switching duty ratios D1 and D2 of switch 1 and
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switch 2. While switch 1 is active and switch 2 is idle, the power flow is controlled from Tx1 to Rx1.
While switch 2 is active and switch 1 is idle, the power flow is controlled from Tx2 to Rx2. Therefore,
the energy can be transferred easily from primary side to the secondary side or from secondary side to
the primary side.
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Figure 3. Proposed bidirectional wireless power transfer circuit.

For convenient explanation of how the circuit works, assume that the primary side is the transmitter
and the secondary side is the receiver. The active switches are assumed to be ideal active switches with
anti-paralleling body diode. To illustrate the circuit operation, the key waveforms of the proposed
bidirectional wireless power transfer system during one switching period are shown in Figure 4 and
the circuit operation can be divided into four states to explain and discuss.
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switching period.

(1) State 1 (t0 ≤ t <t1): In this mode, as shown in Figure 5, the switch S1 is turned on and switch S2

is turned off as be a diode. Switch current ids1 is increasing. Inductor L1 is magnetized by the input
voltage V1 so as to increase the inductor current iL1. The capacitor C1 resonates with the coupled
inductor Lr1. The resonant current ic1 is changed from positive to negative and produces the magnetic
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vector potential
→

A1 through the primary side plane coil, i.e., the transmitter. The magnetic vector

potential
→

A1 is transmitted to the secondary side plane coil, i.e., the receiver and generates a resonance
between the Lr2 and C2 so as to release energy to the inductor L2 and load. The equivalent circuit
equations can be described as Equations (1)–(6).
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where M is the mutual inductance and determined by the magnetic vector potential
→

A1 and
→

A2.

Therefore, the mutual inductance can be expressed as M =
µ0N1N2

4π

∮
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∮
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d
⇀
l 1·d

⇀
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R . N1 and N2 are the

numbers of turns of the primary and secondary side, respectively.
⇀
l 1 and

⇀
l 2 indicate the flux direction

of coil 1 at primary side and coil 2 at secondary side, respectively. R is the distance between the
primary-side and secondary-side windings.

(2) State 2 (t1 ≤ t <t2): In this mode, as shown in Figure 6, switch S1 is turned on and switch S2 is
turned off. Switch current ids1 is increasing. Inductor L1 is magnetized by the input voltage V1 so as to
increase the inductor current iL1. The capacitor C1 resonates with the coupled inductor Lr1 and the
current ic1 is negative. However, VLr1 changes from zero to negative and VLr2 changes from zero to

positive. The magnetic vector potential
→

A1 is transmitted from the primary side to the secondary side
and generates a resonance between the Lr2 and C2 that releases energy to inductor L2 and the load.
The current iC2 is positive. The equivalent circuit equations can be expressed as Equations (7)–(12).
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L1
diL1

dt
= v1, (7)

Lr1
diLr1

dt
+ M

diLr2

dt
= −vC1, (8)

C1
dvC1

dt
= iLr1, (9)

C2
dvC2

dt
= iL2, (10)

Lr2
diLr2

dt
+ M

diLr1

dt
= −v2 − vL2 − vC2, (11)

L2
diL2

dt
= −vLr2 − vC2 − v2, (12)

(3) State 3 (t2 ≤ t <t3): In this mode, as shown in Figure 7, switch S1 is turned off and S2 is also
turned off. Ids1 current is negative. Inductor L1 is magnetized by the input voltage V1 so as to increase
the inductor current iL1. However, ic1 is changed from negative to positive and ic2 is changed from

positive to negative. The magnetic vector potential
→

A1 produced by the primary side plane coil is
transmitted from the primary side to the secondary side and releases energy to inductor L2 and the
load. The equivalent circuit equations can be described as Equations (13)–(18).
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L2
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dt
= −v2, (18)

(4) State 4 (t3 ≤ t <t4): In this mode, as shown in Figure 8, the switches S1 and S2 are turned off.
Ids1 is zero, and ic1 still remains positive and ic2 still remains negative. The magnetic vector potential
→

A1 is transmitted from primary side to the secondary side and generates a resonance between the
Lr2 and C2 so as to release the energy to inductor L2 and load. The current ids2 remains the negative
current to provide the load positive current. The equivalent circuit equations can be expressed as
Equations (19)–(24).
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3. Simulation and Experimental Results

To verify the feasibility of the proposed bidirectional wireless power transfer system, the
well-known software Power SIM Version 9.0 (Powersim Inc, Rockville, M.D, USA, 2010) is adopted to
perform the simulation process. In the simulation, the switches, capacitors and inductors are assumed
to be ideal. A transformer with a loosely coupled inductor and relatively larger magnetizing inductor
is adopted to simulate the transmitter and receiver.

Meanwhile, a prototype is constructed using a coreless plane transformer to verify the theoretical
results. The simulation and experimental parameters for the proposed bidirectional wireless power
transfer system are listed in Table 1. Where the LED load is adopted to emulate the portable device,
the mobile power supply is used to provide 5V voltage source. The transmitter and receiver coils are
the same type and the photo is shown in Table 1 with a detailed description. The instantaneous current
and voltage in experiment are measured by the oscilloscope YOKOGAWA DLM2024.

The simulation and experimental results of resonant capacitor voltage Vc1 and current ic1 with the
corresponding control switching signal are shown in Figure 9a,b, respectively. As can be observed from
Figure 9, the capacitor voltage Vc1 and current ic1 are resonated following the switching frequency.
One can see that both the simulation and experimental results are in very close agreement. Figure 10a
shows the inductor voltage VL2 and current iL2 simulation results with the corresponding control
switching signal. The corresponding experimental results are shown in Figure 10b. As can be seen from
Figure 10, the inductor L2 stabilizes the output current. Although the simulation and experimental
waveforms of VL2 and iL2 have something different due to the parasitic effects, the simulation and
experimental behavior are very similar. The inductor voltage VL1 and current iL1 simulation and
experimental results with the corresponding control switching signal are shown in Figure 11a,b. From
Figure 11, one can find that both the simulation and experimental results are in very close agreement.
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Table 1. Parameters of the proposed bidirectional wireless power transfer system for simulation
and experimentation.

Parameters Primary Side Circuit Secondary Side Circuit

Inductor L1 = 1 mH L2 = 1 mH

Resonant tank C1 = 660 nF, Lr1 = 15.3 uH C2 = 660 nF, Lr2 = 15.3 uH

Transmitter/Receiver 20 turns, width of winding = 2.7 mm,
with two layers

20 turns, width of winding = 2.7 mm,
with two layers

LED Load to Emulate portable
device Forward voltage 3.5 V

Switching frequency Approximately 50 kHz

MOSFET IRF 540

Transistor 2222A NPN, 2907A PNP

PWM IC Low Voltage PWM Controller (LT1619 or MAX1967)

Coil of Transmitter/Receiver
Length 50 mm
width 50mm
High 5.4 mm
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4. System Analysis and Discussion

With the aforementioned understanding of the proposed circuit operation principle and the
circuit equivalent models, it is now straightforward to test and measured the proposed contactless
bidirectional power transfer system in the experiments. The bidirectional power flow with dual-side
duty ratio control will be tested and explained here. For convenient explanation, while the power is
delivered form primary side to secondary side, one can call it forward mode operation. While the
power is delivered from secondary side to the primary side, one can call it backward mode operation.
In the proposed system the forward mode operation is controlled by the switch S1 duty ratio and the
backward mode operation is controlled by the switch S2 duty ratio. The power flow direction can be
controlled by the switch duty ratio always in the transmitter side.

The averaged output voltage and output current values are recorded in this section and measured
by the oscilloscope YOKOGAWA DLM2024. The duty ratio control for forward mode and backward
mode operation test results are shown in Figure 12; Figure 13, respectively. As can be observed from
Figure 12; Figure 13, the output voltage and current can be controlled almost linearly by the duty ratio
and the maximum output power point is at the 0.9 duty ratio, regardless whether the circuit is operated
in the forward or backward mode. This represents that the system output power can be obviously and
easily adjusted to increase or decrease for applications.
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Figure 14. Output voltage and current vs. switching frequency in the forward mode operation. 
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The switching frequency variation test results for forward and backward mode operations are
shown in Figure 14; Figure 15, respectively. The circuit resonant frequency is designed at 50 kHz
and the measured optimal switching frequency is also located at 50 kHz. If the switching frequency
is between 40 kHz and 60 kHz near the resonant frequency, the output voltage and current are not
seriously affected in the proposed circuit. This means that the resonant capacitor and/or resonant
inductor value variation in the system due to the environment causing resonant frequency offset is
easily corrected by properly adjusting the switching frequency. To explain how the distance between
the windings affects the power transfer, Figure 16; Figure 17 show the output voltage and current vs.
distance in the forward mode and backward mode operations, respectively, where there is 180-degree
direction in coil 2 compared to coil 1 which has 0-digree direction. Coils 1 and 2 are overlapped with
distance R. As can be observed from Figure 16; Figure 17, the voltage and current are decayed with

increasing distance R and the magnetic vector potential
→

A is decayed with the rate proportional to 1/R2.
The measured power conversion efficiency is about 50%, while the coils are very close to each other.
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Figure 17. Output voltage and current vs. distance between the windings in the backward mode 

operation. 
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Figure 18. One of the low-power Wireless power transfer (WPT) applications for mobile power. 

5. Conclusions 

This paper proposed a novel wireless bidirectional power transfer system. The circuit operation 

principle is explained in detail and the equivalent circuits are also derived. The proposed wireless 

Figure 15. Output voltage and current vs. switching frequency in the backward mode operation.
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mode operation.

According to the above test, the proposed wireless power transfer system can transfer the power
flow bi-directionally and the output voltage and/or current can be adjusted through the switch duty
ratios regardless whether the system is operated in the forward or backward mode. One low-power
WPT application for mobile power is shown in Figure 18.
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5. Conclusions

This paper proposed a novel wireless bidirectional power transfer system. The circuit operation
principle is explained in detail and the equivalent circuits are also derived. The proposed wireless
power transfer system can be seen as a bidirectional current-control current-source system. The power
flow direction can be controlled using the transmitter side switch. The output voltage and/or current
can be controlled using the switch duty ratio regardless whether the proposed system is operating in
the forward or backward mode. Fortunately, only two switches are adopted to achieve the bidirectional
power flow transmission. Therefore, the proposed converter is suitable for low power applications
such as a mobile power source used in wearable smart devices or sensor devices. A prototype system
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was constructed and tested. Both the simulation and experimental results verify the validity of the
proposed bidirectional wireless power transfer system.
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Nomenclature

EV Electric vehicle
WPT Wireless power transfer
Tx Transmitter
Rx Receiver
M Mutual inductance
→

A1,
→

A2 Magnetic vector potential

µ0 Permeability of vacuum
L1, L2 Boost inductor
C1, C2, Cr1, Cr2 Resonant capacitor
Lr1, Lr2 Resonant coupled inductor
S1, S2 Active switch
Vgsx Gate signal of active switch x, x = 1, 2
V1, V2 Voltage sources of primary and secondary side
D1, D2 Switching duty ratios of switch 1 and switch 2
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