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Abstract: Rolling contact fatigue cracks in rail and wheel undergo non-proportional mixed mode
I/II/III loading. Fatigue tests were performed to determine the coplanar and branch crack growth
rates on these materials. Sequential and overlapping mode I and III loading cycles were applied to
single cracks in round bar specimens. Experiments in which this is done have been rarely performed.
The fracture surface observations and the finite element analysis results suggested that the growth of
long (does not branch but grown stably and straight) coplanar cracks was driven mainly by mode III
loading. The cracks tended to branch when increasing the material strength and/or the degree of
overlap between the mode I and III loading cycles. The equivalent stress intensity factor range that
can consider the crack face contact and successfully regressed the crack growth rate data is proposed
for the branch crack. Based on the results obtained in this study, the mechanism of long coplanar
shear-mode crack growth turned out to be the same regardless of whether the main driving force is
in-plane shear or out-of-plane shear.

Keywords: non-proportional mixed mode loading; fractography; mode III stress intensity factor;
FEA; rail steel; wheel steel

1. Introduction

The repeated passage of train wheels over the rails induces rolling contact fatigue (RCF) cracks
on both the railhead and the wheel tread. Such surface RCF cracks undergo non-proportional mixed
mode I/II/III loading cycles [1–4]. For a period, they grow stably at a shallow angle to the surface,
according to what is considered coplanar fatigue crack growth (FCG). Once they have reached a certain
length, these cracks start to branch. Coplanar cracks are not a great danger to trains as they flake off,
causing the train to have a rougher ride at most. Branch cracks, instead, could lead to catastrophic
failure if left to grow. However, the continued growth of coplanar cracks can obscure the branch ones
from detection through conventional non-destructive methods. Therefore, the accurate prediction of
growth rates for both coplanar and branch cracks is essential to prevent rail and wheel failures and
develop cost-effective maintenance strategies.

Many studies have been conducted on the coplanar FCG of rail steel under sequentially applied
mode I and II loading cycles. Compared to these mixed mode loading tests, FCG experiments under
mixed mode I/III loading are hardly performed. However, several tests under proportional loading
or with one mode cyclic and other static have been conducted. Ritchie et al. [5] studied the FCG in
mode III AISI 4340 steel in torsional loading, measured on circumferentially-notched specimens and
the results were compared with the behavior in mode I. FCG rates in mode III were found to be slower
than those in mode I, despite that they were still Paris-type law related to mode III stress intensity
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KIII range (∆KIII). They proposed a micromechanical model for mode III FCG, in which the crack
advance was considered to occur via a mode II coalescence of cracks, initiated at inclusions ahead of
the main crack front. Nayeb-Hashemi et al. [6] found no correlation between the FCG rate and the
∆KIII or the plastic strain intensity range (∆ΓIII) except when superimposing a static mode I loading to
the mode III one on a low-strength AISI 4140 steel. In the latter case, the variability of the FCG rate
decreased. Hourlier and Pineau [7] investigated the effects of static mode III on mode I FCG behavior
in four materials. They showed that the loading conditions caused two main effects—a considerable
reduction in FCG rate and a modification in crack path. They introduced a new criterion based on
two main assumptions—fatigue cracking occurred only under the effect of local mode I opening
and a fatigue crack grows in a direction where the FCG rate is the maximum. Tarantino et al. [8]
applied a novel experimental method to promote mode III coplanar FCG in bearing steel. The method
comprised out-of-phase multiaxial fatigue tests, adopting a stress history typical of sub-surface RCF
onto specimens containing micronotches. Their analytical model has shown that the typical crack
opening values determined by out-of-phase loads can prevent the crack face contact during the RCF
loading cycles. Giannella et al. [9] investigated the FCG behavior in cruciform specimens made of
Ti6246 by applying a static load along one arm of the specimen and a cyclic load along the other arm.
They used an equivalent stress intensity range in the Walker crack growth law that can consider all
mode I/II/III loading and determined that a change in the FCG direction occurred depending on the
static load levels.

Recently, mixed mode II/III experiments were also performed on a rail steel considering RCF. Bonniot
et al. [10] performed the experiments to determine the FCG thresholds and kinetics under loading
conditions using asymmetric four-point bending specimens with different angles between the crack front
and the shear load. They determined that a coplanar shear-mode FCG occurred with the high loading
ranges. The effective stress intensity factors (SIFs) were derived by an inverse method using the relative
displacements of the measured crack face. They were found to be 10%–70% lower than the nominal SIF,
and a reasonable correlation of the measured FCG rates could be made using the effective SIF.

Akama and Kiuchi [11,12] conducted fatigue tests to determine the coplanar FCG rate on both
rail and wheel steel under non-proportional mixed mode I/III loading cycles. They could induce long
coplanar cracks under this condition. Moreover, the cracks tended to branch when the degree of
overlap (δ) between the mode I and III cycles increased.

As mentioned above, the previous studies about FCG under non-proportional mixed mode
loading cycles were apparently focused on the mode I/II loading and coplanar growth in rail steel. Only
a detailed study on coplanar and branch FCG under non-proportional mixed mode I/III loading cycles
has been performed, by Akama and Kiuchi [11,12], for rail and wheel steel. However, the elucidation
of the phenomena inherent to FCG under non-proportional mixed mode I/III loading is not sufficient
in their studies. Therefore, in this study, the FCG data obtained from non-proportional mode I/III
loading cycles were re-constructed by using novel and reliable equivalent SIF ranges to obtain good
correlations. In addition, a finite element analysis (FEA) was performed thoroughly to investigate the
crack behavior under these loading cycles.

This paper, which is part 2 of two companion papers, presents FCG under non-proportional
mixed mode I/III loading and is organized as follows. Section 2 describes the detailed experimental
methods and presents the experimental results. In Section 3, the FEA model for predicting the crack
path direction is presented, and the results are provided. Section 4 provides detailed considerations
and a discussion by comparing the experimental and FEA results. Finally, the results obtained herein
are summarized in Section 5.
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2. Experiments

2.1. Testing Machine and Specimen

The fatigue tests were performed on a servo-hydraulic testing machine, in which capabilities are a
maximum tension–compression force of 200 kN, a maximum fully reversed torque of 1000 Nm under
load control, and a frequency of 1 Hz in dry conditions.

Circumferentially notched round bar specimens with a 45◦ starter notch were used. The detailed
geometry is depicted in Figure 1. The notch had a 30◦ groove, a 4.5 mm depth, and a 0.1 mm root
radius and was produced at the specimen center by spark erosion. Precracking was not performed,
but the growth data within 0.7 mm from the notch tip were discarded.

Four displacement gauges were placed on the knife edges. These edges were attached across
the notch on the specimen surface along the circumferential direction at every 90◦ to measure the
compliance, as shown in Figure 2. The specimen was placed into the machine by adjusting the
maximum difference from the average value of the strain obtained from these four clip gauges adjusted
to within 5%. Prior to the experiments, specimens containing notch depths of 5, 6, 7, and 8.5 mm were
prepared, and the relation between load and output of the displacements from the gauges when each
specimen was loaded up to 30 kN was investigated. In each case, a linear relation was obtained with
no deviation, which was considered to be caused by slip. Additionally, the accuracy was verified using
the potential drop method. A personal computer controlled the testing machine by generating the
non-proportional loading cycles, as shown in Figure 3, and recorded the data from the strain gauges.
The crack length (or depth) (a) was calculated via the compliance technique.
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Figure 1. (a) Whole configuration of the round bar specimen, (b) detail of the notch, and (c) 
parameters of the cracked section (all dimensions in mm). 
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Figure 3. Measurement system for the fatigue crack growth rates.

Two rail steels (RP and RF) and one wheel steel (WT) were used as specimen materials. RP and RF
were selected to simulate normal and head hardened rails, respectively. Their chemical compositions
and mechanical properties are summarized in Tables 1 and 2. The microstructures of RP and WT were
normal pearlite, whereas that of RF was fine pearlite with an average lamellar spacing of about 100 nm.
The specimens were directly collected from real rails and wheels.
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Table 1. Chemical composition (wt%).

Material C Si Mn P S

Rail steel, RP 0.68 0.26 0.93 0.016 0.01

Rail steel, RF 0.79 0.17 0.82 0.019 0.01

Wheel steel, WT 0.65 0.26 0.73 0.016 0.01

Table 2. Mechanical properties.

Material Ultimate Tensile Strength (MPa) 0.2% Proof Stress (MPa)

Rail steel, RP 934 511

Rail steel, RF 1214 802

Wheel steel, WT from 981 to 1030 from 618 to 657

2.2. Loading History

The loading history simulated the one experienced by RCF cracks in the presence of a fluid,
as obtained by FEA [1,3] and represented in Figure 4, which also shows δ between KI and KIII.
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where x indicates the c/b represented in Figure 1c, b is the radius of the specimen, and c is the radius of
the remaining ligament.

2.4. Experimental Conditions

The experiments were conducted on five RP—three RF and one WT specimen—hereafter referred
to as RP1, RP2, RP3, RP4, and RP5; RF1, RF2, and RF3; and WT1. Table 3 reports the ∆KIII/∆KI ratios
and δ values for each experiment. In all tests, the crack faces were slightly pulled apart so that the
stress ratios of mode I (RI) and III (RIII) loading were 0.05 and −1, respectively. RP1, RP2, RP3, RF1,
RF2, and WT1 were designed to provide mainly coplanar FCG rate data, whereas RP4, RP5, and RF3
were conducted to obtain branch FCG rate data. RP1 was carried with δ = 90◦ at the first step. Once
the crack length reached about 7 mm, it was interrupted and continued by changing δ to 30◦. In a
similar way, RP3, RF1, RF2, and WT1 were performed by changing δ. After the tests, the specimens
were broken by applying a large tensile force to observe the fracture surfaces.

Table 3. Testing conditions for mixed mode I/III loading tests.

Exp. No. ∆KIII/∆KI ∆ (degree)

RP1 1.0 90→ 30

RP2 1.5 90

RP3 1.5 30→ 120

RP4 1.0 180

RP5 1.5 180

RF1 1.0 90→ 30

RF2 1.5 60→ 30

RF3 1.0 180

WT1 1.0 90→ 60

2.5. Experimental Results

Figure 5 schematically represents the main coplanar crack plane and the angles between this plane
and the branch crack plane when branching occurred. In this figure, θ and ϕ are the twisting and
deflection angles, respectively.
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The coplanar cracks grew almost straight (i.e., θ = ϕ = 0◦) in RP1 and RP2 but branched in RP3 at
about θ = 45◦ and ϕ = 0◦, when δ was 120◦. In RP4 and RP5, the branching occurred and resulted
in factory-roof fractures (i.e., associated with ridges and valleys). In RF1 and RF2, little factory-roof
fractures were observed on the crack faces when δ was 90◦ and 60◦, respectively, but coplanar cracks
grew in both experiments when it was reduced to 30◦. The crack branched in RF3. In WT1, the fracture
surface was flat, the crack grew coplanarly, and no branching was observed. Figure 6 shows the
macroscopic fracture surfaces obtained in RP2, RP5, RF2, and WT1.
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2.5.1. Coplanar Crack Growth Rate

When mode III and mode I are mixed, the equivalent SIF range at ϕ = 0◦ in Figure 5 can be
expressed as [14]

∆Ks = 0.5
{
∆K2

I (1− 2ν)2 + 4∆K2
III

}0.5
(5)

where ν is the Poisson ratio. When ν = 0.3, it becomes

∆Ks = 0.5
{
0.16∆K2

I + 4∆K2
III

}0.5
(6)
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Figure 7 shows the growth rate data obtained for RP, consisting of the RP1, RP2, and RP3 results,
with respect to ∆Ks. The data are observed to be divided into two groups by δ. When the Paris-type
law was applied to the data for the same δ, the following equations were obtained:

da
dN

= C(∆Ks)
m (7)

where N is the number of cycles. For δ = 90◦, C = 2.52 × 10−11 and m = 2.93 and for δ = 30◦,
C = 1.15 × 10−10 and m = 2.26. The R-squared value, i.e., the coefficient of determination (R2), is 0.973
and 0.917. In each case, a good correlation could be obtained even when the ∆KIII/∆KI differed.
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Next, the growth rate data obtained for RF, comprising of the RF1 and RF2 results, were correlated
with respect to ∆Ks, as shown in Figure 8. In this case, the correlation was poor. The growth law was
as follows:

da/dN = 7.40 × 10−10(∆Ks)1.62 (R2 = 0.638) (8)
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2.5.2. Branch Crack Growth Rate

In the mixed mode I/III loading, the cracks grown may branch to form torsional facets. In such a
case, the cracks form perpendicularly to the maximum principal stress and the equivalent SIF range
has been proposed as follows [15]:

∆Kt = 0.8∆KI + 0.5
{
0.16∆K2

I + 4∆K2
III

}0.5
(9)
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under the condition of ν = 0.3. The combined growth data obtained from RP4 and RP5 as a function of
∆Kt are plotted in Figure 10. When ∆KIII/∆KI was large (i.e., in the RP5 case), the growth rates went
down. This happened because Equation (9) does not consider the attenuation of ∆KIII due to the crack
face contact. This attenuation was considered in the previously performed mixed mode I/III test with
RI = RIII = 0.05 and the equivalent SIF range (∆Keq) that was weighted to ∆KIII, as in the following
equation [16], was proposed:

∆Keq =
{
∆K2

I + 0.2∆K2
III

}0.5
(10)
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When the growth rates were plotted against ∆Keq, a good correlation was obtained even when
∆KIII/∆KI and δ were extensively changed. Therefore, also in this study, the growth rates for RP and
RF were plotted against ∆Keq, and the results for RP are shown in Figure 11, revealing a fairly good
correlation. The growth rate in RP was expressed via the Paris-type law as follows:

da/dN = 1.84 × 10−12(∆Keq)3.29 (R2 = 0.960) (11)

Although not shown, the growth law for RF was

da/dN = 4.66 × 10−13(∆Keq)3.71 (R2 = 0.987) (12)

As mentioned previously, coplanar growth was considered to occur in RF1 and RF2 when δ
was 30◦, and the growth rates were plotted with ∆Ks. However, the correlation was poor in these
cases. This was probably due to the effect of small factory-roof fractures that formed on the fracture
surfaces under the initial conditions. Although the coplanar growth occurred when δ was 30◦ for
both specimens, an effect of the contact at the factory-roof fracture surfaces on the growth rates was
observed throughout the experiments. Therefore, all data were correlated with ∆Keq, and the results
are shown in Figure 12. A better correlation was obtained compared with the case of plotting with ∆Ks.
The growth law was as follows:

da/dN = 4.51 × 10−11(∆Keq)2.60 (R2 = 0.823) (13)
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2.5.3. Fractography

After the experiments, scanning electric microscope (SEM) observations were performed to unravel
the FCG mechanism from the fracture surfaces of the specimens. The SEM images of the fracture
surfaces of the RP1, RP2, and RP3 specimens, at various growth times, are shown in Figures 13–15.
Fujii et al. [17] performed fatigue tests under mode II loading, with high growth rates and short
crack lengths, and observed severe rub marks and many wear particles and oxides on the fracture
surfaces. In RP1 and RP2, however, there was no evidence of contact between the crack surfaces at all
growth periods, and no oxide debris generated from the surface appeared. At high magnifications,
microcleavage and rippling could be observed, implying that the attenuation due to surface friction
was very limited. As in previous non-proportional mixed mode I/II loading experiments [18,19],
clear striation patterns were seldom seen. Because there was no contact between the crack faces, the
striation patterns were not worn out by the mating face.
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Figure 13. Fracture surface of RP1 observed via scanning electric microscope (SEM) (arrows indicate 
the direction of the crack growth). (a) 2 mm from the notch tip (δ = 90°), (b) an enlarged view 
indicated by the frame in (a), (c) 4.8 mm from the notch tip (δ = 30°), (d) frame in (c), (e) 10.5 mm from 
the notch tip (δ = 30°), and (f) frame in (e). 

Figure 13. Fracture surface of RP1 observed via scanning electric microscope (SEM) (arrows indicate
the direction of the crack growth). (a) 2 mm from the notch tip (δ = 90◦), (b) an enlarged view indicated
by the frame in (a), (c) 4.8 mm from the notch tip (δ = 30◦), (d) frame in (c), (e) 10.5 mm from the notch
tip (δ = 30◦), and (f) frame in (e).
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Figure 14. Fracture surface of RP2 observed via SEM (arrows indicate the direction of the crack 
growth). (a) 2 mm from the notch tip, (b) an enlarged view indicated by the frame in (a), (c) 4 mm 
from the notch tip, (d) frame in (c), (e) 6.8 mm from the notch tip, (f) frame in (e), (g) 8 mm from the 
notch tip, and (h) frame in (g). 

Figure 14. Fracture surface of RP2 observed via SEM (arrows indicate the direction of the crack growth).
(a) 2 mm from the notch tip, (b) an enlarged view indicated by the frame in (a), (c) 4 mm from the
notch tip, (d) frame in (c), (e) 6.8 mm from the notch tip, (f) frame in (e), (g) 8 mm from the notch tip,
and (h) frame in (g).
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Figure 15. Fracture surface of RP3 observed using a SEM (arrows indicate the direction of the crack 
growth). (a) Macroscopic appearance of the fracture surface, (b) 3 mm from the notch tip (δ = 30°), 
and (c) an enlarged view indicated by a frame in (b). 
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A series of elasto-plastic FEA was performed using the commercial FEA code MARC to 

elucidate the FCG characteristics observed in the mixed mode I/III loading tests and predict the FCG 
direction, which is θ and φ in Figure 5. Therefore, a stationary crack was considered. The 
three-dimensional (3D) finite element mesh of the round bar specimen and the boundary conditions 
applied are shown in Figure 16. The plasticity was considered highly localized near the notch under 
the loading, while other specimen regions remained elastic. Therefore, the area close to the 
symmetry section for the axial direction was enough for the mesh. The mesh density increased at the 
crack tip where, for the radial direction, the size of an 8-node brick element was 10 μm, which was 
considered well included in the plastic zone ahead. The total numbers of elements and nodes were 
14,001 and 15,522, respectively. This mesh and the loading procedure confirmed that the nominal 
stress value in the ligament ahead of the crack was accurate. 

Figure 15. Fracture surface of RP3 observed using a SEM (arrows indicate the direction of the crack
growth). (a) Macroscopic appearance of the fracture surface, (b) 3 mm from the notch tip (δ = 30◦),
and (c) an enlarged view indicated by a frame in (b).

3. Finite Element Analysis

3.1. Procedure

A series of elasto-plastic FEA was performed using the commercial FEA code MARC to elucidate
the FCG characteristics observed in the mixed mode I/III loading tests and predict the FCG direction,
which is θ and ϕ in Figure 5. Therefore, a stationary crack was considered. The three-dimensional (3D)
finite element mesh of the round bar specimen and the boundary conditions applied are shown in
Figure 16. The plasticity was considered highly localized near the notch under the loading, while other
specimen regions remained elastic. Therefore, the area close to the symmetry section for the axial
direction was enough for the mesh. The mesh density increased at the crack tip where, for the radial
direction, the size of an 8-node brick element was 10 µm, which was considered well included in the
plastic zone ahead. The total numbers of elements and nodes were 14,001 and 15,522, respectively.
This mesh and the loading procedure confirmed that the nominal stress value in the ligament ahead of
the crack was accurate.
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Figure 16. Mesh used for the analyses, and applied loads and boundary conditions.

At the center of the upper surface of the mesh, a pilot node was connected to the remaining nodes
of that surface through a multipoint constraint; force (P) and torque (Ta) were applied to the node;
their ranges ∆P and ∆Ta were equal to 55 kN (RI = 0.05) and 525 Nm (RIII = −1), respectively. If ∆P
and ∆Ta were equal to 55 kN and 525 Nm, respectively, ∆KIII/∆KI became 1.5. The fixed boundary
conditions applied on the lower surface of the mesh were of the same as the symmetry condition for
the axial direction. The a value was set at 4.6 mm for the cases of δ = 30◦, 90◦, and 180◦ and at 7 mm for
δ = 120◦, representing the actual RP3 test.

In this study, the model combining nonlinear kinematic hardening rule with the isotropic hardening
rule developed by Chaboche and Lemaitre [20] (C & L model) was employed.

ti+∆tiσy = 0σy + Q
{
1− exp

(
−Bti+∆tiep

)}
(14)

and
dα =

2
3

hdep
− ζαdep (15)

where ti+∆tiσy is the updated yield stress at time ti + ∆ti, 0σy is the initial yield stress, Q, B, h, and ζ are
material constants, ti+∆tiep is the accumulated effective plastic strain at ti + ∆ti, α is the shift of the yield
surface center, ep is the plastic strain, and d implies increment. The material constants for RP and RF
are summarized in Table 4 along with Young’s modulus and Poisson ratio. The FEA was performed on
these two rail steels to clarify the material effect on the FCG rate.

Table 4. Material properties used in finite element analysis (FEA).

Material E (MPa) ν 0σy (MPa) Q b h (MPa) ζ

RP 183,008 0.3 508 −208 24.2 85,248 193

RF 182,778 0.3 684 −264 1.27 88,615 185

3.2. Analytical Results

The contour plots of total displacement and tz-stress on the shapes deformed under the positions
of the loading cycle for the RP case are shown in Figure 17. The rtz represents global cylindrical
coordinate system whose origin coincides with specimen center O. The following evaluations were
performed during the 160th loading cycle because the stress states have converged at that cycle.
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Figure 17. The contour plots of total displacement and tz-stress on the shapes deformed under the 
positions of the loading cycle for the RP case (ΔKIII/ΔKI = 1.5, δ = 90°), (a) maximum deformation by 
mode I loading, (b) and (c) maximum deformations by mode III loading. (a) and (b) depict total 
displacements and (c) depicts tz-stress. Notably, the contour levels for displacement in mm and for 
stress in MPa. Deformation amplifications are 1000×. 

Figure 17. The contour plots of total displacement and tz-stress on the shapes deformed under the
positions of the loading cycle for the RP case (∆KIII/∆KI = 1.5, δ = 90◦), (a) maximum deformation
by mode I loading, (b) and (c) maximum deformations by mode III loading. (a) and (b) depict total
displacements and (c) depicts tz-stress. Notably, the contour levels for displacement in mm and for
stress in MPa. Deformation amplifications are 1000×.
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3.2.1. Planes of Maximum Normal and Shear Stress Ranges

First, the maximum tangential stress range was investigated to elucidate the effect of δ on crack
branching direction [11]. The analysis was suggested to be based on an elasto-plastic stress field [21].
The normal stress range (∆σ) and the shear stress range (∆τ) level on every plane were investigated.
Such a plane was expressed by θ, ϕ, and ψ that are the rotation angles around the axes of the local
cylindrical coordinate system R, T, and Z whose origin coincides with the center of the crack tip element
(see Figure 18). Underlying assumption is that if the cracks grow by a tensile mode, the growth direction
should be determined by the ∆σ, whereas when the cracks grow by a shear mode, the direction is
determined by the ∆τ near the crack tip. Considering that ∆τZR was very small under the applied
loading cycles, ∆τ was represented by a range of ∆τZT values.

The variations of ∆σ and ∆τ due to θ for the different values of δ for the RP case were indicated
on the ϕ = ψ = 0 plane in Figure 19. ∆σ and ∆τ at each θ were divided by the maximum of ∆τ (∆τmax)
because the absolute values depend on the distance from the crack tip and are not important. When δ
increases, the relative ∆σ value also increases and the maximum of ∆σ (∆σmax) plane turns toward the
branch direction, whereas the ∆τmax plane remains on the coplanar plane. In the calculation results,
both ∆σmax and ∆τmax planes were slightly oriented toward the ϕ direction within 7◦ for all cases.
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Figure 18. Definition of local cylindrical coordinate system RTZ. Notably, θ and ϕ coincide with the
branch angles defined earlier in Figure 5.

3.2.2. Planes of Maximum Principal Stress

The criterion for multiaxial FCG proposed by Schöllmann et al. [22] is based on the maximum
principal stress (MPS)—the crack will grow radially from the crack front in the direction that is
perpendicular to the MPS, σ1, on a virtual cylindrical surface around the crack front (see Figure 5).
Therefore, herein, the maximum values of σ1 (σ1 max) and directions perpendicular to σ1 max during
one loading cycle were investigated for each loading condition.

The σ1 max, middle (σ2), and minimum (σ3) principal stresses for the different values of δ for the RP
case are shown in Figure 20, and in Table 5, the planes of σ1 max are indicated for this case. As shown,
as δ increases, the σ1 max plane turns toward the branch direction.

Figure 19. Cont.
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Figure 19. Shear stress range and normal stress range at each angle θ for the case of RP steel 
(ΔKIII/ΔKI = 1.5, RI = 0.05, RIII= −1). (a) δ = 30°, (b) δ = 90°, (c) δ = 120°, and (d) δ = 180°. 
Figure 19. Shear stress range and normal stress range at each angle θ for the case of RP steel
(∆KIII/∆KI = 1.5, RI = 0.05, RIII= −1). (a) δ = 30◦, (b) δ = 90◦, (c) δ = 120◦, and (d) δ = 180◦.
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Figure 20. Display of principal stress tensors when σ1 was the maximum for the case of RP steel 
(ΔKIII/ΔKI = 1.5, RI = 0.05, RIII = −1). (a) δ = 30°, (b) δ = 90°, (c) δ = 120°, and (d) δ = 180°. Red arrow 
indicates σ1 max, and green and yellow arrows indicate σ2 and σ3, respectively. Their lengths represent 
the relative magnitudes and the figures are in MPa. 

Table 5. Planes of σ1 max for the case of RP steel (ΔKIII/ΔKI = 1.5, RI = 0.05, RIII= −1). 
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3.2.3. Crack Tip Opening Displacement 

The FEA results were used to clarify the crack tip opening displacement (CTOD) of RP and RF 
during the 160th loading. Figure 21 shows the variations of CTOD/2 at several positions from the 
crack tip (D) for both steels. The values are smaller for RF; in particular, when the tensile load 
decreased, the time in degrees was greater than 180°, half of the CTODs became smaller than 4 × 
10–5 mm in a wide range (50 μm ≤ D ≤ 100 μm). 

Figure 20. Display of principal stress tensors when σ1 was the maximum for the case of RP steel
(∆KIII/∆KI = 1.5, RI = 0.05, RIII = −1). (a) δ = 30◦, (b) δ = 90◦, (c) δ = 120◦, and (d) δ = 180◦. Red arrow
indicates σ1 max, and green and yellow arrows indicate σ2 and σ3, respectively. Their lengths represent
the relative magnitudes and the figures are in MPa.

Table 5. Planes of σ1 max for the case of RP steel (∆KIII/∆KI = 1.5, RI = 0.05, RIII = −1).

δ(deg.) 30 90 120 180

θ(deg.) −17 −27 −42 −41

ϕ(deg.) −4 −3 9 4

3.2.3. Crack Tip Opening Displacement

The FEA results were used to clarify the crack tip opening displacement (CTOD) of RP and RF
during the 160th loading. Figure 21 shows the variations of CTOD/2 at several positions from the crack
tip (D) for both steels. The values are smaller for RF; in particular, when the tensile load decreased,
the time in degrees was greater than 180◦, half of the CTODs became smaller than 4 × 10−5 mm in a
wide range (50 µm ≤ D ≤ 100 µm).
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4. Discussion

In the case of RP and WT, a coplanar growth was obtained when δ was smaller than or equal to
90◦ regardless of the ∆KIII /∆KI value and the growth rate was well correlated with ∆Ks, as shown in
Figure 9. According to Equation (6), ∆KI was equal to only 4% of ∆KIII, suggesting a strong dependence
of the FCG rate on the mode III loading. Conversely, in the RF case, some factory-roof fractures were
observed at δ = 60◦ and 90◦, and no good correlation with ∆Ks was obtained.

The FEA results shown in Figure 21 indicated that the CTOD variation in one loading cycle was
smaller for RF than for RP under the same loading condition. In non-proportional mixed mode loading
cycles, fatigue cracks follow the direction of the ∆σmax or ∆τmax plane depending on if these growth
rates on these planes is faster [23]. When the CTOD is small, the actual crack faces have irregularities
and, hence, are likely to make contact. When the crack faces make contact, the friction can make the
coplanar FCG rate smaller relative to the branch FCG rate. Therefore, factory-roof fractures, which are
traces of branch FCG, should have appeared.
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When δ increased to 120◦, branch cracks also grew even in RP. According to the FEA results shown
in Figure 19, increasing δ increased ∆σmax with respect to ∆τmax and turned it toward the branch
direction. Conversely, ∆τmax remained on the coplanar direction. The coplanar FCG rates under the
loading cycles adopted herein are considered to have a strong dependence on KIII. Therefore, it should
also have a relatively strong dependence on ∆τmax, while the branch FCG rates are generally considered
to have a relation with ∆σmax. These facts conclude that cracks tend to branch when δ increases.

We determined that when δ increases, the σ1 max plane turns toward the branch direction,
as indicated in Table 5. However, it may be unsuitable to use the MPS criterion to predict the FCG
direction under the loading conditions adopted herein. This criterion assumes that the crack grows in
mode I. When the coplanar FCG planes were observed using SEM, no clear striation, which is evidence
of FCG caused by mode I loading, was observed.

The SEM observations provided no evidence to support crack face contact in case of RP at
∆KIII/∆KI = 1.5 and δ = 90◦. This was confirmed by the FEA results, in which the crack was always
widely open (see Figure 21a). Rubbing has been suggested as the reason for the FCG termination.
Under the testing conditions in the present study, the crack faces were opened during the experiments.
If the crack face contacts with its mating face and the generated friction attenuates the mode III loading,
the crack is considered to be arrested. If there is no contact, a long shear mode crack becomes possible
under this loading condition.

Although the branch FCG rates were plotted against ∆Kt, a good correlation was not obtained
because ∆Kt does not consider the ∆KIII attenuation due to the crack face contact. Therefore, ∆Keq,
which includes this attenuation, was proposed, providing a FCG law with a fairly good correlation.
Even for the RF steel, where some factory-roof fractures arose on the fracture surface, a better correlation
was obtained when using ∆Keq (see Figure 12). In these cases, the occurrence of some crack face
contacts was also considered.

Murakami et al. [24] studied the fatigue crack behavior of S45C steel under pure mode II and
mode III loading. Because the fractographic observations after each experiment revealed strong
similarities, they concluded that the mechanisms of mode II and III shear FCG are essentially the same.
When comparing the fracture surfaces obtained in this study under mixed mode I/III loading with
those from mixed mode I/II loading [25], it is clear that they were very similar. In particular, no clear
striation patterns were found near the crack tip region in both the cases. Moreover, the coplanar
cracks branched when δ was increased to 120◦ and the loading ratio was 1.5, regardless of ∆KII/∆KI or
∆KIII/∆KI, for both loading cases. WT exhibited the fastest coplanar FCG rates and, among the rail
steels, the rates for RP were higher than those for RF when plotted against their appropriate equivalent
SIF ranges, for both loading cases. Furthermore, Akama and Kiuchi [11] reported that FCG rates in
RP under these two loading conditions (mixed modes I/II and I/III) were almost equal when plotted
against the SIF ranges considered to be the main driving forces, ∆KII and ∆KIII for the mixed mode
I/II and I/III loading conditions, respectively. Therefore, the mechanism of shear-mode FCG under
non-proportional mixed mode loadings that were subject to the RCF cracks can be considered to be the
same even if the main crack driving force is in-plane shear or out-of-plane shear.

5. Conclusions

To determine the coplanar and branch FCG rates of normal rail, head hardened rail, and wheel
steel, fatigue tests were conducted under non-proportional mixed mode I/III loading cycles that
simulated the RCF conditions. SEM observations and FEA were also performed to investigate the FCG
behavior. The results can be summarized as follows.

1. In RP and WT, a coplanar growth was obtained when δ was smaller than or equal to 90◦.
The growth rates were relatively well correlated when plotted against ∆Ks defined by Equation
(6). The highest coplanar FCG rate was observed in WT, followed by RP and then RF.
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2. In the RP case, the branch FCG occurred at δ = 120◦. The growth rates were plotted against ∆Keq

defined by Equation (10), which considers the ∆KIII attenuation due to the crack face contact,
giving a good correlation.

3. Based on the fracture surface observations by SEM and the FEA results, the growth of long
coplanar cracks was assumed to be driven mainly by mode III loading.

4. The FEA results showed that RF, which is a high-tensile steel, had smaller CTODs during the
loading cycles compared with RP. Therefore, contact was likely to occur between the crack faces
owing to the surface irregularities, causing crack branching in RF even under the same conditions.

5. When δ increased, ∆σmax with respect to ∆τmax also increased, and the ∆σmax plane turned
toward the branch direction. Therefore, it can be concluded that the cracks tend to branch when
δ increases.

6. The comparison of the fracture surfaces, branching conditions, and coplanar FCG rates data
under mixed mode I/III loading and those under mixed mode I/II loading [25] indicated that the
coplanar crack growth mechanisms in these two loading cases were similar regardless of whether
the main driving force was in-plane or out-of-plane shear.
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1. Bogdański, S.; Olzak, M.; Stupnicki, J. Numerical modeling of a 3D rail RCF ‘squat’-type crack under
operating load. Fatigue Fract. Eng. Mater. Struct. 1998, 21, 923–935. [CrossRef]

2. Akama, M.; Mori, T. Boundary element analysis of surface initiated rolling contact fatigue cracks in wheel/rail
contact systems. Wear 2002, 253, 35–41. [CrossRef]
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