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Abstract: Analysis of the radiation effects in a device is of great importance. The gate all around
(GAA) structure that contributes to device scaling not only solves the short channel effects (SCE)
problem but also makes the device more resistant in radiation environments. In this article, the total
ionizing dose (TID) simulation of nanowire FET (NW) and FinFET was performed. Both these devices
were compared and analyzed in terms of the shift of threshold voltage (VT). The channel insulator
was composed of two materials, SiO2 and HfO2. To improve the accuracy of the simulation, the
interfacial trap parameter of SiO2 and HfO2 was applied. Based on the simulation result, the NW
with a larger oxide area and larger gate controllability showed less VT shift than that of the FinFET.
It was therefore proved that NW had better TID resistance characteristics in a radiation environment.
The gate controllability was found to affect the TID effect more than the oxide area. In addition, we
analyzed the manner in which the TID effect changed depending on the VDD and channel doping.

Keywords: total ionizing dose (TID); radiation; threshold voltage (VT); nanowire FET; gate-all-around
(GAA); FinFET; TID tolerance

1. Introduction

The effects of the total ionizing dose (TID) on electronic devices are critical issues in various fields
such as space and nuclear applications. To reduce the radiation effects on the electronic components,
three radiation hardening methods have been widely considered: radiation hardening by process
(RHBP), radiation hardening by shielding (RHBS), and radiation hardening by design (RHBD) [1–4].
The international thermonuclear experimental reactor (ITER) studies the TID effect for the development
of a precise remote control system [5]. Electronic equipment operating in a radiation environment is
subject to radiations that lead to defects in transistors. The TID effects, single event effects (SEEs), and
displacement damage (DD) can lead to disturbances in the reliable operation of semiconductor devices
due to radiation [6–10]. In particular, in the TID effect, the trapped holes in the oxide of transistor in
the electron hole pairs (EHP) are caused by radiation and change in the threshold voltage (VT) [11].
The hole trapped in the oxide results in the inversion charge of the channel region and leads to change
in VT. In particular, nanoscale devices can affect other static and dynamic parameters [12]. Therefore,
the reliability of the device is degraded. The devices with a 3D gate structure can solve the SCE
problem and enable continuous scaling [13–15]. In particular, FinFET, which has a tri-gate structure,
and NW, which has a gate all around (GAA) structure, are being studied as effective solutions for device
miniaturization [16]. Therefore, both structures devices must be studied for mitigating the radiation
effects. In this paper, the TID simulation of NW and FinFET was used to analyze that received more
of the TID effect, depending on the structural part of the device. The experiments were performed
considering the oxide area and gate controllability, which are the structural elements affected by the
TID effect. For a more accurate comparison, the TID simulation was performed by calibrating the size
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and current level of the NW and FinFET. Through these experiments, compared to the FinFET, we
observed that the VT of the NW changed insignificantly and that this device was more resistant in
the radiation environment. This result shows that gate controllability is more effective for causing
radiation tolerance than the oxide area. However, the oxide area of the hole trap is a key factor in the
TID effect. As the oxide area increases, the number of trapped holes also increases and consequently,
the reliability of the device is further degraded. However, by introducing the GAA structure, the gate
controllability can be improved to suppressing the TID effect in the oxide area. In addition, the TID
characteristics were confirmed by changing the VDD and channel doping, which affect the resistance
to the TID effect. Therefore, the importance of improving gate controllability, which is a method of
suppressing the TID effect, is herein presented.

2. Simulation Methodology

2.1. Design Structure for TID Simulation

Prior to the simulation, the NW was stacked in five stages to match the current level and device
size. Table 1 presents the basic physical device parameters used in this study. With the use of a 3D
technology computer-aided design (TCAD) simulation tool, the FinFET and 5ch-NW were similarly
constructed (Table 1). Tfin is the FinFET width, Dnw is the 5ch-NW diameter, Lg is the channel
length, Hfin is the FinFET height, and Hnw is the 5ch-NW’s total height. In addition, the FinFET was
manufactured by referring to the International Technology Roadmap for Semi-conductors (ITRS) [17].
Figure 1 shows the TCAD structure of the FinFET and 5ch-NW.
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Figure 1. 3D technology computer-aided design (TCAD) structure of the FinFET and 5ch-nanowire FET
(NW). (Left) FinFET, (Right) 5ch-NW. The 5ch-NW was stacked in five stages to match the FinFET’s
current level and device size.

The electrodes of the devices were made of tungsten, the body of silicon, the p-type doping was
boron, and the n-type doping was phosphorus. The devices placed SiO2 (0.5 nm, k = 3.9) and HfO2

(2 nm, k = 25) on the FinFET and 5ch-NW channel insulator material. The equivalent oxide thickness
(EOT) can be calculated using Equation (1).

EOT =
(SiO2 k)
(High k)

(THi−k) (1)



Appl. Sci. 2019, 9, 3163 3 of 10

Table 1. Design specifications of the FinFET and 5ch-NW.

Condition Factor FinFET 5ch-NW

S/D Doping 1 × 1021 (cm−3) 1 × 1021 (cm−3)
Channel Doping 1 × 1016 (cm−3) 1 × 1016 (cm−3)

EOT 0.812 (nm) 0.812 (nm)
Tfin, Dnw/Lg 6/12 (nm) 6/12 (nm)

Hfin, Hnw 42 (nm) 30 (nm)
Total area (HfO2 + SiO2 + Silicon) 489.5 (nm2) 474.9 (nm2)

Oxide area (HfO2 + SiO2) 237.5 (nm2) 333.6 (nm2)

Parameter explanation

Tfin: FinFET’s width Dnw: 5ch-NW’s diameter
Lg: channel length Hfin: FinFET’s height
Hnw: 5ch-NW’s total height

The electrical properties were also calibrated for a fair comparison of the TID effects. Figure 2
shows the ID-VG characteristics with the FinFET and 5ch-NW and demonstrates that the electrical
characteristics of FinFET and 5ch-NW were calibrated.
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Figure 2. Black line is the ID-VG curve of the FinFET and the red symbol is the ID-VG curve of
the 5ch-NW and shows the calibrated FinFET and 5ch-NW’s ID-VG curve characteristics for similar
conditions. Both were extracted by sweeping VG from 0 to 0.7 V when VDD = 0.65 V.

2.2. TID Simulation of Various Factors

The TID simulation used the Silvaco victory device software [18]. The Klaassen model used in
the simulation reflects various parameters such as electron and hole mobility, trap parameters, and
recombination parameters [19–23]. The trap-detrap model parameters in the oxide region by radiation
were used in the same way as in [24]. For a more precise simulation, the interfacial trap coefficient
between SiO2 and HfO2 was calculated by introducing an interfacial trap parameter between the
insulators. We generated the corresponding ID-VG curves by applying the TID effect. The radiation
source was a γ-ray irradiation performed using a Co60 source [25]. Radiation was irradiated 1 rad/s
for the devices. The input VDD was equal to 0.65 V and the sweep VG was in the range 0–0.7 V for
the electrical characteristics of 100 Krad, 1 Mrad, 10 Mrad, and 100 Mrad. The simulation confirmed
the TID effect on the structural aspects of the FinFET and 5ch-NW. All comparative calculations were
performed with the same efficiency as the charge capture [9].
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To observe VDD influence, the VDD was simulated by varying it from 0.65 V to 0.1 V. The VT

shift amount was compared based on the VDD in the TID simulation. We applied the VDD conditions
mentioned above to FinFET and 5ch-NW, and the VG sweep was done in the same way from 0 V to
0.7 V.

The TID characteristics of the two aforementioned devices according to the changed channel doping
concentration were confirmed as the channel doping concentration changed. The TID effect change
was confirmed by the VT shift. The channel doping concentration was changed from 1 × 1016 cm−3 to
1 × 1018 cm−3. After changing the channel doping of both the devices, the initial simulation without
radiation was compared to the simulation with TID of 10 Mrad.

3. Results and Discussion

Figure 3 shows the basic structure of the FinFET and 5ch-NW as well as the interface hole trap
after TID simulation. Figure 3a,b show that the physical thickness and EOT of the insulator were the
same. Figure 3c,d show the interface hole traps of the FinFET and 5ch-NW, respectively. The hole traps
at the interface between SiO2 and HfO2 was confirmed to improve simulation accuracy. Figure 3c,d
also show that the hole-trapped interface between Si and SiO2.
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Figure 3. Structure of each device and the interface hole traps after the total ionizing dose (TID)
simulation. (a) The structure of the FinFET; (b) the single-stage structure of 5ch-NW; (c) the interface
trap of the FinFET; (d) the interface trap of the 5ch-NW.

TID is a phenomenon generated because of the accumulation of radiation irradiated to the device.
When the radiation penetrates through the insulator region of a device, EHP is generated through
the ionization process. Due to their difference in mobility, the generated electrons rapidly diffuse out
from the dielectric region. However, some holes are captured in the insulator region trap sites, thereby
increasing the leakage current and causing a negative VT shift [26,27].

Figure 4 illustrates the TID simulation method. In Figure 4a, VG according to the transient time
takes the shape of a pulse. The ID-VG curve changes depending on if the pulse is rise or down. In this
figure, we can see the upsweep when the purse is rising. Additionally, we can see the downsweep
when the purse is going down. The width of the pulse is related to the amount of dose. We can see the
simulation results when the pulse is end. The results show the VT shift and that means the hole is
trapped in the interface.
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Figure 4. TID simulation method of the FinFET. (a) The VG-transient time; (b) the VT shift due to the
interface trap.

Figure 5 shows the electrical characteristics of the device with the TID effects for each radiation
level. We extracted the VT when the drain current was 1 × 10−7 [A] using the current constant method
in Figure 5. It shows that the VT shifted because the holes generated by the radiation were trapped in
the insulator. Therefore, the shift tendency increases with the increase in the TID. In Figure 5, relatively
low levels of radiation did not affect the transfer characteristics. Due to the nanoscale oxide area, the
hole trap caused by the radiation was reduced. Additionally, the GAA structure increased the gate
holding power and reduced the effect of the trapped charge.

Figure 5c,d show the log scale of ID-VG where the off current increase phenomenon, caused by the
TID effects, was confirmed. In the figure, we can see that the off current change of 5ch-NW was less
than that of FinFET. This shows that the effect of suppressing the SCE also suppressed the TID effects.
Table 2 presents the VT value for each TID amount of both the FinFET and 5ch-NW.

Table 2. VT data of each device according to the amount of TID.

VDD = 0.65 V FinFET (VT) 5ch-NW (VT)

Initial 329 mV 402 mV
100 k (rad) 325 mV 402 mV
1 M (rad) 323 mV 400 mV

10 M (rad) 312 mV 388 mV
100 M (rad) 281 mV 360 mV

Figure 5e,f show the transconductance of the FinFET and 5ch-NW. It can be noticed that the
transconductance increases with radiation, as shown in Figure 5e,f, because of the decrease of VT and
the flow of more drain current at the same gate voltage.

Figure 6 shows the details the VT shift for each device. In the case of FinFET, a 48 mV shift from
100 Mrad than the initial was observed. In the case of the 5ch-NW, roughly 42 mV shift from 100 Mrad
than the initial was observed. The 5ch-NW therefore showed less VT shifts than the FinFET, as per the
simulation results.
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Figure 5. ID-VG curve shifts with an increasing radiation dose up to 100 Mrad for (a) FinFET, and (b)
5ch-NW. The ID-VG curves were extracted at 100 krad, 1 Mrad, 10 Mrad, and 100 Mrad. These graphs
were obtained by sweeping VDD = 0.65 V and VG from 0 V to 0.7 V when the total dose was reached.
(c,d) are the ID-VG curve graph of the log scale of each device according to the TID effect. (c) is the
FinFET’s log scale curve, (d) is the 5ch-NW’s log scale curve, (e) is the FinFET’s transconductance
graph, and (f) is the 5ch-NW’s transconductance graph.

The 5ch-NW had a larger oxide area than the FinFET. Therefore, it was reflected to have a greater
TID effect and a larger VT shift. However, these were less in the case of the 5ch-NW because of
superior gate controllability. The GAA structure improved the gate controllability because all the sides
are covered with the gate. This does not only address SCE, but also improves tolerance to the TID
effect [28]. Structurally, the oxide area of 5ch-NW was approximately 96.1 nm2, which is larger than
that in FinFET. However, the TID effect in 5ch-NW was less than that in FinFET in the above-mentioned
experiment. Therefore, it shows that the gate controllability factor is more crucial than the oxide area
in TID effect suppression.
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Figure 6. FinFET and 5ch-NW extracted the VT shift amount according to the increasing TID.

Figure 7 depicts a graph of the TID simulation result with VDD set at 0.1 V and 0.65 V. In Figure 7c,
at higher radiation, the VT shifts significantly than in the case of lower radiation because of the hole
traps in the FinFET and 5ch-NW. Additionally, because of the strong TID effect, the FinFET and 5ch-NW
are less affected by VDD at the higher radiation. However, the FinFET is affected by VDD when low
radiation is applied, because the gate controllability of the FinFET is weaker than that of the 5ch-NW.
Therefore, the 5ch-NW is not significantly affected by VDD.
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Figure 7. Simulation results according to VDD variation (a) FinFET curves, (b) 5ch-NW curves. (c)
Comparison of the VT shifts of FinFET and 5ch-NW.

Table 3 lists the VT shift according to the variation of VDD. In the case of 5ch-NW, there was almost
no change owing to its better gate controllability, which reduced the VDD influence.
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Table 3. VT shift according to the VDD variation.

FinFET (∆VT) 5ch-NW (∆VT)

VDD = 0.1 V VDD = 0.65 V VDD = 0.1 V VDD = 0.65 V

100 k (rad) 1 mV 4 mV 0 mV 0 mV
1 M (rad) 3 mV 6 mV 2 mV 2 mV
5 M (rad) 11 mV 12 mV 6 mV 6 mV

10 M (rad) 17 mV 17 mV 14 mV 14 mV

Figure 8 shows that the ID-VG changed due to the TID effect. Figure 8a shows the ID-VG of the
FinFET, and Figure 8b shows the ID-VG of the 5ch-NW. We can see that the VT changed and how it
was different if the channel doping was changed. First, the VT decreased due to the TID effect, and
the VT decreased on the same way when the channel doping was changed. In the case of channel
doping at 1 × 1016 cm−3, it was confirmed that the VT variation due to the TID effect was similar to
the VT variation at 1 × 1018 cm−3. Therefore, the VT increased when the channel doping increased in
both the FinFET and 5ch-NW, and the VT decreased due to the TID effect at both 1 × 1016 cm−3 and
1 × 1018 cm−3.
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Figure 8. The simulation results according to channel doping. (a) FinFET, (b) 5ch-NW.

Table 4 lists the VT variation based on channel doping. The doping of the FinFET changed from
1 × 1016 cm−3 to 1 × 1018 cm−3, and that of the 5ch-NW was also changed in a similar way. Increasing
channel doping in FinFET and 5ch-NW caused an increase in the initial VT. In addition, when radiation
was applied, the VT and the TID effect decreased for all cases, regardless of doping. When the doping
was changed to 1 × 1018 cm−3, the change in VT was less in the 5ch-NW than that in the FinFET as
less of the interface and oxide traps were generated in the case of the former [29]. As channel doping
increased, 10 M radiation appears to have significantly reduce VT, however, this can only attributed to
the increase in the absolute value of the initial amount. In fact, very silght difference was observed
when calculating the percentage variation of the aforementioned amount. As presented in Table 4, the
VT variation percentage was found to be similar between the channel doping of 1 × 1016 cm−3 and
1 × 1018 cm−3 for both the FinFET and 5ch-NW. Thus, channel doping had little or no influence on the
TID effect in the FinFET and 5ch-NW.

Table 4. VT variation according to the channel doping.

FinFET (∆VT) 5ch-NW (∆VT)

Channel doping 1 × 1016 cm−3 1 × 1018 cm−3 1 × 1016 cm−3 1 × 1018 cm−3

Initial 329 mV 345 mV 402 mV 411 mV
10 Mrad 312 mV 329 mV 388 mV 398 mV
∆VT (%) 5.16% 4.63% 3.48% 3.16%



Appl. Sci. 2019, 9, 3163 9 of 10

4. Conclusions

In this paper, we found that the 5ch-NW GAA devices exhibited less ionizing radiation sensitivity
when compared to the FinFET device. Structurally, the 5ch-NW device had an oxide area of
approximately 96.1 nm2, which is larger than that of the FinFET. However, in our experiment,
the TID effect of 5ch-NW was observed to be less than that of the FinFET. It was shown that the
gate controllability factor is more crucial to the suppression of the TID effect than the oxide area.
The GAA structure, which has larger gate controllability, confirmed that the TID effect problem can
be effectively resolved. The GAA structure and high-k dielectric materials have to be introduced to
improve gate controllability. Furthermore, the 5ch-NW was not found to be affected by VDD. However,
the FinFET was affected by VDD when low radiation was applied. Therefore, devices with strong gate
controllability were not affected by TID and channel doping had little or no influence on the TID effect.
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