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Abstract: Ground-based synthetic aperture radar (GBSAR) technology has been widely used for
bridge dynamic deflection measurements due to its advantages of non-contact measurements, high
frequency, and high accuracy. To reduce the influence of noise in dynamic deflection measurements
of bridges using GBSAR—especially for noise of the instantaneous vibrations of the instrument
itself caused by passing vehicles—an improved second-order blind identification (SOBI) signal
de-noising method is proposed to obtain the de-noised time-series displacement of bridges. First,
the obtained time-series displacements of three adjacent monitoring points in the same time domain
are selected as observation signals, and the second-order correlations among the three time-series
displacements are removed using a whitening process. Second, a mixing matrix is calculated using
the joint approximation diagonalization technique for covariance matrices and to further obtain
three separate signal components. Finally, the three separate signal components are converted in the
frequency domain using the fast Fourier transform (FFT) algorithm, and the noise signal components
are identified using a spectrum analysis. A new, independent, separated signal component matrix
is generated using a zeroing process for the noise signal components. This process is inversely
reconstructed using a mixing matrix to recover the original amplitude of the de-noised time-series
displacement of the middle monitoring point among three adjacent monitoring points. The results of
both simulated and on-site experiments show that the improved SOBI method has a powerful signal
de-noising ability.

Keywords: second-order blind identification; bridge monitoring; microwave interferometry;
ground-based synthetic aperture radar; signal de-noising

1. Introduction

With the rapid deployment of transportation networks, an increased number of bridges have
been built in the world. However, a combination of factors such as age, environment, overload,
and geological activities have increased the deterioration of bridges, which can ultimately lead to
a reduction in their load carrying capacity—or even sudden collapse—leading to a loss of life and
property [1,2]. Therefore, damage detection for bridges is of the utmost importance. Ground-based
synthetic aperture radar (GBSAR) technology is a new type of ground-based microwave interferometry
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technology with the advantages of real-time monitoring, high-distance resolution, fast measurement
speed, high precision, wide measurement coverage, easy operation, and all-weather and all-day
measurements [3,4]. Since the first published paper (in 1999) on microwave interferometry for
non-contact vibration measurements on large structures [5], GBSAR has been used extensively for
dynamic deflection measurements of bridges in recent years [6,7]. However, during the data acquisition
process of dynamic deflection measurements of bridges using GBSAR, the surrounding environment,
human operation, and the equipment itself will inevitably increase noise in the obtained time-series
displacements, which reduces the damage detection accuracy [8]. In particular, the used GBSAR
equipment should be placed under the monitored bridge, and the instantaneous vibrations of the
equipment itself will be inevitably caused by passing vehicles under the monitored bridge, which
will reduce the accuracy of the obtained dynamic time-series displacement. Therefore, it is of great
importance to reduce the influence of noise information in the time-series displacements of bridges
obtained using GBSAR—especially for the instantaneous vibrations of the equipment itself.
Currently, the primary signal de-noising methods for the time-series data include the filtering
method [9-12], the wavelet transform method [13,14], the singular value decomposition method [15,16],
and the empirical mode decomposition (EMD) method [17-19]. Filtering methods use statistical
features to derive some estimation algorithms, and further estimate the useful signals or filter the
signals with certain statistical features from the mixed signal, which can improve the signal-to-noise
ratio (SNR). However, they remove not only noise, but also the high frequency components of
non-stationary signals, and normally require a priori information of the statistical characteristics of
the signal and noise, which are not effective for non-stationary signals containing sharp edges and
impulses of short duration [9,10,12]. Therefore, without any priori information of the obtained dynamic
time-series displacement, filtering methods are not suitable for signal de-nosing of the non-stationary
dynamic time-series displacement obtained using GBSAR. With the advantage of a good time-frequency
localization characteristic, the wavelet transform can be used to obtain the wavelet coefficients of
signal and noise with different properties on each scale. This method can further remove the wavelet
coefficient of the noise portion to obtain the de-noised signal by reconstructing the remaining wavelet
coefficients, which is suitable for analyzing non-stationary signals [13]. However, there are two main
limitations of the wavelet transform: first of, the results are affected by the selection of the wavelet
basis, and different noise frequency scales need different wavelet threshold criteria, which cause a lack
of adaptability [15]; secondly, it is not suitable for non-linear signals [17]. In this study, the obtained
time-series displacement should be a non-linear signal in case the monitored bridge was damaged.
Moreover, it is also difficult to determine the suitable wavelet basis and wavelet threshold criteria as
the instantaneous vibrations of the equipment itself caused by passing vehicles with different speed
and weight. The singular value decomposition method primarily depends on the correspondence
between the information of the signal and the singular value of the reconstruction matrix. The signal
component corresponding to the noise is a smaller singular value. By retaining the larger singular
values first, the optimal approximation of the original signal can be obtained, and the influence of
the noise can be eliminated [15]. However, there are two critical issues to be solved: the first issue
is how to determine the effective rank order of the reconstruction matrix, and the second issue is
how to determine the number of rows and columns in the reconstruction matrix—which restricts the
applications of this method [16]. Recently, the EMD method was introduced for analyzing signals from
nonlinear, nonstationary processes, which can adaptively decompose the non-stationary signal into
a series of intrinsic mode functions (IMFs), and the decomposed into components containing local
characteristic signals of different time scales of the source signal [17]. The EMD de-noising method
reduces the influence of noise by eliminating a certain number of low-order IMFs with relatively
high frequencies [18]. However, the IMFs decomposed using the EMD method have a mode mixing
problem that causes the decomposed IMFs to contain useful components and noise—especially under
dynamic conditions. This may cause a loss of precision when using the EMD de-noising method [19].
The ensemble empirical mode decomposition (EEMD) method is an improvement based on the EMD
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method and uses the EMD method as its core, inheriting the advantages of the EMD method [20].
The EEMD method repeatedly decomposes the original signal with added white noise into a series of
IMFs and further calculates the ensemble of IMFs to alleviate mode mixing, which has been widely
used in the field of signal de-noising [21,22]. However, the EEMD method is affected by parameters
such as the amplitude of added noise and the number of ensemble trials [23]. Moreover, although the
EMD and EEMD methods can effectively reduce the influence of the periodic noise [22], it is difficult to
reduce the influence of the instantaneous noise, such as the instantaneous vibrations of the equipment
itself caused by passing vehicles with a different speed and weight in this study.

Unlike the above signal de-noising methods used to reduce the influence of noise from single
time-series data individually, the blind source separation (BSS) technique can separate multiple source
signals acquired in the same time domain by multiple sensors without any prior information—even
when the mixed model of different signals is unknown [24]. BSS has been successfully applied in
the fields of wireless communication, image processing, speech signal processing, and biomedical
signal processing [25]. The second-order blind identification (SOBI) method is a relatively robust blind
source separation method that uses second-order statistics of the sample data (correlation matrix with
different time delays) and the source signal time sequence structure feature to achieve blind separation
of the source signals [26]. In recent years, the SOBI method has successfully been applied in the fields
of signal processing and mechanical fault detection [27,28]. In this study, we used a new type of
ground-based microwave interferometry technology, which uses multi-set time-series displacements of
monitored targets in bridges in the same time domain with a distance resolution of up to 0.5 m, using
GBSAR. The obtained time-series displacements of the adjacent monitoring points have the same noise
information, especially for the noise of the instantaneous vibrations of the equipment itself caused by
passing vehicles with a different speed and weight. Generally, the obtained dynamic deflection signal
of bridges using GBSAR is a complicated non-stationary time-series displacement that mixes the useful
signal with noise. Therefore, in this study, the obtained time-series displacement of three adjacent
monitoring points can be regarded as a linear mixture of source signals of useful signals and noise
signals. An improved SOBI signal de-noising method is proposed to reduce the influence of noise
for the obtained time-series displacement using GBSAR, especially for the noise of the instantaneous
vibrations of the equipment itself caused by passing vehicles with different speed and weight.

2. Methodology

2.1. BSS Model

The SOBI method is a relatively robust BSS algorithm that can be used to decompose mixtures of
signals into a set of components or putative recovered sources [29]. To better understand the improved
SOBI method, the principle of BSS is introduced first. Figure 1 shows an instantaneous linear BSS
system model. S(t) = [s1(t)s2(f)... su(B)]” represents n statistically independent unknown source
signals. X(t) = [x1(t)xa(t) .. xm(t)]" denotes m observation signals. Then, let X(t) = A S(t), where
A denotes a mixing matrix of m * n dimensions [29,30]. The essence of BSS is to find a separation matrix
B, so that Y(t) = BX(t) is an optimal estimate of the source signal, which is obtained from the original
observation signal X(t) through the separation matrix B.

Mixing matrix Separation matrix

A B

. 1S :l\v Observation signals :> Estimated value of the
ource signal S(i ) X(t) source signal ¥ (t)

Figure 1. Instantaneous linear blind source separation (BSS) system model.

In this study, the prior information of the source signals (time-series displacements without noise)
and the mixing matrix were unknown—only the observed signals (time-series displacement obtained
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using GBSAR) were processed to obtain the different source signals. However, in the absence of any
underlying assumptions and more information, multiple solutions will be produced by BSS. Therefore,
it is necessary to make some underlying assumptions and conditions to constrain the source signal and
the mixing matrix, and then solve the problem of the multiple solutions. The underlying assumptions
and conditions are described as follows [26,30]:

(1) Mixing matrix, A, is a column full-rank matrix.

(2) The source signals are the zero-mean random signals that are not correlated in the time-space
domain and correlated in the time domain.

(3) The source signal and noise are independent.

(4) The number of source signals is less than or equal to the number of the original signals.

Moreover, when both the mixing matrix, A, and the source signal, S(t), are unknown, each column
of A and the corresponding row of S(t) are multiplied by a factor that is reciprocal to each other.
In addition, X(t) is unchanged, which is shown as follows:

M M

X(t) = A=S(t) = Zaisi(t) = Z (a;i/b;)(bsi(t)), 1)
. =

i=1 i

where b; # 0 is an arbitrary constant. In the case where A is unknown, as shown in Equation (1),
it cannot be determined whether the source signal is s;(t) or b;s;(t)—that is, the amplitude of the source
signal cannot be determined. Therefore, even if the above underlying assumptions and constraints
are applied to the obtained time-series displacement, there are still two uncertainties in BSS—that
is, the amplitude and component sequence of the separated source signals are uncertain [29,31,32].
However, the separated signal is consistent with the waveform of the source signal. In this study;,
the uncertainty of the component sequence does not affect the result, and the uncertainty of the
amplitude of the separated signals are restored using the improved SOBI algorithm.

2.2. Improved SOBI

The SOBI method uses joint approximation diagonalization to process the covariance matrix,
which can solve the best estimation of the source signal and the mixing matrix and further obtain
the separated signal components from different source signals. It is a relatively robust blind source
separation method [26]. The SOBI method is based on the second-order statistics of the original
observation data, which can estimate the source signal component and separate multiple Gaussian
noise sources using relatively few data points [33]. By considering the linear mixed model together
with the characteristics of the obtained time-series displacement using GBSAR, it is proposed in this
study to select the obtained time-series displacements of three adjacent monitoring points in the same
time domain as the original signals to obtain the de-noised signal of the middle point among the three
adjacent monitoring points. The three time-series displacements can be regarded as a linear mixture of
source signals of useful information and noise.

The basic principle of the improved SOBI signal de-nosing method is based on a time correlation
of the source signal and the joint approximation diagonalization of the covariance matrix [27]. When it
is applied to signal de-noising, the noise information is separated and zeroed by the other two sets of
data, and the mixed matrix is used to inversely reconstruct the signal to obtain the de-noised signal.
Figure 2 shows the entire workflow of the improved SOBI signal de-noising method for the obtained
time-series displacement of bridges using GBSAR. The workflow includes the following four key
technologies: (1) the observation signal, X(t), is whitened to obtain a unit matrix covariance matrix, Z(t).
The second-order correlation among the signal components is removed, and the sampling covariance
matrix of the whitened data, Z(t), is calculated. (2) The orthogonal matrix is obtained using joint
approximate diagonalization of the covariance matrix with different time delays. (3) The estimated
value of the source signal, Y(t), and the mixing matrix, A, are calculated using the orthogonal matrix.
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(4) The estimated value of the source signal, Y(t), is converted in the frequency domain using the fast
Fourier transform (FFT), and the noise signal component is identified using the frequency characteristics.
A new independent separated signal component matrix, Yz(t), is generated using a zeroing process
for noise signal components, which is inversely reconstructed using a mixing matrix, A, to recover the
original amplitude of the de-noised signal, Y (t).

Time-series displacements of three adjacent points in the same

time domain obtained using GBSAR as observation signal X(t)

e———=====df============3

Estimate the sample covariance R(0) and Calculate
whitening matrix W

Observation signal X(t) is whitened to obtain a unit matrix

covariance matrix Z(t) using whitening matrix W

v

Derive the orthogonal matrix V using the joint approximate
diagonalization algorithm

¥

Obtain mixing matrix A and the estimated value of the source
signal Y(t)

-,

Convert the estimated value of the source signal Y(t) in the
frequency domain using FFT to identify the noise signal
component.

y

| Generate a new independent separated signal component Yz(t) De-noised
| matrix using a zeroing process for noise signal components

|
|
|
|
|
|
| Obtain the sample covariance matrix of of the whitened data SOBI
|
|
|
|
|

'

Inversely reconstruct Yz(t) using a mixing matrix A to recover
the original amplitude of the de-noised signal Yn(t)

Figure 2. Flowchart of the improved second-order blind identification (SOBI) signal de-noising
method for the obtained time-series displacement of bridges using ground-based synthetic aperture
radar (GBSAR).

Denote X(t) = [x1 (t)xz(t)xg(t)]T as mixed signals of time-series displacements of three adjacent
points in the same time domain, and denote S(t) = [sl(t)SQ(t)53(t)]T as the source signals, which
are assumed to be independent of each other. In addition, denote Y(#) as the estimated value of the
source signal. The detailed steps of the improved SOBI de-noising method for the obtained time-series
displacement of bridges using GBSAR are as follows [26,28,34]:

(1) Estimate the sample covariance, R(0), from the three sets of original observation signals
(time-series displacements of three adjacent monitoring points), denote A1, A, A3 as the largest
eigenvalues and K1, hp, h3 as the corresponding eigenvectors of R(0).

(2) In the case where white noise is assumed to exist, the estimated value of the noise variance, 62,
is the average of the smallest eigenvalues of R(0). The whitening signal is Z(t) = [z; (Hz2(H)z3(D)]7,
where z;(t) = (A; - 02)_%hi +x(t), (i = 1,2,3). This is equivalent to forming a whitening matrix

as follows:
T

W= [(A1 =02) Zhy,..., (A3 —02) 2hs] . o)
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(3) Denote W as a whitening matrix, and the original observation signals, X(t), are whitened
to remove the second-order correlation between the signal components to obtain a unit covariance
matrix, Z(f):

Z(t) = W=X(t) = W+ A=5(t) = V=5(t). ®)

(4) For fixed time lags, 7 € {T j| i=12, ..k}, the sample covariance matrix, R(7), of the whitened
data is calculated using R(7) = E[Z(t)ZT(t + T)] = ARz(1)AT.

(5) For all R(T ]-), the joint approximate diagonalization algorithm is used to derive the orthogonal
matrix, V.

(6) The estimated value of the source signal is obtained using Y (t) = BX(t) = VIWX(t), and the
mixing matrix, A, is estimated as A = W1V, where W~! is the pseudo inverse matrix of the whitening
matrix, W.

(7) The fast Fourier transform (FFT) algorithm is used to perform a spectral conversion on the
separated signal components to find the noise signal components for the zeroing processing combined
with a frequency analysis. The estimated value of the mixing matrix, A, is used for the reverse
reconstruction:

Yn(t) = AxYz(b), 4

where Yy (t) is the reconstructed signal component as the de-noised signal; A is the estimation of the
mixing matrix; and Yz(t) is a source signal matrix obtained by zeroing the unwanted noise signal
components in the estimated value of the source signal, Y(t).

2.3. Accuracy Assessment

To evaluate the signal de-noising quality of the improved SOBI signal de-noising method, four
objective evaluation indexes were used in this study. These include the noise rejection ratio (NRR) [35],
the noise mode (NM) [36,37], the signal energy ratio (SER) [36,37], and the root mean square error
(RMSE) [35].

NRR can reflect the ability to suppress interference and improve SNR. NRR is defined as:

NRR = 10(1gd1% - 1g6,2), (5)

where 61 and 6, are the quasi-deviations of the signals before and after signal de-noising, respectively.
SER and NM are the quantitative evaluations of noise removal efficiency and noise quantity from

the energy point of view, respectively. SER reflects the energy similarity between the de-noised signal

and the original signal, and NM reflects the overall level of noise. The SER and NM are defined as:

N

N
SER = JZyZ(Tz)/JZSZ(ﬂ), (6)
n=1

n=1

N
NM = JZ (y(n) =s(m))?, @)
n=1

where s(1) represents the original observation signal; y(n) represents the signal after noise reduction;
and n represents the number of sampling points.

RMSE is used to measure the deviation between the observed value and the true value. The RMSE
is defined as:

z|

1 N
RMSE = 4| <Y (y(n) - s(n))?, ®)
n=1
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where s(n) represents the original observation signal; y(n) represents the signal after noise reduction;
and 7 represents the number of sampling points.

Generally, the larger the NRR and NM values are, the closer the NM value is to one. Additionally,
the smaller the RMSE value is, the more enhanced the signal de-noising is.

3. Simulated Experiment and Analysis

To validate the ability of the improved SOBI signal de-noising method to distinguish the useful
signal and noise, a simulation example was conducted in this study. The application of the time-series
displacements of three adjacent monitoring points used to obtain the de-noised time-series displacement
of the middle monitoring point among three adjacent monitoring points, can be regarded as a linear
mixture of source signals of useful signal and noise signal. Therefore, three simulated sub-signals,
which included two useful sub-signals, were constructed; s; (f) (Figure 3a) and s, (t) (Figure 3b), and a
noise signal, s3(t) (Figure 3c), of which the waveforms are shown in Figure 3.

s1(t)= 0.3sin(3mt), )
sp(t) = (0.2 + 0.3sin(4nt)) + 0.5cos(2mt) + cos(10mt), (10)
s3(t)= 0.1randn (1, N), (11)

where the sampling point N is 600 for the noise signal S3(t), and the sampling frequency is 200 HZ.
Moreover, the mixing matrix A is a random matrix, which meets the requirement of a column full rank
matrix. In this study, the mixing matrix A is defined as follows:

02 0.7 05
A=|04 03 04 | (12)
01 09 08

displacement/mm
= =
< - (8]
T

' ' 1
s < 2
W No-

AVAVAYAVA

time/s

Vi

time/s

h & -
e ino= i

displacement/mm
&

1
o 0.5 1

e @
=

=
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Lol
s e
o -
T

03l (9 1

|
b
=

\ \ L L s
0 0.s 1 1.5 2 2.5 3
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Figure 3. Three sets of simulation source signals. (a) The curve of signal S1(t), (b) the curve of signal
S»(t), and (c) the curve of signal s3(#).
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As shown in Figure 4, the three mixed signals were linearly mixed using three sets of simulation
source signals. Each mixed signal contained the characteristic information of the three sets of source
signals. Without more prior information, the characteristic information of the source signals could not
be obtained intuitively from the mixed signals. Using the improved SOBI method, three sets of signals
were separated from the three mixed signals.

e
o=

displacement/mm
=]

\ L . L L
0 0.5 1 1.5 2 2.5 3
time/s

1 T T T T T

displacement/mm
=
o in

1
e
)]

L L L L L
0 0.5 1 1.5 2 2.5 3
time/s

2 T T T T T

displacement/mm

0.5 ]I ]:5 2I 2:5 3
time/s

Figure 4. The original signal generated from the source signals using a mixing matrix. (a) The curve

of the first mixed signal, (b) the curve of the second mixed signal, and (c) the curve of the third

mixed signal.

As shown in Figure 5, the three separated sub-signals are consistent with the three source signals
in the waveform characteristics. To further evaluate the accuracy of the separated results, correlation
coefficients between the separated signal and the source signal were calculated using Equation (13):

N N N

C= 3 (Vult) = Va0 (Su(t) = 5u(0)) /7| X, (Yalt) = V()% Y (Su(h) =5u())”,  (13)

n=1 n=1 n=1

where S, (t) is the source signal, S, (t) represents the average value of the source signal, Y;,(t) is the
separated signal, and Y/, (t) represents the average of the separated signals.

As shown in Table 1, the correlation coefficients between each simulated source signal and the
corresponding separated signal component are all greater than 0.99, which indicates that the improved
SOBI method effectively separated different source signals from the mixed signals. In particular, for the
noise source signal and the corresponding separated signal component, the correlation coefficient
is 0.9984, which can effectively distinguish the useful and noise signal and further perform signal
de-noising. In this study, for the obtained time-series displacements using GBSAR, the useful and noise
signals were regarded as independent source signals. Therefore, the noise in the obtained time-series
displacements was effectively reduced using the improved SOBI signal de-noising method.
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Figure 5. Separated signals using the improved SOBI method. (a) Separated signal Y1 (¢), (b) separated
signal Y5 (t), and (c) separated signal Y3(t).

Table 1. Correlation coefficient between the separated signal and the source signal.

Correlation Coefficients

Signal Components

S1(t) Sa(t) S5(t)
Y1 () 0.9933 -0.0173 0.0555
Yo (t) 0.1155 0.9999 ~0.0133
Y3(t) -0.0016 0.0003 0.9984

4. On-Site Experiment and Analysis

4.1. Site Description and Data Acquisition

The Fengbei Bridge is located at the junction of the West Fourth Ring Road and the Fengtai North
Road in Beijing, China. As shown in Figure 6a, there is a road crossing under the bridge, and the
GB-SAR instrument should be located on one side of the bridge as shown in Figure 6b. Inevitably,
the different instantaneous vibrations of the equipment itself will be caused by passing vehicles
with a different speed and weight on the road, which increases the noise in the obtained time-series
displacement of the bridge. Therefore, to validate the accuracy of the improved SOBI signal de-noising
method for time-series displacement obtained using GBSAR, the Fengbei Bridge was selected as an
experimental bridge. In this study, an Imaging by Interferometric Survey (IBIS-S) instrument—a typical
system based on microwave interferometry—was adopted to acquire an accurate dynamic time-series
displacement of the bridge dynamic deflection. The IBIS-S instrument consists of a radar unit, a control
personal computer, a power supply unit, and a tripod. In typical measurement conditions, the sampling
rate is up to 200 Hz, the maximal detection distance is up to 1 km, the range resolution is up to 0.50 m,
and the displacement measurement accuracy is up to 0.01 mm [38]. As shown in Figure 6, the IBIS-S
instrument was located on one side of the bridge without passive radar reflectors attached to the bridge.
The angle of the altitude of the radar unit was set to 30° so that the two antennas on the radar unit
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could be aligned to the mid-span point of the central span of the bridge. The range resolution was
0.5 m, the sampling frequency was 200 Hz, and the duration of data acquisition was 45 s.

(a) (b)

Figure 6. The Fengbei Bridge and the IBIS-S instrument layout. (a) The Fengbei Bridge and (b) the
dynamic deflection measurement of the Fengbei bridge using IBIS-S.

Figure 7a shows the obtained time-series displacement (X1, as shown in Figure 6a) of a mid-span
point on the Fengbei Bridge. Due to the influences of the surrounding environment and the equipment
itself, there was an inevitable increase in the noise information of the obtained time-series displacement.
Therefore, to improve the accuracy of the obtained time-series displacement of the mid-span point on
the Fengbei Bridge, using a similar noise as the time-series displacements from the mid-span point,
two adjacent monitored points before and after the mid-span point were selected as another two
observed signal point (X2 and X3, as shown in Figure 6a). This was done to develop signal de-noising
for the mid-span point of the Fengbei Bridge using the improved SOBI method. The time-series
displacements of the two adjacent monitored points are shown in Figure 7b,c. Obviously, there are
some fluctuations in the curves of the obtained three time-series displacements. These were caused by
the transient load of vehicles.

=
v

displacement/mm
1
boe
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=

(I

T I)) T
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0.5 1 L ' ' L L
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time/s
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!

lacement/mm
T
1

ISP

*2 | | | | | ]
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time/s

d

-0.4

Figure 7. Three time-series displacements of the mid-span point and two adjacent points. (a) Observed
signal X1, (b) observed signal X2, and (c) observed signal X3.



Appl. Sci. 2019, 9, 3561 110f16

4.2. Results Analysis and Discussion

Three separate signal components were obtained using the improved SOBI signal de-noising
method, namely S1, S2, and S3, as shown in Figure 8. The inspection of curves of the separated
signal components shown in this figure clearly highlight that: (1) as shown in Figure 8a, the separated
signal, 51, with an inverted displacement is consistent with the original time-series displacement, X1,
of the mid-span point of the Fengbei Bridge, which can be regarded as actual monitored data, and;
(2) as shown in Figure 8b,c, there are some sudden changes in these two curves of the separate S2 and
S3 signals, which can be regarded as noise signals. These may have been caused by the passing vehicles
near the IBIS-S instrument, which led to several vibrations of the IBIS-S instrument. Moreover, there are
some smaller fluctuations in these two curves, which may have been caused by the surrounding
environment, such as wind thrusts and ground motions. Moreover, as shown in Figure 9, the spectra
of the three observed signals are basically the same, with a similar first order frequency of 2.46 Hz.
In the spectrum of the separated signal, S1, found using the improved SOBI method, the first order
frequency is the same as that of the three observed signals as shown in Figure 10a. This indicates that
the separated signal, S1, is the useful signal. However, for the spectra of the separated signals—S2 and
S3—found using the improved SOBI method, the frequencies are disorderly and irregular as shown in
Figure 10b,c. This indicates that the separated signals—S2 and S3—are noise signals.
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Figure 8. Three separated signal components found using the improved SOBI method. (a) Separated
signal S1, (b) separated signal S2, and (c) separated signal S3.

By zero processing the separated noise signal, the de-noised time-series displacement of the
mid-span point was obtained by inversely reconstructing the separated signal using a mixing matrix,
as shown in Figure 11. The red curve is the original signal of the obtained time-series displacement of
the mid-span point, and the blue curve is the de-noised signal. Compared with the original time-series
displacement, the de-noised time-series displacement is more stable and smooth. Moreover, as the six
black boxes show in Figure 11, there are greater changes between the original signal and the de-noised
signal. Furthermore, these six time ranges are the same as the time ranges of the sudden changes in the
curves of the separated signals—S2 and S3—as shown in Figure 8b,c. The results show that the noise
information caused by the passing vehicles near the IBIS-S instrument was effectively eliminated.
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Figure 9. Spectra of the three original observation signals. (a) Spectrum of the observed signal X1,
(b) spectrum of the observed signal X2, and (c) spectrum of observed signal X3.
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Figure 11. De-noised time-series displacement of the mid-span point of the Fengbei Bridge.

To validate the accuracy of the improved SOBI signal de-noising method for dynamic deflection
measurements using GBSAR, two de-noising methods—EMD [20] and EEMD [22]—were selected to
be compared with the improved SOBI signal de-noising method. The comparison results are shown
in Table 2. The inspection from this table highlights that: (1) The NRR and NM are 6.7116 db and
3.7622 mm for the improved SOBI signal de-noising method, which are much better than that of the
EMD and EEMD methods. Moreover, the SER is 1.0012 for the improved SOBI signal de-noising
method, which is closer to one than the other two methods. Therefore, according to these three indexes,
the improved SOBI signal de-noising method had a more powerful ability than the EMD and EEMD
methods for dynamic deflection measurements using GBSAR. (2) The RMSE is 0.012 mm for the
improved SOBI signal de-noising method, which is smaller than that of the EMD method and greater
than that of the EEMD method. The reason is that the removal of noise caused by passing vehicles
near the IBIS-S instrument may have caused a reduction in the RMSE using the improved SOBI signal
de-noising method. Although a smaller RMSE can be obtained using the proposed signal de-noising
method if the on-site experiment was done without passing vehicles near the IBIS-S instrument, it is
difficult to find a suitable time range to acquire dynamic time-series displacement data of bridges.
The results indicate that the improved SOBI signal de-noising method had a powerful de-noising
ability, which not only reduced the noise caused by the surrounding environment, but also reduced
the noise caused by vibrations of the monitoring instrument.

Table 2. Comparison of the four evaluation indexes among the three de-noised methods.

Index EMD EEMD SOBI
NRR (db) —2.3393  3.2862 6.7116
NM (mm) 2.5066 0.7211 3.7622

SER 0.9870 0.9947 1.0012
RMSE (mm) 0.0264 0.0073 0.0120

5. Conclusions

Due to the advantage of the high-distance resolution of the GBSAR technique, the obtained
time-series displacements of the adjacent monitoring points had a similar noise. Therefore, in this study,
to improve the accuracy of the obtained dynamic time-series displacement of bridges using GBSAR,
an improved SOBI signal de-nosing method was proposed to reduce the influence of noise. This was
achieved by using the obtained dynamic time-series displacements of three adjacent monitoring points
in the same time domain. In addition, the de-noised signal of the middle point among the three
adjacent monitoring points was obtained. This was done to address the noise caused by instantaneous
vibrations of the equipment itself and noise caused by passing vehicles. More specifically, the results
presented in the study clearly highlight the following:
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(1) A simulation experiment was performed to validate the feasibility of the improved SOBI signal
de-noising method where three mixed signals were linearly mixed using three sets of simulation
source signals with different frequency scales. The obtained correlation coefficients between
each simulated source signal and the corresponding separated signal component were all greater
than 0.99. The results showed that the improved SOBI signal de-noising method effectively
distinguished the useful signals and noise signals from the mixed signals, which can be useful for
signal de-noising of time-series displacements obtained using GBSAR.

(2) By fully considering the characteristics of the high-distance resolution GBSAR technique,
the obtained dynamic time-series displacements of three adjacent monitoring points in the
same time domain were selected as input signals. This was done in order to obtain the de-noised
time-series displacement of the middle point among three adjacent monitoring points by using
the improved SOBI signal de-noising method. Using a spectrum analysis, the separated noise
components were effectively determined from the separated signals, and the original amplitude
of the de-noised signal was recovered using an inverse reconstruction with a mixing matrix.
The results showed that the improved SOBI signal de-noising method not only reduced the noise
caused by the surrounding environment, but also reduced the noise caused by vibrations of the
monitoring instrument.

(3) Compared with the EDM and EEMD signal de-noising methods, the improved SOBI signal
de-noising method displayed a greater improvement in the indexes of NRR, NM, and SER for
the obtained time-series displacement of a bridge using GBSAR. The results indicate that the
improved SOBI signal de-noising method has a powerful signal de-noising ability.
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