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Abstract: Recently, deep learning has been successfully applied to network security assessments
and intrusion detection systems (IDSs) with various breakthroughs such as using Convolutional
Neural Networks (CNN) and Long Short-Term Memory (LSTM) to classify malicious traffic.
However, these state-of-the-art systems also face tremendous challenges to satisfy real-time analysis
requirements due to the major delay of the flow-based data preprocessing, i.e., requiring time for
accumulating the packets into particular flows and then extracting features. If detecting malicious
traffic can be done at the packet level, detecting time will be significantly reduced, which makes
the online real-time malicious traffic detection based on deep learning technologies become very
promising. With the goal of accelerating the whole detection process by considering a packet
level classification, which has not been studied in the literature, in this research, we propose a novel
approach in building the malicious classification system with the primary support of word embedding
and the LSTM model. Specifically, we propose a novel word embedding mechanism to extract packet
semantic meanings and adopt LSTM to learn the temporal relation among fields in the packet header
and for further classifying whether an incoming packet is normal or a part of malicious traffic.
The evaluation results on ISCX2012, USTC-TFC2016, IoT dataset from Robert Gordon University and
IoT dataset collected on our Mirai Botnet show that our approach is competitive to the prior literature
which detects malicious traffic at the flow level. While the network traffic is booming year by year,
our first attempt can inspire the research community to exploit the advantages of deep learning to
build effective IDSs without suffering significant detection delay.

Keywords: deep learning for network security; long short-term memory; malicious traffic classification

1. Introduction

In a gigantic connected world like the Internet-of-Things (IoT), protecting the network from
network attacks may require a comprehensive approach to defeat while under the limitation of the
existing resources, e.g., the capacity of the gateway or edge server. The task is getting much harder
with the rapid increase of the volume of attacks such as the distributed denial of service (DDoS) from
IoT devices. For example, a Mirai-based botnet launches one of the biggest DDoS attacks in history
directed at Dyn in October of 2016. The attack surpassed 1 Tbps at peak and created disruption for
many major sites, including AirBnB, Netflix, PayPal, Visa, Amazon, the New York Times and so on.
Currently, the variants of Mirai malware such as Satori and Miori are still storming to the network
with the new records of traffic volume towards the victim, including the systems of the enterprise
companies. In practice, the attacker often handles a large number of the botnets of injected IoT devices
to launch such an attack. As a result, detecting the malware traffic in the early period of distributing the
malicious code can significantly help to prevent the malware from becoming widespread, and mitigate
the attack magnitude.
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Over the decades, the malicious traffic detection system is the top topic and considered the most in
the intrusion detection system (IDS) field. Thus far, the most popular approach of such IDSs is to build
a classification mechanism to distinguish the incoming traffic into benign and malicious classes. An IDS
can use the signature-based or rule-based approach to identify abnormal traffic. Apparently, the major
drawbacks of these traditional IDSs include: (1) requiring many efforts, e.g., labor, to maintain the
signature database and updates; (2) becoming ineffective for maintaining such database if the new
traffic types or attack variances increasingly spike in a short time. In addition, many adversaries
still have certain advantages because exploiting vulnerabilities in the systems of millions of codes,
including the zero-day ones available on the darknet, may not require much effort. When the ecosystem
of Internet-connected systems expands and the number of IoT devices inside increased rapidly,
the attack surface also increases. Consequently, that increase can cause a greater risk of attack and
easily overwhelm the update requests. Note that the traffic promises to explode quickly when massive
quantities of IoT applications are predicted to flood the market in the next few years, particularly with
the readiness of 5G networks. In this case, deep learning promises to be a game changer to ignite
new detection approaches. The most benefits of the deep learning approaches are to build a thorough
pattern that can highly represent the characteristics of a specific object through auto-learning a large
volume of data and species.

Although applying deep learning (DL) in network security has just emerged recently, the topic
has received a lot of attention from the research community [1–7] due to the robust auto-learning
ability of DL. In addition, the evolution and the increased availability of GPU-processors significantly
help to accelerate matrix computations and massive mathematical calculations, thus directly
supporting the feasibility of the DL-based approaches. Deep learning for malicious traffic
detection is generally categorized into many classes that are primarily based on the built-in
network model, e.g., Convolutional Neural Network (CNN), Recurrent Neural Network (RNN)
or unsupervised learning such as an auto-encoder. However, existing literature still suffers several
critical drawbacks. First, such systems are built on the flow-based approach (i.e., collecting packets
of the same flow for a certain period of time and then classifying packets into flows) and evaluated
offline. Since the system needs to allocate significant time for accumulating the traffic flow, it is not
applicable to an online real-time system. This packet collection time can be extremely high if the flow is
likely the part of a long session data. Furthermore, extracting the features for the flow-based detection
system also requires a certain period of time. Apparently, this whole traffic profiling process naturally
increases the overall time of the detection. Secondly, the flow-based classification can require a lot of
resources, e.g., memory and storage, to store and process the accumulated traffic, including the deep
checking on the assembled data. Some recent works, as well as our previous work [8], have shown
that it is not necessary to examine all packets in a flow to determine whether it is a malicious flow;
instead, a few first packets of the flow are enough for the detection purposes.

Based the above observation, in this research, we propose a novel approach to build a packet-based
malicious traffic classification framework. Instead of wasting time on waiting for a complete flow
of packets and then launching the classification, we use word embedding to learn the similarity in
semantics and syntax of header fields a packet and leverage LSTM to learn temporal features of the
fields. The goal of the method is to identify the attack only by directly monitoring a packet.

Due to considering the traffic at the packet level, our system has significant advantages to
speed up the detection process, e.g., ignore checking a large number of packets in a session.
The experimental results show that our method is competitive and prominent better in the term
of accuracy, precision, recall rate, and F1-measure as compared to the prior work.

In summary, the main contributions of this study are as follows:
(1) We propose an LSTM-based deep learning approach for the packet-level classification in

IDSs. Specifically, our approach can distinguish semantic meanings of malicious traffic by packet,
and are thus highly competitive with the flow-based DL approaches while reducing significant time
on flow processing.
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(2) We propose a novel word-embedding and LSTM model to classify the incoming packet
into the normal and abnormal state. The evaluation results of the proposed model on ISCX2012,
USTC-TFC2016, IoT data set from Robert Gordon University and IoT data set collected on our Mirai
bonet show that the proposed framework can achieve near 100% accuracy and precision in detecting
malicious packets.

(3) Our discussion on packet-based deep learning classification and detection promises to provide
valuable information and inspire the research community to overcome the remaining challenges,
particularly for the target of speeding up the detection process in DL-based IDSs.

The remainder of this paper is organized as follows. Section 2 lists several relevant fundamental
concepts and state-of-the-art work of traffic classification and deep learning detection approaches.
Section 3 presents our methodology and the detail architecture of the packet classification module in
our classification system, along with the data set for evaluation. We show the experimental design and
results in Section 4. The conclusions and future work of this paper are summarized in Section 5.

2. Related Work

Deep learning for malicious traffic detection has gained several notable achievements with
various network models. For example, the authors in [2] proposed a novel network-based anomaly
detection method which extracts behavior snapshots of the network and uses deep autoencoders
to detect anomalous network traffic emanating from compromised IoT devices. The method is
evaluated on commercial IoT devices infected by authentic botnets such as Mirai and BASHLITE.
However, the performance of the work primarily relies on several self-generated synthetic data sets,
which may lack the diversity of data exchange. In another research work [3], the authors proposed
a malware traffic classification method using CNN by considering traffic data as images. The work is
one of the first attempts to apply a representation learning approach for malware traffic classification
from raw traffic. Unfortunately, the lack of detecting the unknown attacks and high detection time
limits its prospect to deploy in practice. In addition, Li et al. [7] and Yin et al. [6] proposed using
an RNN model or a combination with Restricted Boltzmann Machines (RBM) for extracting micro-flow
features based on a small set of packets and then directly training with the raw packets. However, they
mostly target the detection accuracy and ignore the evaluation of the detection time. Thus far, there are
several other state-of-the-art relevant studies such as [9,10]. Generally, the key points of such work are
that they all rely on the flow or session-based approach, i.e., indexing the traffic by the flow. Thus far,
we have found no attempt to detect the attack traffic at the packet level. Our statistics on the relevant
research and our research position are summarized in Table 1.

Table 1. Summary of several state-of-the-art relevant research works and our research location.
(Notations: GRU: Gated Recurrent Unit; TSDNN: Shaped Deep Neural Network; QDBP: Quantity
Dependent Backpropagation; WEDL: Word Embedding-based Deep Learning; NIDS: Network
Intrusion Detection System).

Research Year Method Feature Shortcomings

M. S. Kim [11] 2004 Formulization flow-based For offline detection
R. Fu [12] 2016 LSTM, GRU flow-based For offline detection

B J. Radford [9] 2018 LSTM flow-based For offline detection
C. Li [7] 2018 RNN, RBM process packet, flow-based For offline detection

Y. Chen [4] 2018 TSDNN, QDBP flow-based, N class For offline classification
X. Yuan [5] 2017 LSTM, GRU process packet, flow-based For offline detection
J. Cui [10] 2018 WEDL-NIDS process packet, flow-based For offline detection

Ours 2019 LSTM, Word-embedding raw data, packet-based Target for online detection

Recently, word2vector [13,14] and LSTM-based learning models [10] provide a very powerful
tool to give packet semantic meanings. This means we now can find a way to provide a thorough
pattern for the malicious traffic by deep learning of a large number of raw packets. This particularly
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helps to reinforce our approach to consider the malicious traffic classification at the packet level.
Compared to the prior studies, there are two major differences in our work: (1) the system can identify
the malicious traffic by classifying the individual packet, instead of checking the whole packets of
a traffic flow; (2) our system can work directly with raw packets, i.e., reading and making detection
decisions. To the best of our knowledge, our study is the first work on packet-based malicious traffic
detection. In addition, despite the high detection accuracy achieved by prior work for the same attack
types, a novel research direction on packet-based classification (i.e., ours) sheds a light toward research
on online real-time deep learning based IDSs.

3. Methodology

3.1. Dataset

In deep learning, a lack of a variety of shareable traces dataset can be seen as one of the
most obvious obstacles to obtain realistic progress on traffic classification. Many researchers may
like creating synthetic datasets through their testbed. The shortcomings of this approach are that
their generated traffic may not represent well the real traffic on the Internet, thus the performance
evaluation results of the proposed solutions can face the problems of the credibility. Over the
decades, the researchers have been recommended to use public famous traffic datasets such as KDD
CUP1999 and NSL-KDD to test. Each dataset explicitly provides useful statistics on labeled features
and the number of benign and malicious flows as well. However, these datasets do not provide
information at the raw traffic level, which is required in our approach. In addition, while the credible
dataset from Microsoft Malware Classification Challenge [15] can provide a metadata manifest and
hexadecimal representation of the malware’s binary content, the missing of packet information in the
data, unfortunately, makes it hard to be used in this research.

For the ones matching the requirements, USTC-TFC2016 [3] is one of the most prominent datasets.
Table 2 summarizes the statistics of the benign and malware traffic in the dataset. As their statement,
there are a total of ten types of malware traffic from public websites which were collected from a real
network environment from 2011 to 2015. Along with such malicious traffic, the benign part contains ten
types of normal traffic which were collected using IXIA BPS, a professional network traffic simulation
equipment. The size of USTC-TFC2016 dataset is 3.71 GB, and the format is pcap.

Table 2. Summary of benign and malware traffic in USTC-TFC2016 dataset. (Notations: SMB: Server
Message Block; IM: Instant Message; P2P: Peer-to-Peer).

Benign Malware

App Type Size (MB) Class Malware Type Size (MB)

Facetime 2.4 Voice/Video Tinba 2.55
Skype 4.22 Chat/IM Zeus 13.4

Bittorent 7.33 P2P Shifu 57.9
Gmail 9.05 Email/Webmail Neris 90.1

Outlook 11.1 Email/Webmail Cridex 94.7
WorldOfWarcraft 14.9 Game Nsisay 281

MySQL 22.3 Database Geodo 28.8
FTP 60.2 Data transfer Miuref 16.3
SMB 1206 Data transfer Virut 109

Weibo 1618 Social Network Htbot 83.6

For the Mirai-based DDoS traffic, we use the dataset from Robert Gordon University [16], denoted by
Mirai-RGU. This data set contains Mirai botnet traffic such as Scan, Infect, Control, Attack traffic and
normal IoT IP Camera traffic. It contains ten types of malicious traffic, include HTTP flood, UDP flood,
DNS flood, Mirai traffic, VSE flood, GREIP flood, GREETH flood, TCP ACK flood, TCP SYN flood,
and UDPPLAIN flood. The dataset includes features such as Time, Source, Destination, Protocol,
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Length, and overall payload information. In addition, we also collected a dataset from the Mirai botnet
we have built in the campus of National Chung Cheng University(CCU) (denoted by Mirai-CCU),
as shown in Figure 1, to generate four types of attack traffic with much bigger attack magnitude:
TCP SYN (41 GB), TCP ACK (2.4 GB), HTTP POST (103 GB), UDP (127.06 GB) in the total of 667 GB
attack data.

Figure 1. The testbed of our Mirai-based DDoS dataset in the campus of National Chung Cheng
University (CCU).

To enrich the dataset for our experiments, we select ISCX2012 [17], which also contains both
malicious and benign traffic. ISCX2012 consists of packets collected for seven days. Packets collected
in the first and sixth day are normal traffic. In the second and third day, both normal packets and
attack packets are collected. In the fourth, fifth, and seventh days, besides the normal traffic, HTTP
DoS, DDoS and IRC Botnet, and Brute Force SSH packets are collected, respectively.

3.2. Word Embedding and Data Preprocessing

Our goal is to classify incoming packets into benign or malicious classes without pre-processing
the packets into a specific flow. To achieve this target, instead of considering the whole flow
(e.g., as a document), we consider each packet (e.g., as a paragraph) and construct the key sentence
from each packet, in which each word is a field in the packet header. After that, we apply word
embedding [18] to extract semantics and syntax features from this sentence. We choose to consider
meanings on the sentence rather than the whole paragraph since the meaning of a paragraph
usually can be captured by the key sentence. Here, the order of the fields in each packet (fixed
for each packet type) plays the role of resembling some grammar rules which are decisive in building
sentence patterns for malicious traffic (signature-based detection) or benign traffic (anomaly detection).
Notably, this packet-to-sentence-based model can significantly accelerate the traffic classification,
since the behavior and characteristics of one or several first packets can entirely reveal whether their
flow is a malicious one.

In general, a field in each packet could be a byte of the packet header, a field of the packet header,
or a block of the packet payload. As the initial trial, we consider a field in the packet header as a word
and trim a packet to a fixed length of n = 54 bytes. Depending on the field length in the packet,
the word size can vary. The strict order of the fields in the packet structure constructs a potential
grammar rule for the built sentence. Note that the extracting field stage can be done along with the
packet reading/decoding (i.e., data pre-processing), thus the resource consumption is quite efficient.
In addition, if the length of the packet is less than n bytes, it will be padded with zeros (as shown in
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Figure 2). The rationale for examining 54 bytes is that most TCP packets have a 14-byte MAC header,
a 20-byte IP header, and a 20-byte TCP header. Table 3 lists the header fields and their length of TCP
and UDP packets.

Packet information

ip.fragsip.srcip.dstversion flags

Padding Zeros

A sentence

ip.proto

A word

Figure 2. The illustration of the packet-word-transfer mechanism.

Table 3. Packet header(tcp:25, udp: 19) fields, extended fields (tcp: 33, udp: 33) and the length of
the fields.

Header Extended Fields Details

Ether header (3) extended to 7 fields ether.dst(2 × 3) , ether.src(2 × 3), ether.type

IP header (12) extended to 14 fields
ip.version, ip.ihl, ip.tos, ip.len, ip.id, ip.flags,
ip.frag, ip.ttl, ip.proto, ip.chksum, ip.src(2 × 2), ip.dst(2 × 2)

TCP header (10) extended to 12 fields
tcp.sport, tcp.dport, tcp.seq(2 × 2), tcp.ack(2 × 2), tcp.dataofs,
tcp.reserved, tcp.flags, tcp.window, tcp.chksum, tcp.ugptr

UDP header (4) extended to 12 fields
udp.sport, udp.dpot, udp.len, udp.chksum, 0, 0, 0,
0, 0, 0, 0, 0

After applying the word-embedding technique to fields in the packet header, each header field
is embedded, (i.e., to integer number format based on their index in a dictionary of all words) and
reshaped, (i.e., dimension) and put to the LSTM-based training model for performing the classification
task. In order to understand each attack type and remain consistent with the order of the fields in
the packet header, it is important to maintain the sequence order of fields and a consistent word
dictionary. Finally, the word size (hyperparameter) selection and further the word-embedding strategy
are adjustable and can be specified by the deployment environment and IoT applications under the
system’s protection umbrella.

3.3. Classification

The classification mechanism is the next important part of the system. As illustrated in Figures 3–5,
our packet-based traffic classification framework consists of three modules: packet pre-processing
module, word embedding module, and LSTM module. However, to perform training in the
LSTM module, we first need to label the benign/malicious mark for the packets in the dataset,
e.g., ISCX2012 [17], USTC-TFC2016 [3] and Mirai-RGU [16]. Based on the label of the flows (well-labeled
in ISCX2012 and USTC-TFC2016 dataset) and the packets (well-labeled in Mirai-RGU dataset), we mark
the label of the corresponding packet (malicious/benign) according to the flow’s label that the packet
belongs to.

For the LSTM module, we build standard LSTM cells, in which each cell consists of input gate,
output gate, and forget gate. The sigmoid function is used as the activation function (α). Our proposed
framework, as shown in Figure 4, consists of three LSTM layers with dropout. Total parameters of the
first layer (dimension = 128, without dropout) exceed 4 million (4,194,304).
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σ Tanh σσ

𝑋𝑡
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Forward LSTM

54 words (each word is a 64 dimensional word vector) from word embedding
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tanh

σ Tanh σσ
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Figure 3. The illustration of the packet-word-transfer and classification module in the proposal.
Packet-work-transfer module is at the input data layer.

Figure 4. The illustration of the full network model.

Raw 

traffic

Extract features from header

of each packet

Split the packet header into 33 

fields and label each packet

Word Embedding

(64-dim)

LSTM

(3 layers)

Classification

(0: normal; 1: exception)

Training Testing/Validation

Mirai 

RGU

USTC-TFC-

2016

ISCX-

IDS-2012

Daily 

data cut 

60 

seconds

Hourly 

data cut 

60 

seconds

Each 

data type 

cut  60 

seconds

0 or 1 0 or 1 0 or 1

Our 

dataset

Each 

data type 

cut 60 

seconds

0 or 1

Figure 5. The illustration of the workflow of the training and testing/validation stage.
Data pre-processing and packet labelling for training are done at the training stage. Training/Testing
is done at the pre-processing data and with the ratio is 9:1. Validation is performed on the random
samples (60 s/pcap).

The pseudo-code of our algorithm and the processing flow is illustrated in Algorithm 1.
The preprocessing phase adjusts features to ensure data representation is suitable for the used
algorithms, i.e., parsing the packet and converting it to the translated word. The new dataset of
translated Words is in the format of the dataset of integer number. The translated dataset is then split
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into two parts: Training Data and Testing Data, respectively. Training stage starts on the Training Data
and running the LSTM three-layer model. Note that the dimension from input data are required to
reshape, e.g., 64, before performing the training and testing. The dropout rate is flexibly set and can
be tuned up to 0.5. The loss function is based on binary cross entropy and RMSProp optimizer is
selected for the learning rate adjustment method. A dense output layer with softmax is added to the
model. The model is then compiled with the binary cross-entropy as the loss function and the Adam
optimiser over total of 200 iterations. Finally, the model is testing on the Testing Data to determine the
effectiveness of the model in terms of accuracy, precision, recall, f1-score, and loss (defined later in the
next section).

Algorithm 1: Algorithm for packet-based traffic classification
Data: Sequence of raw packets from network

Result: Accuracy, precision, recall, f1-score, FAR, loss

1: dictionary = array() % Create the mapping word to the index array
2: translatedWords = null; %variable to store the values of words to converted to integer format;
3: while true do

4: Parse the packet;
5: Extract 54-byte from each packet
6: if packet length < 54 then

7: Pad zeros;
8: end if
9: Parse each byte of the extracted data as a word; words defines the words extracted from the

packet;
10: for {i = 1; i < count(words); i++} do

11: if Word in dictionary, dictionary(words[i]) then

12: index = dictionary(words[i]) % Pulling index of the words
13: else

14: dictionary[] = words[i]; %Update the dictionary with the new word;
15: index = dictionary(words[i])
16: end if
17: concat(translatedWords, index)
18: end for
19: end while% return dataset
20: Split Training and Test based on 90/10 (TrainingData, TestingData)
21: Train and Validate (TrainingData, TestingData)
22: Reshaping translatedWords to an output of 64-dimensional word vector;
23: Input the 64-dimensional word vector to the first layer LSTM;
24: Dropout;
25: Feedforward to the second layer LSTM;
26: Dropout;
27: Feedforward to the third layer LSTM;
28: Dropout;
29: Prepare input for mini-batch (100 packets);
30: Apply RMSProp optimizer;
31: Use softmax to output 0 or 1 to the model;
32: Use binary cross entropy as loss function
33: for epoch = 1; epoch < 200; epoch++ do

34: Evaluate Loss, Validation Loss
35: Evaluate Accuracy and Validation Accuracy
36: end for
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Training and validation often cost significant time regarding the system evaluation. In fact,
the dataset size after converting (transferring to integer format) can be smaller in storage than that of
the original text/string as in the packets, since the integer format may cost few spaces than the text
data type. However, the dimension unlikely reduces. As a result, selecting word size may dramatically
affect the training time. Smaller word size reduces the size of dictionary, but also causes more training
data and running time. In this research, we set the maximum word size to 2 bytes based on the
consideration of the length of most fields in the packet while limiting the number of words in the
dictionary to be less than 65,536.

4. Evaluation Results

Similar to most existing deep learning research, our proposed classification model has been
implemented using TensorFlow/Keras (version 2.2.4, Google, Mountain View, CA, USA). All of our
evaluations have performed on the GPU-enabled TensorFlow which is running on a 64-bit Ubuntu
18.04.2 LTS server with an Intel(R) Xeon(R) E5-2650 2.2 GHz processor, 32 GB RAM, and an NVIDIA
RTX Tesla K80.

To perform our evaluations, we have used the ISCX2012, USTC-TFC2016, Mirai-RGU and
Mirai-CCU datasets. During the training and testing stages, we try to include hundreds to thousands
of thousands of packets while balancing the benign and malicious traffic. At the validation stage,
we run the trained model on the packets which is extracted randomly per 60 s from the selected
datasets, i.e., packets in the consecutive 60 s in the original dataset are extracted while maintaining
their temporal order. At this stage, the original (real) traffic is presented to the trained model without
any manipulation or balancing of two types of traffic. Since our approach aims to gain a significant
reduction in processing time, we have many interests in classifying the incoming packet whether it
is malicious or not, instead of considering the attack type in detail. In practice, if a malicious packet
is detected by the proposed system, it can raise an alarm to the network administrator and direct
the packet for some offline computational intensive traffic classification systems. Therefore, in the
following section, we define several measurements to evaluate the performance of the proposed
solution in the term of a binary classifier. All of these metrics are all derived from the four values found
in the confusion matrix in Table 4. The traffic proportion of training/testing/validation configuration
of four datasets is listed in Tables 5–8.

Table 4. Confusion matrix.

Predicted Classs

Malicious Benign

Ground truth Malicious True Positive (TP) False Negative (FN)
Benign False Position (FP) True Negative (TN)

where:

• True Positive (TP)—Attack packet that is correctly classified as an attack.
• False Positive (FP)—Benign packet that is incorrectly classified as an attack.
• True Negative (TN)—Benign packet that is correctly classified as normal.
• False Negative (FN)—Attack packet that is incorrectly classified as normal.

The accuracy (Equation (1)) measures the proportion of the total number of correct classifications:

Accuracy =
TP + TN

TP + TN + FP + FN
. (1)

The precision implies the number of correct classifications that is influenced by the incorrect
classification (Equation (2)):

Precision =
TP

TP + FP
. (2)
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The recall (Equation (3)) measures the number of correct classifications that is considered with the
number of missed entries:

Recall =
TP

TP + FN
. (3)

The false alarm or fair (Equation (4)) measures the proportion of benign packets incorrectly
classified as malicious:

Falsealarmrate(FAR) =
FP

FP + TN
. (4)

The F1-score (Equation (5)) measures the harmonic mean of precision and recall, which serves as
a derived effectiveness measurement:

F1 − Score = 2 × Precision ∗ Recall
Precision + Recall

. (5)

In our experiments, based on the flow statistics in the datasets and number of labeled packets in
data pre-processing, we can calculate the number of packets (including benign packets) for training
and number of real attack packets in testing, as summarized in Tables 5–8 below. Due to a large amount
of input data, we set the mini-batch size value at 100 and the data training with less than 200 epochs.

The performance results of our proposal for each kind of malicious traffic with 10-fold testing and
10-fold validation are shown in Tables 9 and 10, respectively. From these two tables, we can observe that
our method can perform the classification with nearly 100% accuracy and precision in major cases of the
security attacks, which outperforms compared to the prior works, e.g., [6,19,20]. However, since the
characteristics of traffic types and attacks are unique, the performance measurements are also different
in each scenario and heavily relied on the training dataset. From our experimental experience, we notice
that, besides tuning the learning model and its parameters (e.g., learning rate), word-embedding and
attack representation samples in datasets play a critical role in the improvement of the performance.

Table 5. Train/Test/Validate traffic proportion in the ISCX-IDS-2012 dataset.

All Train/Test Validation

6/12 Benign 5,947,337 26,374 average:
4148/60 sAttack 26,374 26,643

6/13 Benign 3,925,130 100,000 average:
1209 /60 sAttack 1,838,019 100,000

6/14 Benign 8,687,942 100,000 average:
5947 /60 sAttack 960,711 100,000

6/15 Benign 17,551,503 100,000 average:
12,746 /60 sAttack 17,431,539 100,000

6/16 Benign 17,260,920 50,000 average:
7580 /60 sAttack 49,764 49,764

Table 6. Train/Test/Validate traffic proportion in the Mirai-RGU dataset.

Attack
Type All Train

/Test Validation

syn 1,526,926 728,000 1,526,926 /10 s
ack 5,390,837 728,000 5,390,770 /50 s
http 744,991 728,000 3152 /60 s
udp 4,567,726 728,000 4,567,659 /58 s
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Table 7. Train/Test/Validate traffic proportion in the USTC-TFC-2016 dataset.

Benign Malware

Type All Train/Test Validate
(avg/60 s) Type All Train/Test Validate

(avg./60 s)

Facetime 6000 6000 6000 Tinba 22,000 22,000 729
Skype 12,000 12,000 12,000 Zeus 93,141 93,141 105

BitTorrent 15,000 15,000 15,000 Shifu 500,000 100,000 3
Gmail 25,000 25,000 25,000 Neris 499,218 100,000 896

Outlook 15,000 15,000 15,000 Cridex 461,548 100,000 34
World
Of
Warcraft

140,000 100,000 140,000 Nsis-ay 352,266 100,000 5617

MySQL 200,000 100,000 200,000 Geodo 250,000 100,000 12
FTP 360,000 100,000 360,000 Miuref 88,560 88,560 7
SMB 925,453 200,000 925,453 Virut 440,625 100,000 858

Weibo 1,210,060 100,000 1,210,060 Total 2,707,358 803,701 -
Total 2,908,513 1,058,000 - -

Table 8. Train/Test/Validate traffic proportion in our dataset.

File No# of Pcap All (Benign, Attack) Train/Test Validate(avg./60 s)

Capture_2 3 (N) (129,178, 0) 100,000 14,100
Capture_3 1 (M) (54,641, 393,325) 100,000 9795
Capture_4 6 (N, M) (268,461, 518,105) 100,000 10,010
Capture_5 1 (N, M) (67,239, 519,376) 100,000 9780
Capture_6 1 (N, M) (66,989, 519,609) 100,000 9781
Capture_7 1 (N, M) (67,061, 519,400) 100,000 9783
Capture_8 1 (N, M, S) (66,801, 981,651) 100,000 9996
Capture_9 12 (N, M, G) (72,204, 1,373,042) 100,000 10,004

Capture_10 7 (N, M, GT) (70,457, 969,937) 100,000 9784

Table 9. Performance evaluation results of the proposed solution on the four datasets with
10-fold testing.

Dataset Accuracy
(%)

Precision
(%)

Recall
(%)

F-Score
(%)

FPR
(%)

ISCX-IDS-2012 99.99 99.98 99.99 99.99 7.46 × 10−7

USTC-TFC-2016 99.99 100 99.99 99.99 1.1 × 10−7

Mirai-RGU 100 100 100 100 0
Mirai-CCU 99.46 99.63 99.38 99.51 0.026

Table 10. Performance evaluation results of the proposed solution on the four datasets with
10-fold validation.

Dataset Accuracy
(%)

Precision
(%)

Recall
(%)

F-Score
(%)

FPR
(%)

ISCX-IDS-2012 99.97 100 99.97 99.98 0
USTC-TFC-2016 99.88 99.99 99.86 99.93 0.02

Mirai-RGU 99.98 99.99 99.95 99.97 0
Mirai-CCU 99.36 99.49 99.27 99.38 0.031

One might question the aforementioned results of our proposed DL-based framework. That is,
intuitively, the proposed framework can classify malicious packets because it obtains the features
of malicious packets from the training dataset. Thus, we perform a validation test in which the
Mirai-RGU dataset is used for training and packets from Mirai-CCU dataset are used for validation.
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Our experimental results show that, even though the training and validation stages use different
datasets, the proposed framework is still able to detect malicious packets with very high accuracy.
The performance results are shown in Table 11.

Table 11. Performance evaluation results of the Mirai-CCU dataset validation on the Mirai-RGU
training model.

Mirai-RGU

Dataset Accuracy
(%)

Precision
(%)

Recall
(%)

F-Score
(%)

FPR
(%)

Mirai-CCU 97.22 96.25 98.73 97.5 0.36

4.1. Time Efficiency

Time efficiency is also an important metric measurement in our experiment. The time efficiency
involves two cases: training time and detection time. The training time is defined by the total
time to complete the training on the selected dataset. This time depends on the data-preprocessing,
the training model (number of layers and dims) and server capacity. Therefore, it would not be
fair to draw comparisons within this respect, due to differences in the hardware and software used.
Through our evaluation, due to considering at the deeper level (the packet level), the amount of data
(after transferring from packet information) used for training in our method is expected to be higher
than the flow-based approaches. As a result, the time required for training will be higher. The time for
offline training, i.e., ours, could be up to 17 h with USTC-TFC2016 at 200 epochs, in order to obtain the
detection performance results as mentioned above. The bigger dataset it is, the more training time
it costs. However, our method has advantages of detection time. The detection time in this study is
defined as the total time (elapsed time) to perform the classification on a given testing sample, i.e., the
testing dataset. Given a testing file 108 MB and our server capacity (mentioned above), our system only
takes fewer than 2 s to complete the classification, no matter what type of traffic is. This achievement
emboldens our approach for online monitoring since we believe that this speed can satisfy most
on-demand applications and in medium networks. For the core networks, we may need more efforts
to integrate this system for potential deployment, since the network speed at such nodes can be up to
hundreds of gigabits per second. Note that the system at the core networks can be equipped with the
much more powerful servers.

4.2. Discussion

There is a trade-off between the word size and the classification performance, i.e., accuracy and
detection time. Reducing the word size can potentially increase the detection time, and training time
as well, due to more words involved, longer sentence created and dimension extended. For accuracy,
the performance can vary and depend on the considered attack type. Apparently, we can’t scale
the size too small. In our evaluation, we set the word size to two bytes as aforementioned.
However, there is promising research to propose an algorithm to auto-calculate this value properly on
the deployed environment, even that for specific attacks.

In addition, the approach to consider the classification at the packet level can open the
door to accelerating the detection since we can schedule the packets for parallel processing.
However, the explicit shortcoming is to increase the training time and resource usage (e.g., memory)
due to a large number of parameters and data size putting to the training model. Balancing the factor
of acceptable training time but still gaining the best classification performance is a non-trivial task and
a potential research direction.

Finally, the DL-based classification approach is highly susceptible to the data poisoning attack
due to its dependence on the training data. Thus far, we have found few attack models targeting
the evasion of the deep learning-based malicious classification systems, including ours. However,
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this can be soon changed when the popularity of deep learning will attract more attackers to exploit its
vulnerabilities for hacking or monetization. Generating/preventing adversary models against deep
learning is thus one of the most interesting and promising security research topics.

5. Conclusions

In this paper, we have proposed a novel packet-based malicious traffic classification framework
by using the word embedding and Long Short-Term Memory (LSTM) network model. Our evaluation
results show that the performance of ours is competitive with the prior work on classifying flows
into benign or malicious, but with much lower flow pre-processing time. In other words, the major
advantage of the proposed framework is that it does not require pre-process packets into flows,
thus boosting the detection acceleration. We believe that our first attempt on using a packet-based
malicious classification approach can inspire the research community to consider the optimization
methods and exploit the advantages of deep learning to build effective IDSs without suffering
significant detection delay.
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