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Abstract: In this paper, a tunable patch array based on high-order is proposed at the frequency of
300 GHz, achieving active controllable beam steering, focusing and generation of orbital angular
momentum vortex beams. It has been demonstrated that the patch array can achieve wide beam
scanning angle by controlling the phase of array elements with tunable phase shifters. Meanwhile,
beam focusing on the specified position can also be realized by phase modulation of array elements
based on the focusing theory. In addition, we also designed a patch array to generate vortex beams
with multiple topological charges by high-order modes. The performances show that the patch
antenna array we designed has a good application prospect.
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1. Introduction

With the rapid development of modern wireless electronic technology, multiple functions should
simultaneously exist in a single device to save resource and space, which raises the demand for
multi-functional antennas. Among all these functions, beam steering, focusing and generation of
vortex beam are the most popular and related to the phase manipulation of the wavefront. For beam
steering, there are two kinds of approaches. One is based on mechanical rotation, such as parabolic
reflector [1–3]. However, these antennas are too bulky and have a slow scanning speed, restricting
their practical applications. The other is based on electrical scanning, whose principle is to achieve the
angular deflection of the wavefront by electrical engineering the phase distributions. This method is
convenient and can be adopted by using various antenna structures, such as resonator cavity [4–6],
reflect array [7–10], dipole antenna [11,12], and patch array [13–15]. In particular, the patch array
antenna provides a simple solution with a low profile, compact size, low cost, and ease of integration
with planar circuits [16].

Due to the above characteristics, the patch array can also be applied to beam focusing [17–20].
One of the most widely used applications of beam focusing is non-contact microwave sensing
in which the energy should be confined within a small area [21,22]. In addition, it is desired to
maximize the energy to heat the cancerous tissue without heating the healthy ones adjacent to the
tumor [23]. Another function related to wavefront phase manipulation is the generation of orbital
angular momentum (OAM) vortex beams [24,25], which could also be achieved by designing the patch
arrays. As we know, the OAM vortex beam can be generated by a circular array of elements with the
same amplitude and a continuous phase delay from 0 to 2lπ after a full turn, where l is an integer and
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called the topological charge [26,27]. Over the past decades, the OAM vortex beam has been widely
studied because it can carry infinite and orthogonal OAM which provides a new degree of freedom
for coding and modulating in wireless communication [28–32]. Nevertheless, the above patch arrays
are usually organized in low order so that the phase gradient is relatively small, resulting in narrow
scanning range and low order topological charge. One method to increase the scanning angle is using
expensive materials with special properties [33].

In this paper, a reconfigurable patch array organized in high order is proposed to realize tunable
wide beam steering, focusing and generation of OAM vortex beams. The patch array is composed of
7 × 7 elements and phase shifters, which can be controlled by diode switches. This proposed patch
array resonates at 300 GHz so that it can be used in THz communication and other THz applications.
By using this structure, a patch array with phase gradient of the 3rd order is numerically designed
and simulation results show that the beam scanning angle could be actively tuned from −55◦ to 55◦.
In addition, this patch array is used to achieve tunable beam focusing, in which the focus is controlled
at three positions with a distance of five times of the wavelength away from the patch array. In addition,
vortex beams carrying topological charges of l = 1, 2, 3 can be reconfigurable and generated by exciting
array elements with the above phase gradient. The results verify that the proposed patch array has
multiple functions of beam steering, beam focusing and generation of multi-mode OAM vortex beams.

2. Concept and Principles

The key to effectively reshape the wavefront is a complete range of phase control from 0 to
2Nπ by using the unit elements. For this purpose, a phase shifter was designed and composed of a
radiation patch and a feeding line, which were connected through a via with a radius of 0.005 mm as
schematically shown in Figure 1. The radiation patch and feeding line were printed on the top and
bottom surfaces, respectively, of a polyethylene layer with permittivity of εr = 2.25 and thickness of
0.05 mm. A ground plane was placed in the middle of the polyethylene layer. Therefore, the radiation
patch and the feeding line were well separated, providing higher gain and reduced spurious effect.
In order to achieve a different phase from the radiation patch, the feeding line should be tunable.
As shown in Figure 1b, the phase shift was obtained by changing the length of the transmission
line. The design shows four transmission lines with different lengths connected to the via and can
be switched to provide different phase shifts. Here, four diode switches were placed in the gaps
connecting the transmission line and the via, the parameters for the diodes were chosen to work at
300 GHz (3DSF5 Quasi-vertical Schottky diode) [34]. The current could pass through the diode when a
forward voltage within 80 mV was applied, turning the switch on. In contrast, the diode was off if
a reverse voltage was applied. Note that, this diode will be broken down when a forward voltage
over 80 mV is applied. In addition, these diode switches can be turned on and off individually [35].
When the switch was turned on in one arm of the transmission line and the others were turned off,
the electromagnetic wave traveled along the ‘on’ arm of the transmission line to the radiation patch.
In this way, the desired phase shift could be obtained by controlling the diode switch in each arm of
the transmission line. In the simulation, these gaps were filled with a lumped component to provide
the effect of a diode switch.

We designed seven elements and Table 1 summarizes the dimension parameters of these elements
which have been optimized to resonate at the required frequency of f = 300 GHz with a broad spectral
range. The lengths of the transmission lines in the feeding lines correspond to different phase orders.
Here, the parameters of elements 2–7 are given since element 1 provides a fixed phase, which could
be satisfied by each of the elements. To show their ability to manipulate the radiation wavefront,
we performed numerical simulations for each element using a home-built program based on the
finite-difference time-domain (FDTD) method [36].
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Figure 1. (a) Geometrical construction of the element. (b) Geometrical construction of the phase shifter.

Table 1. Parameters of the element and phase shifter (unit: mm).

Parameter lp wp p w1 l1 l2 l3 l4

Element 2 0.303 0.392 1 0.143 0.04 0.09 0.14 0.02
Element 3 0.303 0.392 1 0.143 0.09 0.19 0.29 0.02
Element 4 0.303 0.392 1 0.143 0.14 0.29 0.09 0.02
Element 5 0.303 0.392 1 0.143 0.19 0.04 0.24 0.02
Element 6 0.303 0.392 1 0.143 0.24 0.14 0.04 0.02
Element 7 0.303 0.392 1 0.143 0.29 0.24 0.19 0.02

Figure 2 shows the S-parameters of each element on different arms, which could be obtained
by turning on/off of the diode switch. For example, the S-parameters of arm1 were obtained when
the diode switch at arm1 was on and the other three diode switches were off. The S-parameters in
Figure 2a–f correspond to elements 2, 3, 4, 5, 6, 7 in Table 1, respectively. The return loss of four arms in
each element indicate that the resonant frequency of these designed elements was around f = 300 GHz
and all the return losses were lower than −10 dB. In addition, the transmission coefficient of each arm
had similar values and was higher than −4 dB at f = 300 GHz.
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Figure 3 shows the radiation phase of each element on different arms. It can be seen that the
radiation phases can be actively tuned with a shift of 2π/7 rad, 2 × 2π/7 rad, 3 × 2π/7 rad, 4 × 2π/7 rad,



Appl. Sci. 2019, 9, 2949 4 of 10

5 × 2π/7 rad, 6 × 2π/7 in element 2, 3, 4, 5, 6, 7, respectively, by switching these arms. Each element
had three phase orders. Moreover, a phase shift of 2π/7, 4π/7, and 6π/7 between adjacent elements
was achieved when the arms 2, 3, and 4 were on, covering a complete phase range of 2π, 4π and 6π,
respectively. These results show that the proposed tunable radiation elements are good candidates for
active wavefront manipulation, which will be discussed in the following.Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 10 
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3. Results and Discussion

3.1. Beam Steering

In general, a phase difference between adjacent elements in the array produces a sloped isophase
plane, which deflects the beam and realizes beam steering. The beam deflection angle is proportional
to the phase difference, which could be described by the generalized Snell’s law [37,38]:

sin(θt)nt − sin(θt)ni =
λ0

2π
dϕ
dx

(1)

where θi and θt are the incident angle and refractive angle, respectively. ni and nt are the refractive
indexes of the incident and refractive region, and ni = nt = 1 in our case. ϕ is the abrupt phase
introduced at the interface. Equation (1) implies that the refracted beam can have an arbitrary direction,
provided that a suitable constant gradient of phase discontinuity along the interface is introduced.
According to the simulations above and Equation (1), it is known that the designed 7 elements can be
rearranged in a period, actively achieving three phase orders and beam steering angles. Table 2 shows
the distribution of elements and their corresponding phases with different phase orders. The phase
order N indicates a phase gradient of N × 2π/7, which could be actively controlled by choosing the
feeding lines.

Considering both the size of the structure and the number of phase gradients, a patch array with
7 × 7 antenna elements is adopted and schematically shown in Figure 4. In this array, the desired
phase gradient is oriented along the x-direction. Meanwhile, the phase remains constant along the
y-direction. In addition, this patch array may obtain a beam steering order from −3rd to 3rd due to the
symmetry of the proposed structure. Here, we only consider a one-dimensional case scanning in the
x-direction. It can be easily predicted that the designed patch array may achieve a two-dimensional
beam scanning by engineering the feeding network along both x- and y-directions (not shown here).
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Table 2. The phase distribution of array elements under different phase gradients (unit: 2π/7 rad).

Phase Order
Element

1 2 3 4 5 6 7

0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4

Figure 5a shows the simulated radiation patterns of the electric field in the x-z plane from −3rd to
−3rd phase gradient orders. It can be seen that the designed patch array produced directive beams with
a wide scanning angle of 110◦, rotating from−55◦,−34◦, 17◦, 0◦, 17◦, 34◦, to 55◦, when the phase gradient
was tuned as −6π/7, −4π/7, −2π/7, 0, 2π/7, 4π/7, and 6π/7, respectively. These scanning angles agree well
with the theoretical results obtained by Equation (1). In addition, the gains of all the arrays exceeded
20 dB, verifying the good performance of the designed tunable beam steering. To further demonstrate
the accuracy of the beam steering, we plot in Figure 5b the near field distributions of the electric
field in the x-z plane of the designed patch array. The simulation results of the engineered wavefront
propagated towards oblique angles of −55◦, −34◦, −17◦, 0◦, 17◦, 34◦, 55◦, when the phase gradient was
tuned to be −6π/7, −4π/7, −2π/7, 0, 2π/7, 4π/7, and 6π/7, respectively. Overall, from Figure 5, we see
that the proposed actively tunable patch array can effectively control the radiation pattern.
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Figure 5. (a) Radiation patterns of patch array in the x-z plane with phase gradients of −6π/7 (green
line), −4π/7 (blue line), −2π/7 (red line), 0 (black line), 2π/7 (pink line), 4π/7 (olive green line), and 6π/7
(navy line) and (b) the corresponding electric field distribution in the x-z plane when the beam steering
angle was −55◦, −34◦, −17◦, 0◦, 17◦, 34◦, and 55◦, respectively.
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3.2. Beam Focusing

The other important issue of wavefront control equipment is beam focusing, which has many
practical applications. The results above have already demonstrated the ability of the designed elements
to actively manipulate the phase of the radiation field. According to the Huygens-Fresnel principle,
we can also obtain beam focusing by engineering the phase distribution in the way of focusing formula,
which can be described by the following equation [39]:

ϕ(r) =
2π
λ

(
f −

√
r2 + f 2

)
, (2)

where f is the focal length of the array, λ is the wavelength of electromagnetic wave, r is the distance
vector between the array elements and the focal point, and ϕ(r) is the phase profile of each array
element. Equation (2) implies the required phase of each array element for beam focusing at a certain
point. In our scheme, we chose to focus at a distance of five times the wavelength from the center of
the patch array, which means f = 5 mm. In addition, we planned to manipulate the focus at different
positions in the y-z plane for demonstrating the good performance of the tenability. When r and f are
determined, the corresponding phase value of each element can be obtained by substituting them into
Equation (1), as shown in Figure 6(a1–a3). The electric field distributions in the y-z plane are plotted
in Figure 6(b1–b3). It is not difficult to observe the focusing of the radiation field at the distance of f
= 5 mm. In addition, the focus is actively tuned on the left, middle, and right sides of the y-z plane.
The simulated electric field intensity at the focus in the x-y plane is shown in Figure 6(c1–c3), further
validating the active tenability of the focusing property. Figure 6(d1–d3) plot the electric field intensity
extracted along the red lines in Figure 6(b1–b3), respectively. The focus phenomenon is significant
even though the sidelobe level is similar to the main focusing peak. We have to say that the focusing
property is not good enough due to the discontinuous phase distributions, as anyone can be seen from
Figure 6(a1–a3). Nevertheless, this work considers the tunable manipulation of the wavefront which
has been successfully demonstrated. A better focusing property could be achieved by designing a
more accurate phase gradient by a better manipulation of the feeding lines of the unit element.Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 10 
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Figure 6. The phase distribution for beam focusing on the (a1) left, (a2) middle and (a3) right sides of
the y-z plane. (b1–b3) and (c1–c3) show the electric field intensity distribution focusing on the left,
middle and right sides in the y-z and x-y plane, respectively. (d1–d3) The extracted field intensities
along the red line in (b1–b3).
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3.3. Generation of Multi-Order Orbital Angular Momentum Vortex Beams

The OAM vortex beam has a helical wavefront and carries an orbital angular momentum of
l, which is related to many intriguing applications such as communication and imaging. Here,
the topological charge l is the number of twists of the wavefront from 0 to 2π. the OAM vortex beam
with a topological charge of l = 1 can be generated by a spiral phase profile ranging from 0 to 2π with a
gradient phase increment along the azimuthal direction [40]. A circular array with continuous gradient
phase increment and uniform amplitude is an ideal scheme to generate an OAM wave. However,
the continuous phase profile is not easy to achieve in both simulation and experiment. Therefore, it is
common to divide the circle into several uniform sectors. In our design, only the circular region of the
7 × 7 array was excited to generate an OAM vortex beam. In exact words, three cells at each corner
of the 7 × 7 array were not excited, and the other 37 cells were excited. For our designed radiation
elements, the phase coverage from 0 to 2Nπ could be achieved and the phase increment was 2Nπ/7,
where N = 1, 2, 3. In other words, we may actively achieve an OAM vortex beam with a topological
charge of l = 1, 2, 3 by using the proposed structures.

For demonstration, we manipulated the unit elements to uniformly change the phase along the
azimuthal direction over 0–2π. The simulated electric field intensity is shown in Figure 7a and the
amplitude null in OAM mode can be clearly observed at the center, illustrating the good performance
of the design. The corresponding spatial phase pattern with an evident abrupt phase jump from −π
to π within a 2π azimuthal range is shown in Figure 7d, which indicates that the topological charge
of the patch array was 1. In addition, the generated OAM vortex waves can be actively tuned to the
cases with larger topological charges by using higher-order phase gradients. When the second-order
phase gradient of 2Nπ/7 was adopted, the phase of the radiation field varied from 0 to 4π along
the azimuthal direction, therefore generating the OAM vortex beam with a topological charge of 2.
Figure 7b shows the electric field intensity with the characteristic intensity minimum at the center, and
the corresponding phase distribution in Figure 7e possesses two evident abrupt phase jumps from
−π to π. In addition, we can also generate an OAM vortex beam with a topological charge of 3 with
the same approach. Figure 7c,f illustrates the simulated electric field intensity and phase distribution,
further verifying the tunable performance of the proposed method.
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OAM vortex beams with a topological charge of l = 1, 2, 3 based on the patch array with different order
phase gradient.
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3.4. Discussion

The above numerical results, including beam steering, focusing and generation of OAM vortex
beams, could successfully demonstrate the validation of the proposed method. It is because the used
FDTD method is a full-wave simulation algorithm, which is widely accepted in the related research
fields of electromagnetic theory from visible to the microwave region [36]. From an experimental point
of view, 7 × 7 patch elements, phase shifters, bias voltage control circuits operating at high frequency
and vector network analyzer are required. By adjusting the bias voltage of the diode printed on the
microstrip plate phase shifter, the states of the switch can be controlled. As a result, the phase shift can
be achieved by controlling current to pass through microstrip lines with different lengths. The signal
from the vector network analyzer is connected to the patch unit through the phase shifter. By adjusting
the phase through the method mentioned above, beam scanning, focusing and generation of OAM
wave can be obtained.

4. Conclusions

In conclusion, we have proposed a patch array with tunable functions of beam steering, focusing
and generation of OAM vortex beams at the working frequency of 300 GHz. The patch array consists
of 7 × 7 elements and the beam scanning angle could reach 110◦ by designing a 3rd order array.
By actively adjusting the phase of the array elements, we have achieved beam focusing at different
positions with a distance of five times the wavelength from the patch array. In addition, we also
designed the patch array to generate vortex beams with multiple topological charges by high-order
phase modes. These capabilities will make the patch array has a good prospect of applications.
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