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Abstract: Non-intrusive load monitoring (NILM) is a core technology for demand response (DR)
and energy conservation services. Traditional NILM methods are rarely combined with practical
applications, and most studies aim to disaggregate the whole loads in a household, which leads to low
identification accuracy. In this method, the event detection method is used to obtain the switching
event sets of all loads, and the power consumption curves of independent unknown electrical
appliances in a period are disaggregated by utilizing comprehensive features. A linear discriminant
classifier group based on multi-feature global similarity is used for load identification. The uniqueness
of our algorithm is that it designs an event detector based on steady-state segmentation and a linear
discriminant classifier group based on multi-feature global similarity. The simulation is carried out
on an open source data set. The results demonstrate the effectiveness and high accuracy of the
multi-feature integrated classification (MFIC) algorithm by using the state-of-the-art NILM methods
as benchmarks.
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1. Introduction

Increased public awareness of energy conservation in recent years motivates electricity consumers
to participate in energy management actively [1]. Demand response (DR) is one of the solutions for
demand side management, which responds to certain conditions by reducing or shifting loads to a
different time period. With the advent of the smart grid, residential DR has great research potential.
Since different types of appliances have different opportunities and ways to participate in DR, it is
crucial to study detailed appliance-level power consumption. In addition, the visualization of detailed
consumption of high-power appliances will help customers to replace some inefficient devices, so as to
save energy [2].

Traditional intrusive load monitoring needs to install lots of sensors to acquire a signal of each
appliance. In the process of sensors’ installation and maintenance, the power supply needs to be
temporarily interrupted, which causes inconvenience for both the power grid and users. Due to the
poor practicability of the intrusive method, Hart proposed the concept of non-intrusive load monitoring
(NILM) in the 1980s [3]. Since it has a lower installation cost and impact for users, NILM is more
attractive to customers and utilities. The main idea of NILM is disaggregating mixed electrical signals
acquired at power entrance to obtain the working status and detailed power consumption information
of individual appliances.

Early studies in NILM focused on detecting state-changing events by identifying distinct electrical
features of individual appliances, which are called “load signature” and can be divided into two
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categories: steady-state and transient state. It is a good idea to complete NILM with unsupervised
learning by combining different features [4]. The most commonly used steady-state signatures are active
and reactive power [2,5]. They are effective in identifying high-power devices, but it is challenging to
separate low-power appliances for them due to the possibility of power overlap. Later works extended
the steady-state signature to many aspects, such as harmonics [6], current and voltage waveforms [7],
voltage-current trajectory [8–10], inactive current [11] etc. All of them can disaggregate certain types of
appliances effectively. In order to define more accurate load signatures, features are extracted from the
period of two stable operations, called transient signature [12–14]. Due to a relatively shorter duration
of transient signatures, the probability of feature overlapping is lower. Transient signatures require a
high sampling rate. However, it is difficult to achieve high sampling rate in practical applications,
which limits the practicability of transient signatures.

With the large-scale deployment of smart meters, NILM approaches that work with a lower
sampling rate have drawn increasing attention. Most smart meters installed in practical applications
measure and transmit the power signals at a relatively low frequency, generally between 1 Hz and
1/900 Hz [15]. Consequently, the steady-state signatures become a more suitable choice in applications.
Low-rate NILM methods can be divided into two categories. One refers to event-based NILM [16],
which implements load monitoring by classifying the signatures related to load events. The other is
state-based NILM [17], which realizes load disaggregation through pattern recognition.

Most of state-based NILM methods are based on the hidden Markov model (HMM) and its
variations [18–21] due to the strong ability in modeling the combination of stationary process with
continuous valued data over discrete time. Yuan proposes a load disaggregation method based
on clustering algorithm and support vector regression optimization, which works very well [22].
Four different extensions of HMM are presented [20], but they are likely to converge to a local minimum.
To address this problem, the hierarchical Dirichlet process hidden semi-Markov mode (HDP-HSMM)
is described [21]. To extend NILM service to new households without further intrusive monitoring, a
model fitting algorithm is designed [23], which adopts iterative k-means to fit a HMM with only one
typical duty cycle of device. However, HMM has heavy dependence on clean transitions from one state
to another, especially for continuously varying appliances. To alleviate this problem, a sparse coding
method based on structured prediction is developed [24]. Motivated by the success of deep learning, a
deep sparse coding is proposed [25]. However, a typical shortcoming is that more parameters need
to be learned for going deeper. Kelly uses a neural network to complete the load disaggregation
problem and gets good results [26]. But generally, state-based algorithms have a common drawback,
i.e., long periods of training and high computational complexity, which makes them difficult to apply
to real-time disaggregation.

Event-based algorithms have a relatively fixed processing procedure, including event detection,
feature extraction and event classification. To obtain accurate identification results, different
classification techniques are tried, including k-means [27], k-nearest neighbor (k-NN) [28], naïve
Bayes [29], maximum likelihood [30] and decision tree (DT) [31]. In [30] the maximum likelihood
classifier is designed to disaggregate load based on the power profiles, but it only works for single-state
loads. Zhao relies on graph signal processing (GSP) to realize the edge detection, clustering, and pattern
matching [31]. However, experimental results show that power fluctuation or a close power range of
appliances will influence algorithm performance. Qi adopts graph shift quadratic form constraint to
complete low-rate load disaggregation [32]. A novel combined k-means-SVM-based NILM method
is developed [33]. However, event-based methods face a common challenge, that is, most of the
existing algorithms only rely on a two-dimensional feature space of active and reactive power for load
identification without considering other additional features, such as time and sequence signatures.
Moreover, the same type of appliances in different households have quite different signatures, so it is
unsuitable to use a unified model to represent them.

The existing NILM methods are focused on detection of all appliances without considering the
applicability of load disaggregation in realistic applications, that is, there is no definition of an accurate
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load space related to the actual application. Load space refers to the range of load types to be analyzed.
In this paper, we define different load types that need to be analyzed. It also describes which loads
belong to different types. Because of the complexity of the original load space, it is impractical to
identify all devices based on a one-dimensional aggregated signal. So, there is an emerging need to
define a suitable load space.

In order to address the difficulty of identifying appliances with similar power, a linear discriminant
classifier group considering multidimensional features is designed in this paper. It is an event-based
method, which can work seamlessly with smart meter infrastructure without installing additional
acquisition devices. Considering the practical application of this study is to provide appliance-level
information for DR and energy-saving service, the types of the monitored load can be narrowed down
to some controllable and high-power loads.

This work formalizes a load identification technique based on the multi-feature integrated
classification (MFIC), where the only input is the time-stamped power readings from the smart meter.
The major contributions of this paper are as follows:

(1) Considering the different operating habits and inherent electrical characteristics of loads,
multidimensional features are used to model each appliance and improve the load discrimination.
In addition, due to the great difference of appliances signatures in different households, this paper
uses proprietary model database to replace the uniform feature database.

(2) Based on steady-state segmentation, a designed event detector in this paper has fewer parameters
and no dependence with the detection window.

(3) A linear discriminant classifier for each appliance is designed according to the overall similarity
of multi-features. Based on the designed discriminant classifiers, a discriminant classifier group
can be formed.

The structure of this paper is given as follows. Section 2 selects multidimensional features for
load modeling. In addition, a brief analysis of DR and energy-saving services is made to specify the
research objective and narrow down the load space. Section 3 elaborates on the problem definition and
the complete process of proposed MFIC algorithm. Section 4 presents experiments and their results.
The last section concludes the paper and discusses future works.

2. Appliance Modeling

2.1. Appliance Behaviour Modelling

The aim of NILM is to identify the electrical appliances inside the user. The schematic diagram is
shown in Figure 1. Self-adaptive establishment of an exclusive appliance model library for different
users is important to non-intrusive load identification. The NILM acquires the comprehensive power
consumption data at the power supply entrance. The power consumption data of all loads is included
in one collected signal, out of which the power consumption information of individual loads should be
separated and extracted. Therefore, exploiting distinguishable features to model appliance behavior is
a significant work for NILM.

Low-frequency signals contain less load information, so most of the existing low-rate NILM
studies can only use power indicators to characterize devices. The power values of some electrical
appliances are very close, so the accuracy is low when power is the only feature of identification. In fact,
the operating features of the load can be extracted from the load data. Through the analysis of the
concrete operation process of each appliance, some distinguishing features can be found. The power
consumption curves of several typical appliances are shown in Figure 2.
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Figure 2. Load profiles of eight typical appliances.

Figure 2 presents power consumption curves of several typical appliances, which show regular
operating features. As presenting a fixed working cycle and interval time in Figure 2, the refrigerator
runs in a periodic cycle for 15 min and closes for 51 min. A complete operation cycle of the dishwasher
can be divided into three main stages: wash, rinse and dry. The operation cycle is determined by its
internal structure. An oven is also an intermittent running load, but the ON/OFF-duration is not fixed.
The operation time is between 15 min and 1 h, decided by the users’ setting. Observing the curve of
washer dryer, we can find that the longest time is the first ON time followed by several ON/OFF cycles.
The number of ON/OFF cycles is related to laundry loads.

In this work, the following eight features are selected, divided into two categories, i.e., intrinsic
features and statistical features. Intrinsic features, known as the electrical features, are determined by
the appliance itself. Statistical features reflect users’ habits of using specific appliances, which can be
called non-electrical features [34]. For example, TV is used more in the evening than daytime, and the
lamp has similar statistical features.

Intrinsic features include the following four criteria:

• Active power change. This refers to the event caused by the state transition of appliances,
and appears as the rising or falling edge. The typical appliances can be divided into three
types: single-state, continuous varying and multi-state. The single-state load has a pair of
identical rising/falling edges and constant power consumption between them, such as microwave.
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A continuous varying load such as refrigerator generally has a pair of different rising/falling edges
and the power consumption during operation is continuously changing. Multi-state load has
more than one working stage, such as a dishwasher.

• On-duration. This refers to the continuous operating time in a periodic cycle, which is mainly
applied to the loads with fixed operating periods, such as a refrigerator. As mentioned above,
the On-duration of the refrigerator is 15 min.

• Off-duration. It stands for the continuous standby time in a periodic cycle. For instance,
the Off-duration of refrigerator is 51 min. Figure 3 illustrates the On-duration and Off-duration of
refrigerator in a cycle.

• On times. This means the number of turning on contained in each operation cycle. The “On
times” is used for identification of household appliances with a fixed operating process, such as
dishwashers. The dishwasher experiences the same process every time in a complete washing
process. Observing the power consumption curve during the whole washing process, we can
find that the times of high power operation mode fluctuate near a stable value, and so do the
low power operation mode. Since this fully automatic dishwasher has a fixed operation washing
process, the “On times” remains unchanged.
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Statistical features serve to emphasize the users’ habits of using specific appliances, including the
following four kinds:

• Switching-time. This refers to the possible switching on/off time, which is related to the function
of an appliance.

• Usage frequency in one day. This refers to the times that the load may be opened in a day. There
are many appliances operating in an ON/OFF cycle, such as an oven, air conditioner and washer
dryer. When calculating the usage frequency of loads in a day, it is necessary to ensure that a
complete operation process is counted once.

• Working days in a week. This means the days that an appliance may work within a week.
For example, a refrigerator is a constant-opening device, while washing machine is less likely to
be used every day.

• Duration of a complete use process. This is used to record the duration of an appliance from start
to shut down, including all subsequences ON/OFF cycles.

2.2. Determine the Load Space to be Monitored

As described in the introduction, it is difficult to identify all appliances by using a single
identification approach, so it is essential to build a reasonable load space according to the specific
application of NILM.

Load is classified into three categories according to the state of participating demand response
(DR): uncontrollable load (UCL), transferable load (TL) and interruptible load (IL). UCL refers to the
load that has no energy storage capacity and may be opened at any time. It has no capacity to transport
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power consumption basically and its fluctuation range is small. TL is a type of load that can transport
the energy consumption, because the using time is flexible and the power consumption is fixed, such as
washing machine and electric rice cooker. Consequently, on the premise of the completion of the work
requirements, it can participate in DR by changing the running time. An air conditioner and water
heater are typical ILs, which can be interrupted temporarily without affecting consumer comfort to
reduce the power consumption. On the contrary, the interruption of UCL is likely to affect consumer’s
comfort, so TL and IL will be treated in different ways in DR, and managed centrally at the control
center after the load identification. It is necessary to divide TL and IL into different load spaces
in identification.

The adjustable high-power loads are suitable for participating in DR, so the research mainly
focuses on identifying the adjustable high-power loads, while there is no need to track the appliances
with small power. The final load space to be monitored is listed in Table 1. In addition, because there
are too many UCLs in a family, such as a TV and computer, we use high-power electrical appliances to
refer to a large number of loads in Table 1. This does not mean that the number or proportion of UCLs
in user families is small. We classify all electrical appliances in the family to achieve the goal of mainly
studying IL and TL.

Table 1. Load space to be monitored.

Types Loads

IL or TL HVAC (heating, ventilation and air conditioner), electric heat loads (water heater, furnace,
oven), electric vehicle charger, washer and dryer, dishwasher, refrigerator

UCL High-power devices

3. Methodology

3.1. Load Disaggregation Definition

The definition of load disaggregation can be expressed as follows: Given the mixed signal collected
at the power entrance of a house, we need to disaggregate the mixed signal into a series of individual
components attributed to specific appliances. The mixed signal consists of individual appliance signals
which are switched ON at the given moment. It is necessary to design a Boolean coefficient an,m(k),
which determines whether the mode m of appliance n is ON at the kth sampling point. Mathematically,
the mixed signal obtained can be formulated as a linear combination of some unknown appliance
power consumption data, which is shown as Equation (1).

P(k) =
∑

N
n=1

∑
M
m=1an,m(k)pn,m(k) + e(k) (1)

where, P(k), k = 1,2,3, . . . ,L is the aggregated power signal (L is the number of samples) and pn,m(k)
denotes the individual power consumption of appliance n in mode m. N and M are the number of
appliances and modes, respectively. e(k) stands for the noise signal and small appliances whose power
is very small so that they have little effect on mixed signals, including phone chargers, DVD player
and so on. So it can be ignored in load identification. The objective is to decode P(k) and obtain the
status of each appliances by using a set of appliance models in the house.

In existing research, subjected to some prior information, combination optimization is a common
method to solve the Equation (1), which searches the optimum appliance status by minimizing the
difference between the actual aggregate power and the sum of disaggregated appliance powers.

an,m(k) = argmin
an,m(k)

∣∣∣P(k) −∑ N
n=1

∑ M
m=1an,m(k)pn,m(k)

∣∣∣ (2)
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3.2. Algorithm Overview

In reality, appliances may not operate at their rated power, because the actual power consumption
is proportional to the power of total load. Furthermore, different appliances may operate in
similar electrical signature “power”. It is difficult to solve the problem in Equation (2) by
combination optimization.

The actual electric data display that it is easy to segment the total signal into some steady-state
process by clearly step changes. Therefore, an event-based algorithm is designed to solve the load
disaggregation problem, including three steps: (1) event detection and clustering, (2) event paring and
electrical feature extraction and (3) feature matching. Firstly, we detect the significant active power
changes, which represents that some appliances changed their status. Then, events with similar power
should be grouped, i.e., clustering. After the formation of clusters, events in “positive” clusters require
to be paired with those in negative clusters. Finally, extract the features from each positive-negative
cluster pair, and match them with the appliance models. The flowchart is illustrated in Figure 4.Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 20 
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3.3. Steady-State Segment Based Event Detection

One important characteristic of event-based load disaggregation is to detect the significant rising
or falling edge in active power, and record the power value and occurrence time of events. This paper
presents an event detection method based on steady-state segment. It has two parameters, one is noise
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threshold dn, the other is power threshold dp. The schematic diagram of the event detection is shown
in Figure 5.
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Each appliance can be represented by two states: (1) steady state, including ON and OFF state;
and (2) transition state, i.e., the process of changing operation state of multi-state appliance. As long
as the steady-state segments are identified, the duration of the power-on or power-off processes
for different appliances can be determined adaptively. Load switching is successively based on the
switch continuity principle [3], i.e., only one state transition can occur within the sampling time
interval. It is feasible to use the step power variation in aggregated signal as the discriminant feature
of event occurrence.

The power grid noise exists in the actual electric environment all the time. Low-frequency data
can largely avoid noise interference, because the sampling frequency is much less than the noise
frequency. In order to further improve the accuracy of the algorithm, the noise threshold is introduced
to minimize the possibility of noise impact. Considering the robust to the possible variation of power
amplitude caused by the noise, an appropriate event extraction method is designed. The local mean
and variance of power are used to capture the load steady state. Assuming P(k), k = 1,2,3, . . . ,L is a
given aggregate power signal and T(k), k = 1,2,3, . . . ,L is the corresponding timestamp. By calculating
the power changes at a certain time point, as well as before and after two time points, we can judge
whether the household appliances are running steadily at that time. Two quantities are be calculated
by Equations (3) and (4), where the former is the local mean power and the latter is the local variance.

µP(k) =
1
3

∑
L
i=−1P(k + i) (3)

σP(k) =
1
3

∑
L
i=−1(P(k + i) − µP(k))

2 (4)

The reason for choosing 1/3 is that it represents the mean and variance of three time points.
Let δn

2 denote the noise variation in power grid. If σp(k) < δn, P(k) is considered in a steady state
and then two variables Pstd(m) and Tstd(m) are added to record the mth steady state, shown as follows.

Pstd(m) = µP(k) (5)

Tstd(m) = k (6)

After all the steady state segments are identified, the power difference between two consecutive
steady states is calculated as Equation (7):

Pstd(m) = Pstd(m) − Pstd(m− 1) (7)
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Set by users, the value of power threshold δp depends on the load events they are interested in.
For example, if users focus on the events with power change greater than 100 W, they can set δp = 100.
If abs(4Pstd(m))> δp, it indicates that a new event is detected. The power value and timestamp of this
event can be obtained as:

Pevt(n) = ∆Pstd(m) (8)

Te_start(n) = T(Tstd(m− 1)) (9)

Te_end(n) = T(Tstd(m)) (10)

where n represents the nth event. Pevt(n) stands for the power value of the nth event, Te_start(n) and
Te_end(n) stand for the start time and end time of the event, respectively.

3.4. Event Clustering

The collection of the registered events Pevt(n), n = 1,2, . . . ,Ne is the basis of the event clustering.
Ne denotes the number of events detected. Each state of appliances has a unique value and only one
appliance may have state transition in one sampling interval, it is reasonable to gather events with
similar value into one cluster. Each cluster represents one kind of state transition of appliance.

The proposed clustering algorithm without prior knowledge can adaptively determine the number
of clusters. There are two steps:

Step (1): separate the rising and falling edges of the event candidates into two collections of
Pevt_up and Pevt_down. Then the rising and falling edges are arranged in descending order according to
the absolute value of power, respectively. Set cluster threshold as Thrc. When the difference between
two consecutive rising or falling edges is greater than Thrc, a new cluster is generated. The value of
Thrc is set small so that the clustering results are more detailed. However, the event caused by the same
appliance is also easy to separate some events into different clusters wrongly because of the power
fluctuation. In order to solve this problem, we merge some clusters with the similar average power.
The detailed process is illustrated in step 2.

Step (2): calculate the mean power of each cluster, and the mean power difference between two
adjacent clusters is obtained. If the difference is less than a certain value, it can be considered that
these two adjacent clusters belong to the same appliance state. Thus, we will merge them and the new
cluster candidates will be formed.

3.5. Building Appliance Candidate Model

After clustering the events, “positive” clusters containing rising edges and “negative” clusters
composed of falling edges are obtained. Then, the pairing method is designed to generate appliance
candidate models automatically.

Most of the existing NILM algorithms only consider the single-state appliances, so the identification
of multi-state loads is limited. The multi-state appliances are very common which cannot be described
by ON/OFF model, so it is necessary to establish an appropriate model for them. The finite state
machine (FSM) [1] is a typical model for these appliances. The sum of power changes in any cycle
of state transition is zero, which can be called zero loop-sum constraint (ZLSC) [1]. Meanwhile,
the operating states in an FSM model have different power levels, i.e., uniqueness constraint (UC).
The two constraints ensure that it is possible to construct individual FSM from streams of events.

In the following, the method of generating appliance models is introduced. For the single-state
appliances, an interruption model is established, and for controllable load, a FSM model is established.
It includes two main steps, i.e., cluster pairing and event pairing.

Step (1): to construct ON/OFF models for the single-state appliance candidates, this paper pairs
the “positive” cluster and “negative” cluster with similar absolute average power. We take advantage
of special algebraic properties of events in a complete transition cycle, i.e., ZLSC and UC, to construct
the FSM models. In order to reduce the complexity of cluster pairing, the ON/OFF models are built
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firstly. After the completion of all positive-negative cluster pairs, they are removed from the total
clusters and FSM models are established from the other clusters.

Step (2): after the cluster pairing, some cluster pair candidates for single-state or finite-state
appliances will be generated. It is essential to further match the events in each cluster pair. For example,
each rising edge in the positive cluster is matched with a falling edge in the paired negative cluster
by difference in the pairing features of two events. Then, a specialized forward-backward pairing
procedure is designed to realize the effective pairing.

Let Cp and Cn denote two paired clusters, where |Cp| and |Cn| denote their cardinality.

(a) Forward Pairing

For each Cp(i)∈Cp, the forward pairing is to match an optimal falling edge among all elements in Cn

according to the order from i = 1 to |Cp|-1. Normally, the ON and OFF events appear alternately, that is,
using time stamps to sort events belonging to the same appliance will get an ON/OFF/ON/OFF . . .
sequence. Thus, the falling edge paired with Cp(i) must occur after Cp(i) and before Cp(i+1). Denoted
by Ω, the subset of Cn that satisfy the above condition are considered as a set of candidates. Let |Ω|

represent the element number in Ω, the values of |Ω| can be divided into three cases. Different pairing
processes are designed for these cases. Two vectors Mp and Mt are defined to represent the power
difference and time intervals between paired events.

Case 1: When |Ω| = 1, the absolute power difference Ωp and time interval Ωt between Cp(i) and
the only element in Ω are calculated. The probability of pairing Cp(i) and the element in Ω can be
defined as:

ci =
Ωpmp + Ωtmt√

(Ωp2 + Ωt2)(mp2 + mt2)
(11)

where, mp stands for the mean value of the elements in Mp, and mt denotes the median value of the
elements in Mt.

If ci is larger than a given threshold, the only element in Ω can be considered as the paired falling
edge for Cp(i), otherwise they are not matching. Then the Ωp and Ωt between paired events in vector
Mp and Mt are recorded.

Case 2: When |Ω|>1, the Ωp and Ωt between Cp(i) and each candidate in Ω are calculated.
The probability of pairing Cp(i) and the jth candidate in Ω can be obtained as:

ci( j) =
Ωp( j)mp + Ωt( j)mt√

(Ωp( j)2 + Ωt( j)2)(mp2 + mt2)

(12)

Falling edge Cn corresponding to the maximum value in vector Ci is searched. If the maximum
value is larger than the given threshold, Cn can be judged to the paired falling edge for Cp(i). Then the
power difference and time intervals between paired events can be obtained.

Case 3: When |Ω| = 0, there is no appropriate element in Cn pairing with Cp(i). It is not applicable
to a special situation, i.e., Cp(i+1) is clustered wrongly. So backward pairing is proposed, in this case of
the lower accuracy with forward pairing only.

When the forward pairing is completed, all event pairs are stored in matrix Ef.

(b) Backward Pairing

For each Cn(i)∈Cn, the backward pairing is to match an optimal rising edge among all elements of
Cp according to the order from i = |Cn| to 2. According to the analysis in forward pairing, the rising
edge paired with Cn(i) must occur before Cn(i) and after Cn(i-1). The subsets of Cp that satisfy the above
condition are considered as a set of candidates, denoted by Ψ. Let |Ψ| represent the element number
of Ψ. The specific realization process is basically the same with the former pairing. The accuracy
obtained by backward pairing is low when |Ψ| = 0, which needs to be analyzed with forward pairing
results. When the forward pairing is completed, all event pairs are stored in Eb.
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Finally, the optimal matching results can be obtained by comparing Ef and Eb. The event pairs
that appear in both Ef and Eb can be considered to be matched correctly. The essence of this situation is
that there are multiple falling edges between two successive rising edges, leading to inaccurate results
of backward pairing. Moreover, if there are some event pairs in Ef and Eb that have the same falling
edges but different corresponding rising edges, then the pairing results in Eb are considered to be
optimal. The essence of this situation is that there are multiple rising edges between two successive
falling edges, leading to inaccurate results of forward pairing.

3.6. Appliance Identification Based on Multi-Feature Integrated Classification (MFIC)

With the aforementioned process, the raw data recorded by smart meter is disaggregated to a
set of appliance candidate models and each model carries unique information corresponding to an
appliance footprint. Then, the features are extracted to label each candidate models combined with an
existing feature library for the particular house.

3.6.1. Similarity Index of Single Feature

Intrinsic features are determined by the internal structure of appliances, which are not affected by
the user’ behavior habits, and relatively stable with slight fluctuations. The similarity indices of these
features can be quantified as:

S(·)(v) = exp
(
−k
|v− vmean|

H(v− vmean)

)
(13)

H(∆v) =
{
|vmax − vmean|, ∆v ≥ 0
|vmin − vmean|, ∆v < 0

(14)

where, (·) denotes the intrinsic feature of detection. v represents the detected value of certain feature,
and vmean denotes the mean value of certain feature recorded in the feature library. Considering the
slight fluctuations in these intrinsic features, vmax and vmin are used to represent the limits of upper
and lower fluctuation bound. H(·) is a piecewise function. k is a calibration parameter to ensure that
the similarity index is almost 0 when the detected value ν exceeds νmax and νmin. k = 1 in this paper.

Statistical features are expressed as a range rather than a fixed value. The similarity calculation of
statistical features is defined as:

S(·)(x) =
{

1, x ∈ R(·)

0, x < R(·)
(15)

where, (·) stands for the statistical feature of detection. x is the statistical value of specific feature.
R(·) denotes the range of possible values for a certain feature.

3.6.2. Appliance Recognition Based on Linear Discriminant Classifier Group

This section aims to label each appliance candidate model based on similarity indices. In order to
synthetically consider the effects of various features in appliance identification, a linear discriminant
classifier is designed for each appliance based on the similarity of all features. All the classifiers
constitute a linear discriminant classifier group. The similarity is calculated by the sum of weighted
similarity of different features. Because the feature weights of different appliances are inconsistent,
the particular weight vector needs to be set for each linear discriminant classifier separately. It is firstly
estimated by observing the difference of different appliances’ features. For instance, a refrigerator has
specific ON-duration and OFF-duration, so the two features will be emphasized, while they are not
important for light. Generally, the intrinsic features are more important than statistical features since
statistical features are easily influenced by the external environment. After the predefinition of weight
vectors, it is necessary to adjust their values to exploit the test data in different times and environments,
so as to ensure the identification accuracy.

The detailed process of labeling appliance candidate models is described below. At first,
the intrinsic and statistical features of each model are extracted. Then each unlabeled model will be
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classified by the linear discriminant classifier group in this particular house. The classification result of
the jth classifier is calculated as:

d(S j) = ω j
TS j − δ j (16)

where, ωj stands for the weight vector of the jth classifier, Sj includes feature similarity indices between
the unlabeled model and the jth classifier, and δj represents the judgment threshold of the jth classifier.
If d(Sj)> = 0, the unlabeled model is determined as the appliance corresponding to the jth classifier;
otherwise not.

3.6.3. Performance Metrics

In order to evaluate the effects of signals disaggregation and compare with existing implemented
algorithms, some indices are needed to evaluate the performance. Since an event-based NILM
algorithm is designed in this paper, it is essential to measure the accuracy of this method in predicting
which appliance is running in each state. Classification accuracy indices, such as precision, recall,
and F-measure, are suitable for evaluation. Precision denotes the positive predictive values, i.e.,
the correct proportion of samples identified as appliance c. Recall represents the true positive rate, i.e.,
the proportion of samples belonging to appliance c that are recognized correctly. F-measure is harmonic
mean of precision and recall. These typical classification metrics can be formulated as follows:

Pc = TPc/(TPc + FPc) (17)

Rc = TPc/(TPc + FNc) (18)

Fc = 2× (Pc ×Rc)/(Pc + Rc) (19)

where, the subscript c is used to mark different appliances or states. TPc indicates true positive, i.e.,
the correct judgment that appliance c is ON; FPc represents the false positive, i.e., appliance c is judged
to be ON but actually OFF, FNc denotes false negative, that is, appliance c is ON but is wrongly judged
as OFF.

It is important to feedback the detailed power consumption of each appliance to users, so the
accuracy of estimated power also needs to be considered. To compare the estimated power with the
actual power consumption, disaggregation accuracy (DA) and percentage of contribution in energy
consumption (PCEC) are used to evaluate the effects of different algorithms for reconstructing power
profiles. The DA provides a global comparison between the estimated power and the ground truth,
while the PCEC is used to calculate the contribution of each appliance in total power consumption.
The calculation formulas are shown as Equations (20) and (21).

DA = 1−

∑L
k=1

∑N
n=1

∣∣∣p̂n(k) − pn(k)
∣∣∣

2
∑L

k=1 P(k)
(20)

where, L is the number of disaggregated readings, N denotes the number of appliances in the house,
p̂n(k) represents the estimated power consumption of appliance n at the kth sample, pn(k) is the actual
power consumed at the kth sample for appliance n, and P(k) stands for the aggregated power at the
kth sample.

PCECn =
∑

L
k=1p̂n(k)/

∑
L
k=1P(k) (21)

where, PCECn represents the contribution of appliance n to total power consumption.

4. Experiment and Result Analysis

In order to verify the effectiveness of the proposed algorithm, experiments were carried out.
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Table 2 lists the threshold parameters in the experiment. Power threshold is denoted by δp, noise
variance threshold is δn, cluster threshold is Thrc, and threshold in event pairing (i.e., forward-backward
pairing) are εp.

Table 2. Threshold parameters.

Experiment Parameters Value Experiment Parameters Value

δp 100 δn 20
Thrc 100 εp 230

4.1. Event Detection and Clustering

Several appliances were selected from House 2, including refrigerator, microwave and dishwasher.
The refrigerator and microwave were used frequently and have high power consumption in this house.
A dishwasher is a typical multi-state load with adjustable potential. The identification process depends
on some statistical features, which requires abundant data samples to extract. Thus, the aggregated
power data in one week were selected for the experiment. Figure 6 shows the results of aggregated
data in event detection and event clustering in one week.
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Figure 6 illustrates that the significant changes from aggregated power data can be detected
accurately using the steady-state segment based on event detection method. After processing all
events with the proposed clustering method, eight different clusters were formed, including three
“positive” clusters and five “negative” clusters. It can be seen that the elements in each cluster had
similar power value.

Table 3 shows the effective detection rate of monitoring events of interest to us. From the Table 3,
it can be seen that the proposed algorithm can detect the events effectively.
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Table 3. The effective detection rate of the proposed algorithm.

Date Effective Detection Rate

Mon. 0.97
Tue. 0.98
Wed. 0.98
Thur. 0.96
Fri. 0.98
Sat. 0.97
Sun. 0.98

4.2. Event Pairing

Each positive cluster is matched to the magnitude-wise closest negative cluster according to
cluster pairing method. Then for each cluster pair, the forward-backward pairing approach is adopted
to search all matching events and reject the unmatched events. Repeat the above process through the
remaining unmatched events, until no events can be matched. In iteration, the positive-negative cluster
pairs completed the matching process will be stored as the ON/OFF models. When all ON/OFF models
are established, we remove them from the set of events and attempt to establish FSM models from the
remaining events. Figure 7 presents the results of building appliance candidate models. Four ON/OFF
models and one FSM model are established, and their corresponding time profile features are shown
in Figure 7. Although the power values of model 3 and 4 are close, they can still be separated due to
the large difference in the ON interval.
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The detailed results of the pairing are calculated and shown in Table 4. We can see that the positive
and negative power are very close, which proves that the proposed algorithm has good performance
in event pairing.

Table 4. The pairing result of the ON/OFF model 1.

Date Mon. Tue. Wed. Thur. Fri. Sat. Sun.

Positive power 1874 1885 1872 1802 1677 1889 1889
Negative power −1887 −1862 −1823 −1821 −1686 −1867 −1867

4.3. Load Labeling and Identification

The linear discriminant classifier group of House 2 is used to label each candidate model and
the results of each classifier are reported in Table 5. The classifier group of House 2 consists of
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seven typical appliances with great adjustable potential, including kitchen outlets, stove, microwave,
high-power state of dishwasher, low-power state of dishwasher, multi-state of dishwasher and
refrigerator. In particular, different modes of dishwasher with different operation cycles are treated
as separated appliances. As can be seen in Table 5, the models that are identified as appliance 4, 5
and 6 are all labeled as a dishwasher. From the signs of classifier value (greater than 0), model 1 is
determined as appliance 3 while model 2 is appliance 4. Model 3 and model 4 and model 5 represent
appliance 7, appliance 5 and appliance 6. If there is no positive value for a model, it means that the
model is caused by an unregistered appliance in the feature database, which may be a new or low
power consumption appliance not interested by users.

Table 5. Identification results of separated candidate models.

Separated Model
Appliance Classifiers

App 1 App 2 App 3 App 4 App 5 App 6 App 7
Mod 1 −0.85 −0.79 0.04 −0.85 −0.70 0 −0.79
Mod 2 −0.62 −0.74 −0.38 0.06 −0.56 0 −0.70
Mod 3 −0.47 −0.77 −0.73 −0.77 −0.65 0 0.03
Mod 4 −0.34 −0.55 −0.45 −0.60 0.10 0 −0.58
Mod 5 0.02

For the detailed comparison between the disaggregated models and corresponding appliances,
the power consumption of each model is reconstructed. The essence is to transform a predicted label
into predictive power consumption. The actual and reconstructed power profiles of each appliance are
illustrated in Figure 8. The three figures on the left show the power comparison in one day. It can
be seen that the algorithm can accurately identify the operation state of each appliance. The power
profiles within an interval are displayed on the right side. For the single-state load such as microwave,
the power signal can be estimated quite accurately.
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To comprehensively verify the effectiveness of the proposed algorithm, the PCEC values are
shown in a schematic pie plot. The results of Houses 1, 2, 6 during one week are presented in Figure 9,
which illustrates that some appliances in the feature database are OFF during the whole period and the
proposed algorithm can detect this pattern accurately. Likewise, there is not any missing identification
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of an appliance being OFF shown in the disaggregation result. The PCEC values estimated by our
method are closer to the ground truth, which further verifies the ability of the proposed algorithm in
signal reconstruction. For the three houses, the average absolute differences between the results and
the actually measured values are 3.97%, 0.30% and 0.73%, respectively.Appl. Sci. 2019, 9, x FOR PEER REVIEW 16 of 20 
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Figure 9. Comparison of actual and estimated percentage of contribution in energy consumption 
(PCEC) values for House 1, 2, 6. 

4.4. Performance Comparison of Algorithms 

In this section, the performance of proposed classification algorithm is compared with some 
existing algorithms by the parameters of precision, recall and F-measure. 

In order to calculate the classification accuracy, the results of the proposed algorithm and 
unsupervised GSP-based approach [31] on house 1, 2 and 6 are represented in Table 6. It demonstrates 
that the proposed method has better performance in classification accuracy compared with GSP-
based method for all houses. 

Table 6. Classification performance comparison with graph signal processing (GSP)-based method 
for Houses 1, 2, 6. 

House Load Pc(Proposed) Rc(Proposed) Fc(Proposed) Pc(GSP) Rc(GSP) Fc(GSP) 

House 1 

Washer dryer 0.99 0.89 0.95 0.95 0.63 0.78 
Oven 0.99 0.78 0.86 0.95 0.49 0.58 

Bathroom 0.99 0.95 0.98 0.8 0.64 0.61 
Dishwasher 0.99 0.93 0.95 0.95 0.21 0.39 
Refrigerator 0.99 0.82 0.93 0.98 0.71 0.83 

House 2 

Kitchen outlets 0.99 0.99 0.99 0.92 0.87 0.9 
Microwave 0.95 0.99 0.99 0.96 0.88 0.92 
Refrigerator 0.98 0.95 0.98 0.87 0.78 0.8 
Dishwasher 0.98 0.99 0.99 0.65 0.39 0.38 

Oven 0.98 0.99 0.99 0.28 0.9 0.41 

House 6 

Bathroom 0.98 0.96 0.97    
Refrigerator 1 0.94 0.96 0.9 0.78 0.82 

Air conditioner 0.99 0.99 0.99 0.99 0.79 0.9 
Stove 0.97 0.65 0.81 0.65 0.5 0.6 

Kitchen outlets 0.98 0.98 0.98 0.52 0.51 0.58 

Furthermore, the performance of proposed MFIC algorithm is compared with the state-of-the-
art NILM approaches used for low sampling rate and power signals. The F-measure values of MFIC, 
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Figure 9. Comparison of actual and estimated percentage of contribution in energy consumption
(PCEC) values for House 1, 2, 6.

4.4. Performance Comparison of Algorithms

In this section, the performance of proposed classification algorithm is compared with some
existing algorithms by the parameters of precision, recall and F-measure.

In order to calculate the classification accuracy, the results of the proposed algorithm and
unsupervised GSP-based approach [31] on house 1, 2 and 6 are represented in Table 6. It demonstrates
that the proposed method has better performance in classification accuracy compared with GSP-based
method for all houses.

Table 6. Classification performance comparison with graph signal processing (GSP)-based method for
Houses 1, 2, 6.

House Load Pc(Proposed) Rc(Proposed) Fc(Proposed) Pc(GSP) Rc(GSP) Fc(GSP)

House 1

Washer dryer 0.99 0.89 0.95 0.95 0.63 0.78
Oven 0.99 0.78 0.86 0.95 0.49 0.58

Bathroom 0.99 0.95 0.98 0.8 0.64 0.61
Dishwasher 0.99 0.93 0.95 0.95 0.21 0.39
Refrigerator 0.99 0.82 0.93 0.98 0.71 0.83

House 2

Kitchen
outlets 0.99 0.99 0.99 0.92 0.87 0.9

Microwave 0.95 0.99 0.99 0.96 0.88 0.92
Refrigerator 0.98 0.95 0.98 0.87 0.78 0.8
Dishwasher 0.98 0.99 0.99 0.65 0.39 0.38

Oven 0.98 0.99 0.99 0.28 0.9 0.41

House 6

Bathroom 0.98 0.96 0.97
Refrigerator 1 0.94 0.96 0.9 0.78 0.82

Air
conditioner 0.99 0.99 0.99 0.99 0.79 0.9

Stove 0.97 0.65 0.81 0.65 0.5 0.6
Kitchen
outlets 0.98 0.98 0.98 0.52 0.51 0.58

Furthermore, the performance of proposed MFIC algorithm is compared with the state-of-the-art
NILM approaches used for low sampling rate and power signals. The F-measure values of MFIC,
the combined k-means/SVM classification [35], the HMM-based method and the decision tree (DT)
approach [17] are denoted as FU, FS, FH, and FDT, respectively. The comparison results are shown in
Table 7.
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Table 7. Comparison of four low-rate NILM algorithms using the REDD database.

Appliance FS FH FDT FU

Air conditioner 0.12 0.89 99.9
Washer dryer 75.36 0 0.88 94.2
Dishwasher 35.97 0.04 0.32 99.2

Oven 79.13 85.6
Refrigerator 94.35 0.90 0.97 97.8
Microwave 25.91 0.47 0.97 97.9

Stove 44.4 0.21 0.33 98.9

House FS FH FDT FU

House 1 77.52 77.06 78.09 92.39
House 2 82.17 82.38 81.41 98.58
House 6 95.58 72.76 75.94 94.53

On the one hand, we study the variation of performance with respect to different appliances,
mainly including some controllable or high-power loads in the REDD database. It can be seen that
the MFIC algorithm achieves the best disaggregation in terms of F-measure for all appliances. HMM
yields significantly have worse results, but it usually performs well in identifying refrigerator because
the continuity and singleness (i.e., no other devices operates, especially at night) of its operation bring
sufficient data for training. The results of k-means/SVM and DT perform better but worse than those
of MFIC. On the other hand, the average results for three REDD houses are compared. The results of
combined k-means/SVM classification and HMM are shown in [31], and the results of DT are reported
in [36]. The proposed MFIC algorithm has consistently high performance across all three houses and
outperforms other algorithms in both House 1 and House 2. The combined k-means/SVM method
shows a higher accuracy in House 6.

Moreover, we use the disaggregation accuracy metric to compare the performance of MFIC
algorithm with the Bayesian HMM [21], segmented integer quadratic constraint programming
(SIQCP) [23], sparse coding (SC), and discriminating sparse coding (discSC) [25]. The comparison
results are given in Table 8. Obviously, the MFIC algorithm is improved significantly compared with
the SC-based method from previous work and is superior to the Bayesian HSMM model and SIQCP
solver, with the disaggregation accuracy increased by 11.1% and 7.1%.

Table 8. Disaggregation accuracy comparison with other methods.

Algorithm
Disaggregation Accuracy (DA)

House 1 House 2 House 6 Mean

MFIC 90.3% 92.0% 95.5% 92.6%
Bayesian HSMM 82.1% 84.8% 77.7% 81.5%

SIQCP 78.4% 86.4% 91.6% 85.5%
SC 57.2% 65.4% 58.1 60.2%

discSC 58.1% 68.3% 53.9% 60.1%
DSC(Greedy) 60.8% 71.1% 61.7% 64.5%
DSC(Exact) 64.3% 74.9% 64.2% 67.8%

In addition, we compare with the latest NILM method based on random forest [6] by processing the
low-frequency data set of REDD. The comparison results are shown in the Table 9. The random forest
method is to use electrical features as training data and adopt random forest method to disaggregation.
From the comparison, we can see that the proposed MFIC algorithm performs better in disaggregation.
It can disaggregate various loads more accurately.
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Table 9. Comparison of existing NILM algorithms and proposed algorithm.

House Load Fc(Proposed) Fc(Random Forest)

House 1

Washer dryer 0.95 0.9
Oven 0.86 0.78

Bathroom 0.98 0.88
Dishwasher 0.95 0.86
Refrigerator 0.93 0.85

House 2

Kitchen outlets 0.99 0.9
Microwave 0.99 0.88
Refrigerator 0.98 0.87
Dishwasher 0.99 0.90

Oven 0.99 0.90

House 6

Bathroom 0.97 0.90
Refrigerator 0.96 0.89

Air conditioner 0.99 0.88
Stove 0.81 0.6

Kitchen outlets 0.98 0.91

5. Conclusions

In this paper, a MFIC load disaggregation method is presented, where the only input is the
time-stamped power readings from the smart meter. In order to meet the load-monitoring requirements
of demand response and energy conservation, the load space to be monitored is narrowed down to some
controllable and high-power consumption loads. The system uses a steady-state segmentation-based
algorithm to detect events and combines multidimensional features, both electrical and non-electrical,
to improve the accuracy of load identification. As the experimental results demonstrated, the linear
discriminant classifier group gives excellent classification performance and correctly identifies the
devices presented in the load space. Compared with existing NILM approaches, the separation accuracy
of the MFIC algorithm is significantly improved due to the reduced load space. Meanwhile, for some
loads with similar power, our algorithm can still correctly separate them from aggregate signals.

In future work, we will introduce a machine learning algorithm to further study the adaptive
adjustment of load weight parameters. More accurate load models will be established to further
improve the accuracy of load identification.
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