
applied  
sciences

Article

Experimental Study on the Damping Effect of
Multi-Unit Particle Dampers Applied to
Bracket Structure

Hang Ye 1,2, Yanrong Wang 1,2, Bin Liu 3 and Xianghua Jiang 1,2,*
1 School of Energy and Power Engineering, Beihang University, Beijing 100191, China
2 Collaborative-Innovation Center for Advanced Aero-Engine, Beijing 100191, China
3 Center for Assessment and Demonstration Research, Academy of Military Sciences, Beijing 100091, China
* Correspondence: jxh@buaa.edu.cn

Received: 29 June 2019; Accepted: 18 July 2019; Published: 20 July 2019
����������
�������

Featured Application: Particle dampers have broad application prospects in aerospace equipment
and buildings.

Abstract: Particle damping (PD) is a passive mean of vibration control in which small metallic or
ceramic particles are placed inside a cavity that attached to the primary structure at the place of high
vibration amplitudes. The kinetic energy of the primary structure is dissipated by non-elastic impact
and friction between particles and walls. This paper represents a series of experimental investigations
of the effects of multi-unit particle dampers (MUPD) attached to a bracket structure under harmonic
excitation and random excitation. As a platform to investigate the particle damping characteristics
under extreme acceleration environments, the bracket structure was featured by an extremely high
response on the top, and its maximum acceleration exceeds 50 times gravity acceleration when the
bracket structure was subjected to resonance. This broad range of acceleration conditions was far
beyond the scope concerned in most previous work. The experimental results show that for a small
weight penalty (no more than 8.8%), multi-unit particle damper can reduce the resonance of the
primary structure by more than 50%, whether under sinusoidal excitation or random excitation.
And the response of the primary structure depends on the type of cavities and filled coefficient.
Layering the cavity in the direction of the main vibration can improve the damping capacity of the
multi-unit particle damper. And the damper with small particle size and large number of features is
suitable for vibration reduction under high acceleration conditions.

Keywords: multi-unit particle dampers (MUPD); sinusoidal excitation; random excitation;
bracket structure

1. Introduction

Particle damping (PD) is a passive means of vibration control in which small metallic or ceramic
particles are placed inside a cavity that attached to the primary structure at the place of high vibration
amplitudes. The kinetic energy of the primary structure is dissipated by non-elastic impact and friction
between particles and walls.

In the 1930s, a primary PD technology—impact damping—was first used by Pagat [1] to attenuate
the vibration of the turbine blade. Considering this kind of damper produced large impact noise
and was susceptible to the design parameters, some modified dampers were successively introduced.
According to the number of units and particles, PD can be classified into four categories [2,3]: impact
damper [4], multi-unit impact damper [5], non-obstructive particle damper [6,7] and multi-unit particle
damper [8], as shown in Figure 1.
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Masri [5] first proposed an improved method of a multi-unit single-particle damper, replacing 
one impact damper with multiple impact dampers to reduce the impact of the single-particle 
damper. 

Many researches have indicated that particle dampers are highly effective in suppressing 
resonant structural vibration over a wide range of frequencies: Several modes of vibration can be 
damped simultaneously by one damper design. Experiments conducted by Lieber [4] showed that 
PD could effectively suppress the wings flutter and general mechanical vibration. Kielb [9] also 
successfully applied PD to a GE-XTE45 fan blade. Panossian [6] used it to damp the vibration in the 
liquid oxygen (LOX) inlet tee of a Space Shuttle Main Engine (SSME) and found that PD technology 
had a good damping efficiency in the high frequency range between 3000 Hz to 6000 Hz. Xu et al. 
[10] managed to reduce the vibration levels of a desk-top banknotes processing machine by about 
40 dB in the range of 2000 Hz to 6000 Hz. Moreover, to illustrate the application of PD in cryogenic 
temperature environment, Moore et al. [11] performed a series of experimental studies on an impact 
damper and applied this technique to damp the lateral shaft vibration in a rocket engine turbo 
pump, where most conventional dampers would invalid. 

To gain an appreciation of the important parameters that may influence the performance of 
particle damper, most PD experiments were conducted on a cantilever beam with particle dampers. 
The parameters concerned usually included the type, shape, and size of the particles, the volume 
fraction, damper location, and the level of excitation. It is found that the factors mentioned above 
have different effects on particle damping. Some of them, moreover, interconnect with each other. 
Holikamp and Gordon [12] summarized their experimental findings that the damper was strongly 
dependent upon vibration amplitude, damper location, and mass of particles. Friend and Kinra [13] 
further pointed out the key aspect for amplitude dependent behavior under gravity was the 
particles’ acceleration characteristics. Although these studies have highlighted the basic rules of 
particle damping, the acceleration response range, given the cantilever beam structure, is relatively 
limited for practical application. 

Saeki and Masri laid foundational analytical methods for mechanism research on a single-unit 
multi-particle damper [5,14–16]. But the research on multi-unit particle dampers (MUPDs) is still in 
its infancy. In 2005, Saeki [8] first gave the definition of multi-unit particle damper, and studied the 
influence of the number of units and cavity size on particle damping with the 
single-degree-of-freedom system of horizontal vibration. Since the multi-unit particle damper in the 
literature is in the same response environment, Saeki assumed that the damping effect of the 
multi-body particle damper was actually a linear superposition of single-unit multi-particle damper. 
Through the discrete element method (DEM) and experimental approaches, the damping 
mechanism of MUPDs under different excitations was studied in detail by Lu [17–21]. The research 
object involved in this paper is a bracket structure with a particle damper located at a large vibration 
amplitude position, which provides an appropriate platform to study the characteristics of particle 
damping in the high vibration amplitude (acceleration higher than 50 times gravity acceleration) and 
the feasibility of applying multi-unit particle dampers to a relatively complex structure. The effects 
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Masri [5] first proposed an improved method of a multi-unit single-particle damper, replacing
one impact damper with multiple impact dampers to reduce the impact of the single-particle damper.

Many researches have indicated that particle dampers are highly effective in suppressing resonant
structural vibration over a wide range of frequencies: Several modes of vibration can be damped
simultaneously by one damper design. Experiments conducted by Lieber [4] showed that PD could
effectively suppress the wings flutter and general mechanical vibration. Kielb [9] also successfully
applied PD to a GE-XTE45 fan blade. Panossian [6] used it to damp the vibration in the liquid oxygen
(LOX) inlet tee of a Space Shuttle Main Engine (SSME) and found that PD technology had a good
damping efficiency in the high frequency range between 3000 Hz to 6000 Hz. Xu et al. [10] managed
to reduce the vibration levels of a desk-top banknotes processing machine by about 40 dB in the
range of 2000 Hz to 6000 Hz. Moreover, to illustrate the application of PD in cryogenic temperature
environment, Moore et al. [11] performed a series of experimental studies on an impact damper and
applied this technique to damp the lateral shaft vibration in a rocket engine turbo pump, where most
conventional dampers would invalid.

To gain an appreciation of the important parameters that may influence the performance of
particle damper, most PD experiments were conducted on a cantilever beam with particle dampers.
The parameters concerned usually included the type, shape, and size of the particles, the volume
fraction, damper location, and the level of excitation. It is found that the factors mentioned above
have different effects on particle damping. Some of them, moreover, interconnect with each other.
Holikamp and Gordon [12] summarized their experimental findings that the damper was strongly
dependent upon vibration amplitude, damper location, and mass of particles. Friend and Kinra [13]
further pointed out the key aspect for amplitude dependent behavior under gravity was the particles’
acceleration characteristics. Although these studies have highlighted the basic rules of particle
damping, the acceleration response range, given the cantilever beam structure, is relatively limited for
practical application.

Saeki and Masri laid foundational analytical methods for mechanism research on a single-unit
multi-particle damper [5,14–16]. But the research on multi-unit particle dampers (MUPDs) is still in
its infancy. In 2005, Saeki [8] first gave the definition of multi-unit particle damper, and studied the
influence of the number of units and cavity size on particle damping with the single-degree-of-freedom
system of horizontal vibration. Since the multi-unit particle damper in the literature is in the same
response environment, Saeki assumed that the damping effect of the multi-body particle damper was
actually a linear superposition of single-unit multi-particle damper. Through the discrete element
method (DEM) and experimental approaches, the damping mechanism of MUPDs under different
excitations was studied in detail by Lu [17–21]. The research object involved in this paper is a bracket
structure with a particle damper located at a large vibration amplitude position, which provides an
appropriate platform to study the characteristics of particle damping in the high vibration amplitude
(acceleration higher than 50 times gravity acceleration) and the feasibility of applying multi-unit
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particle dampers to a relatively complex structure. The effects of damper cavity, collision clearance,
type, and size of particle were investigated under harmonic excitation and random excitation.

2. Experimental Setup and Scheme

2.1. Experimental Structure and Setup

The experimental structure, illustrated in Figure 2, consisted of a base, a bracket, and a wheel. It is
a component in the spacecraft and made from aluminum alloy. The primary structure mass is 11.07 kg.
Figure 2a illustrates the Cartesian coordinates definition of the primary structure. The vertical direction
is defined as the Z, the axis direction of the wheel is defined as the Y, and the direction perpendicular
to the Z and Y directions is defined as the X.
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Figure 2. Test structure (a) coordinate definition and component name; (b) structure size; (c) fundamental
mode shape of the primary system.

The natural frequency of the fundamental mode of the primary structure is f n = 240 Hz.
The fundamental mode shape is shown in Figure 2c. It was known by modal identification that the
corresponding mode was first-order bending mode of the primary structure, and the main response is
in the Y direction.

According to [22–24], for achieving high damping, the damper should be installed on a large
displacement position to acquire the vigorous impact of particles. The multi-unit particle damper was
installed on the top of the bracket and the particle cavities connected to the bracket by an adapter,
as shown in Figure 3.
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Figure 3. Connection scheme of particle cavities with the primary structure. (a) bracket structure;
(b) test model.

The multi-unit particle damper was made of aluminum alloy plates consisting of three rectangular
containers, in which the walls in the Y direction can be removed to add particles. The cavity types
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and internal dimensions used in this study are listed in Table 1. All cavities are equally divided into
3 sub-cavities along the X direction, as shown in Figure 3. The serial number of the cavity indicates
that the number of layers along the Y and Z directions is different: The A-cavity has no layering in the
Z direction, and the Z-direction height of the cavity is 64 mm. The B-cavity is divided into 2 layers
in the Z direction, and the height of each sub-chamber is 31 mm (the partition thickness is 2 mm).
The C-cavity is divided into 5 layers in the Z direction, and the Z-direction height of each sub-chamber
is 11.2 mm. According to whether it is layered in the Y direction (the main response direction of
the bracket), the above-mentioned cavity of each type is further divided into two types. The suffix
number “1” indicates that the Y direction is not layered, that means the Y-direction dimension of a
single sub-cavity is 28 mm. And the suffix number “2” indicates that the Y-direction is divided into
two layers, and the single sub-cavity Y-direction dimension is 14 mm. The horizontal direction of the
cross-sectional view in Table 1 is the Y direction, and the vertical direction is the Z direction. The modal
analysis of the A1 cavity can be achieved under the condition that the bottom mounting hole is fixed,
the first-order modal frequency is 1993, 6 Hz, and the main vibration direction is Y-direction. This
means that the damper cavity stiffness is large enough to have a negligible effect on the first-order
bending frequency of the primary structure.

Table 1. Random excitation loading conditions.

Serial Number of the
Cavity A1 A2 B1 B2 C1 C2

Sub-cavity size X × Y × Z
(mm) 22 × 28 × 64 22 × 14 × 64 22 × 28 × 31 22 × 14 × 31 22 × 28 × 11.2 22 × 14 × 11.2

Number of sub-cavities 3 6 6 12 15 18
Total volume of the cavity

(mm3) 118,272 118,272 114,576 114,576 103,488 103,488

A cross-sectional view of
the X-direction
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Figure 4 shows a schematic diagram of the experimental apparatus. The multi-unit particle
damper was first fixed on a steel pedestal and then firmly connected to the shaker platform. This test
system included an LS232-GT500M 2t-level shaker, several m + p Vibpilot-8 controllers and B and W
piezoelectric acceleration sensors. The sampling frequency was set to 5.12 kHz. The motion of the
primary structure and the base was measured with six accelerometers.
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2.2. Experimental Scheme

The particles tested were as follows: 304 stainless steel particles (2 mm diameter) (Defined as Fe in
the legend), lead particles (2 mm diameter), stainless steel powder (about 0.048 mm diameter), tungsten
carbide powder (about 0.5 mm diameter), as shown in Figure 5. The density of the chosen material:
stainless steel (7.93 × 103 kg/m3), lead (11.3 × 103 kg/m3) and tungsten carbide (15.6 × 103 kg/m3).
In practical engineering applications, the mass ratio between the damper and the primary structure
should be small, usually no more than 10%. All of the experiments were conducted with additional
mass (sum of the adapter, the particle cavity, and particles mass) no more than 1 kg, which corresponds
to a mass ratio of 8.8%.
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Figure 5. Particle type (a) 304 Stainless steel particles (2 mm diameter); (b) Lead particles (2 mm
diameter); (c) Stainless steel powder (about 0.048 mm diameter); (d) Tungsten carbide powder (about
0.5 mm diameter).

The loading conditions of the standard sine sweep were described as follows: the acceleration
was maintained 1 g the scope of sweeping frequency was from 20 Hz to 1000 Hz, and the sweep rate
was set as 2 oct/min. The random excitation loading conditions were shown in Table 2.

Table 2. Random excitation loading conditions.

Frequency Range Power Spectral Density (g2/Hz)

10–100 3 dB/oct
100–200 0.08
600–2000 −9 dB/oct

RMS acceleration 8.1 g
Loading time 1 min

Loading direction Z
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The primary structure with the adapter was as a reference scheme (Figure 6), numbered Sup_1.
Figure 7 showed the response of the main structure of Sup_1. Consistent with the modal analysis
results in Section 2.1, the maximum response direction of the primary structure for the fundamental
mode shape is Y direction, and the value is about 68 g.
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3. Experimental Results

Due to the slight difference in the internal volume of the damper cavities, the particle filling factor
Vr is defined as the maximum number of particles contained in a single sub-cavity in a C2 cavity is set
as a filling factor Vr = 1. The mass of a single cavity filling of particles with different particle sizes
at Vr = 1 is shown in Table 3. It should be noted that the maximum filling of the A and B cavities
corresponds to a Vr greater than 1, which is about 1.14.

Table 3. Particle mass (Vr = 1, C2 Cavity).

Particle Type 2 mm Stainless
Steel Particles

2 mm Lead
Particles

300 Mesh Stainless
Steel Powder

32 Mesh Tungsten
Carbide Powder

Particle mass (g) 15.28 21.09 15.89 24.55
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3.1. Control Experiment

The mass of particle cavities is slightly different. It is well known that the damper mass is an
important factor affecting the damping effect, and the connection bolts between the cavity and the
adapter may also affect the structural response. This section evaluates the effect of two factors on the
test and compares the primary structure measurements with different cavities to the control scheme in
Table 4. “Without cover” in the table means that the cover on both sides of the cavity is not installed.

Table 4. Mass of each component.

Component Name Mass (g)

Primary structure 11070
A1 cavity 110
A2 cavity 151
B1 cavity 123
B2 cavity 161
C1 cavity 160
C2 cavity 198

Cover 24
Adapter 70

As shown in Table 5, the damper cavity has little effect on the response of the primary structure.
The resonant frequency of the primary structure with the adapter and the damper cavity is slightly
reduced. The amplification factor of the main structure with the particle cavity installed has a slightly
reduced under sinusoidal excitation and random excitation conditions, but the variation amplitude is
within 10%.

Table 5. The effect of the cavity and the adapter: (a) Sinusoidal excitation; (b) Random excitation.

(a)

Scheme Name Additional Mass (g) Additional Total Mass
(Including Adapter) (g) f sin Asin

Sup_1 0 70 240.81 71.53

A1 (without cover) 110 180
237.80 68.30

(−1.25%) (−4.52%)

A1 158 228
236.89 68.20

(−1.63%) (−4.66%)

C1 208 278
233.42 64.24

(−3.07%) (−10.19%)

C2 (without cover) 198 268
235.20 66.39

(−2.33%) (−7.19%)

C2 246 316
231.49 65.89

(−3.87%) (−7.88%)

(b)

Scheme Name Additional
Mass (g)

Additional Total Mass
(Including Adapter) (g) f spec Grms Aspec

Sup_1 0 72 240.00 48.48 62.73

A1 (without cover) 110 180
235.99 47.23 60.13

(−1.67%) (−2.58%) (−4.14%)

A1 158 228
234.00 46.02 59.34

(−2.50%) (−5.07%) (−5.40%)

C1 208 278
232.01 44.26 57.17

(−3.33%) (−8.70%) (−8.86%)

C2 (without cover) 198 268
234.00 44.27 58.81

(−2.50%) (−8.68%) (−6.25%)

C2 246 316
232.01 43.35 56.78

(−3.33%) (−10.58%) (−9.49%)
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It can be observed from experiments that only the damping change caused by the additional
concentrated mass is small, and the main cause of the structural response change is several bolt
connections between the end cap and the cavity. Therefore, in the subsequent tests, the screws at the
joints were tightened with a constant torque electric screwdriver.

3.2. Effect of Layering in Z-Direction of the Cavity

The purpose of layering the cavity in the Z-direction of is to prevent the particles/powder
from accumulating under the action of gravity, to enhance the movement ability of the underlying
particles/powder, and on the other hand, to adjust the collision gap between the particles and the cavity
in the Z direction.

The number of Z-direction layers corresponding to the cavities A1, B1, and C1 are 1, 2, and 5,
respectively, and the Z-direction collision gaps of B1 and C1 are 1/2 and 1/5 of A1, respectively.

This part of the test was carried out with 2 mm stainless steel particles and 32 mesh tungsten
carbide powder. The test results are shown in Table 6. The amplitude–frequency response curves
corresponding to Table 6 are shown in Figures 8 and 9.

Table 6. Effect of layering in Z-direction of the cavity.

Scheme Name
Sinusoidal Excitation Random Excitation

f sin Asin fspec Grms Aspec

Sup_1 240.81 71.53 240.00 48.48 62.73

A1_Fe_0.9
236.81 39.91 235.01 37.02 43.67

(−1.66%) (−44.21%) (−2.08%) (−23.64%) (−30.39%)

B1_Fe_0.9
235.70 43.23 234.00 44.02 50.34

(−2.12%) (−39.57%) (−2.50%) (−26.61%) (−40.10%)

C1_Fe_0.9
234.72 41.63 232.01 42.26 47.17

(−2.53%) (−41.80%) (−2.50%) (−30.72%) (−46.50%)

A1_WC_0.9
235.05 9.80 234.00 44.27 52.81

(−2.39%) (−86.30%) (−1.67%) (−36.20%) (−52.14%)

B1_WC_0.9
235.70 32.89 232.01 40.35 44.78

(−2.12%) (−54.02%) (−2.08%) (−31.42%) (−46.29%)

C1_WC_0.9
233.61 31.77 234.00 32.58 30.74

(−2.99%) (−54.19%) (−2.50%) (−32.79%) (−50.99%)
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(a) Sinusoidal excitation; (b) Random excitation.

The structural frequency variation caused by different Z-direction layering schemes is within 3%;
the best solution for damping effect of stainless steel particles is C1_304_0.9, which corresponds to
a decrease of 41.8% for the measuring point response amplification factor Asin, and Aspec decreases
46.5%; The best solution for tungsten carbide powder is A1_WC_0.9, which corresponds to a decrease
of 86.30% for Asin, and a decrease of 52.14% for Aspec.

The test results show that for 2 mm stainless steel particles, Z-direction stratification is beneficial
to improve the damping effect of stainless steel particles. The more Z-layers, the lower the response
peak. However, from the perspective of the variation of the RMS value, the promotion effect of layering
is not obvious. The Z-direction layering has some negative effects on the tungsten carbide powder.
The Z-direction layering of the cavity under sinusoidal excitation reduces the particle damping, while
the layering has no obvious influence on the particle damping under random excitation. In view of the
above results, it is not recommended to layer the cavity in the Z-direction.

3.3. Effect of Layering in the Y-Direction of the Cavity

Since the main response direction of the structure is the Y direction, the Y-direction collision gap
between the particles and the cavity is particularly concerned.

The “2” type cavity (cavity with spacers in the Y direction) can ensure that the Z-direction collision
gap is equal to the “1” type cavity (Y-direction non-separator), and the Y-direction collision gap is
reduced to half. In this part of the test, the C1 and C2 cavities were first used to test 2 mm stainless
steel particles and 32 mesh tungsten carbide powder. The test results are shown in Table 7, and the
corresponding amplitude–frequency response curve are Figures 10 and 11.

It can be seen that the best damping effect in the Y-stratified scheme is C2_WC_0.9, and the
response peaks Asin and Asepc of the main structure are decreased by 56.23% and 63.20%, respectively,
and the frequency change caused by the damper is also the largest. The modal frequency was reduced
by 3.41%. The C2_304_0.9 filled with stainless steel particles also achieved good damping effect, and
Asin and Aspec reductions also reached 60.77% and 68.13%, respectively.

The experimental results showed that layering in Y-direction is beneficial to the improvement of
the UMPD damping effect. When the particle mass is kept constant, the response amplitude can be
further attenuated by 20 to 30% through layering the cavity in Y-direction.
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Table 7. Effect of layering in Y-direction of the cavity.

Scheme Name
Sinusoidal Excitation Random Excitation

f sin Asin f sepc Grms Asepc

Sup_1 240.81 71.53 240.00 48.48 62.73

C1_304_0.9
234.72 41.63 234.00 33.59 33.56

(−2.53%) (−41.80%) (−2.50%) (−30.72%) (−46.50%)

C2_304_0.9
233.61 28.06 233.33 29.70 23.37

(−2.99%) (−60.77%) (−2.78%) (−38.73%) (−62.74%)

C1_WC_0.9
233.61 37.77 234.00 32.58 30.74

(−2.99%) (−47.19%) (−2.50%) (−32.79%) (−50.99%)

C2_WC_0.9
232.60 31.31 234.00 29.78 23.08

(−3.41%) (−56.23%) (−2.50%) (−38.58%) (−63.20%)
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Figure 11. Experiment results of Tungsten carbide powder (layering in Y-direction of the cavity);
(a) Sinusoidal excitation; (b) Random excitation.

Two-millimeter lead and stainless steel particles and tungsten carbide powder were filled into the
A1 and A2 cavities, respectively, and the test results were compared to verify the speculation about the
optimal cavity. The test results are shown in Table 8, and the corresponding measurement lines are
shown in Figures 12–14. The same trend as given in Table 7, it can be seen that the damping effect of the
A2 scheme continues to increase on the basis of A1, so that the Asin and Aspec of the schemes A2_Pb_0.9
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and A2_304_0.9 are respectively reduced by the A1 cavity. Forty-seven point four two percent, 44.21%
increased to 75.13%, 47.53%. Therefore, it can be determined that the optimum cavity is A2.

Table 8. Optimal cavity analysis.

Scheme Name
Sinusoidal Excitation Random Excitation

f sin Asin f spec Grms Aspec

Sup_1 240.81 71.53 240.00 48.48 62.73

A1_Pb_0.9
236.07 37.61 234.00 33.84 34.43

(−1.97%) (−47.42%) (−2.50%) (−30.19%) (−45.12%)

A2_Pb_0.9
234.69 17.79 234.00 29.56 24.44

(−2.54%) (−75.13%) (−2.50%) (−39.03%) (−61.04%)

A1_304_0.9
236.81 39.91 235.01 37.02 43.67

(−1.66%) (−44.21%) (−2.08%) (−23.64%) (−30.39%)

A2_304_0.9
234.69 37.53 234.00 32.28 28.84

(−2.54%) (−47.53%) (−2.50%) (−33.42%) (−54.03%)

A1_WC_0.9
235.03 9.74 235.99 31.10 28.32

(−2.40%) (−86.39%) (−1.67%) (−35.84%) (−54.86%)

A2_WC_0.9
227.40 6.79 234.00 25.70 13.91

(−5.57%) (−90.51%) (−2.50%) (−46.99%) (−77.82%)
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3.4. Effect of Particle/Powder Material

Particle/powder material is an important factor affecting particle damping. The difference includes
material density, particle surface hardness, and friction coefficient.

This section compares four kinds of particles or powder, which are 2 mm stainless steel particles,
lead particles, stainless steel powder, and tungsten carbide powder.

The A1 cavity was adopted to test the selected particles and powder. The filling factor Vr is 0.9,
the results are shown in Table 9, and the corresponding amplitude–frequency responses are shown in
Figures 15 and 16. It can be seen that the lead-filled particles are superior to the stainless steel particles
in damping, especially under random excitation conditions, the former (−45.12%) is 50% lower than
the latter (−30.39%). For the lead particles, the response peak Asin and Aspec reduction amplitudes are
47.42% and 45.12%, respectively. Therefore, 2 mm lead particles can be used as an alternative to the
best granular material. Compared with stainless steel powder and tungsten carbide powder, tungsten
carbide powder is obviously dominant under sinusoidal excitation, Asin is reduced by 86.30%, slightly
dominated under random conditions, and Aspec is reduced by 52.14%.

Therefore, tungsten carbide powder can be used as an alternative to the best powder filling
material. In summary, the tungsten carbide powder has the best vibration damping effect, followed
by stainless steel powder, 2 mm lead particles, and stainless steel particles had the worst vibration
damping effect.

Table 9. Effect of particle/powder material.

Scheme Name
Harmonic Excitation Random Excitation

f sin Asin f spec Grms Aspec

Sup_1 240.81 71.53 240.00 48.48 62.73

A1_Fe_0.9
236.81 39.91 235.01 37.02 43.67

(−1.66%) (−44.21%) (−2.08%) (−23.64%) (−30.39%)

A1_Pb_0.9
236.07 37.61 234.00 33.84 34.43

(−1.97%) (−47.42%) (−2.50%) (−30.19%) (−45.12%)

A1_Fe
(p)_0.9

235.70 32.06 234.00 32.42 31.58
(−2.12%) (−55.18%) (−2.50%) (−33.13%) (−49.65%)

A1_WC_0.9
235.05 9.80 235.99 30.93 30.02

(−2.39%) (−86.30%) (−1.67%) (−36.20%) (−52.14%)
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3.5. Effect of the Filling Coefficient

For the C2 cavity, the maximum filling coefficient Vr = 1, and for the A1/A2 cavity, the maximum
filling coefficient Vr = 1.14. In this part of the experiment, the filling coefficient of tungsten carbide
powder in the cavity of A1 and A2 was adjusted to obtain the influence law and the corresponding
optimal filling coefficient. The additional mass of each damper scheme is shown in Table 10.
The corresponding test results are shown in Table 11, and the amplitude–frequency response is shown
in Figure 17.

Table 10. Tungsten carbide powder mass.

Scheme Name Cavity Mass (g) Powder Mass (g) Additional Total Mass (Including Adapter) (g)

Sup_1 0 0 72
A1_WC_0.9 158 662.85 890.85

A1_WC_0.95 158 699.68 927.68
A1_WC_1.00 158 736.50 964.50
A1_WC_1.05 158 773.325 1001.325
A1_WC_1.10 158 810.15 1038.15
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Table 11. Effect of tungsten carbide powder filling coefficient.

Scheme Name
Harmonic Excitation Random Excitation

f sin Asin f spec Grms Aspec

Sup_1 240.81 71.53 240.00 48.48 62.73

A1_WC_0.9
235.03 9.74 235.99 31.10 28.32

(−2.40%) (−86.39%) (−1.67%) (−35.84%) (−54.86%)

A1_WC_0.95
234.14 8.25 234.00 30.77 27.24

(−2.77%) (−88.46%) (−2.50%) (−36.54%) (−56.57%)

A1_WC_1.00
231.01 6.19 235.01 29.69 23.37

(−4.07%) (−91.34%) (−2.08%) (−38.75%) (−62.75%)

A1_WC_1.05
230.46 5.09 235.01 28.68 20.75

(−4.30%) (−92.88%) (−2.08%) (−40.85%) (−66.92%)

A1_WC_1.10
229.95 5.05 235.99 28.55 19.92

(−4.51%) (−92.94%) (−1.67%) (−41.12%) (−68.24%)
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Figure 17. The effect of the filling coefficient on the experiment results: (a) Sinusoidal excitation;
(b) Random excitation.

The amplification factor ratio A′ is defined as the ratio of the amplification factor to the control
scheme in the different experiment scheme. Figure 18 shows the effect of the filling coefficient on
the damping effect of the above tungsten carbide filling scheme with the filling coefficient Vr as
the abscissa and the magnification factor ratio A′ as the ordinate. As can be seen from Figure 17,
when the filling coefficient increased to 1.05, A′sin stops decreasing under sinusoidal excitation, and the
random excitation decreases slowly, thereby determining that 1.05 is the optimum filling coefficient.
The damping effect of the 2 mm particle filling scheme was tested in accordance with the fill factor.
Table 12 shows the test results for increasing the filling coefficient of lead and stainless steel particles.
It can be seen that increasing Vr helps to improve the damping effect.
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Table 12. Effect of particle filling coefficient.

Scheme Name
Harmonic Excitation Random Excitation

f sin Asin f spec Grms Aspec

Sup_1 240.81 71.53 240.00 48.48 62.73

A1_Pb_0.9
236.07 37.61 234.00 33.84 34.43

(−1.97%) (−47.42%) (−2.50%) (−30.19%) (−45.12%)

A1_Pb_1.05
236.07 26.88 235.99 32.35 29.87

(−1.97%) (−62.42%) (−1.67%) (−33.27%) (−52.38%)

A1_Fe_0.9
236.81 39.91 235.01 37.02 43.67

(−1.66%) (−44.21%) (−2.08%) (−23.64%) (−30.39%)

A1_Fe_1.05
235.73 26.03 235.34 34.65 36.52

(−2.11%) (−63.61%) (−1.94%) (−28.53%) (−41.79%)

4. Discussion and Conclusions

In this paper, the effects of additional structural quality, Y-direction and Z-direction stratification,
particle material, and filling factor of the particle damper on the damping effect are investigated by
experiments. The main conclusions are as follows:

(1) The differences between the resonance frequencies of the primary structure with and without
particle dampers are small. For the scheme in which the additional mass (The sum of the mass
of the adapter and the particle damper) does not exceed 1000 g and the maximum response of
the primary structure can be attenuated by more than 50%, and the first-order frequency of the
primary structure decreases most when the A2_WC_0.9 type particle damper is installed, which
is 5.57%.

(2) Layering the cavity in the direction of the main vibration can improve the efficiency of particle
damping. This is because the multi-unit damper can increase the number of collisions between
the particles and the wall. But in the direction of a small vibration amplitude, layering the damper
does not significantly improve the particle damping efficiency.

(3) With the same filling factor, the tungsten carbide powder has the best damping effect. When the
filling coefficient and the cavity is kept constant, the damping effect of the particle damper is
positively correlated with the particle density.

(4) There is an optimal filling coefficient, but the values corresponding to different cavities are slightly
different. For the A1 cavity, the optimum filling coefficient for filled tungsten carbide powder,
2 mm lead, and stainless steel particles is 1.05, while for the A2 cavity, the best filling coefficient
is 0.9.
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The structural shape of the cavity affects the collision between the particles, which in turn affects
the energy consumed in a single cycle. The interaction between particles during motion can be found
in reference [23].

It should be noted that the optimal damper design was determined in this paper from the
trial-and-error method. But the Kalman filter and the Taguchi method are more efficient optimization
methods for experimental design [25–27]. In addition, the damper proposed in this paper requires
a large installation space and is not suitable for tight structures. For tight structures, multiple small
damper combinations are required to achieve vibration damping effect [22]. And the use of a viscoelastic
material as a cavity can further increase the damping effect of the damper [28].
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