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Abstract: This paper aims to introduce a novel maximum power point tracking (MPPT) strategy called
transfer reinforcement learning (TRL), associated with space decomposition for Photovoltaic (PV)
systems under partial shading conditions (PSC). The space decomposition is used for constructing
a hierarchical searching space of the control variable, thus the ability of the global search of TRL
can be effectively increased. In order to satisfy a real-time MPPT with an ultra-short control cycle,
the knowledge transfer is introduced to dramatically accelerate the searching speed of TRL through
transferring the optimal knowledge matrices of the previous optimization tasks to a new optimization
task. Four case studies are conducted to investigate the advantages of TRL compared with those of
traditional incremental conductance (INC) and five other conventional meta-heuristic algorithms.
The case studies include a start-up test, step change in solar irradiation with constant temperature,
stepwise change in both temperature and solar irradiation, and a daily site profile of temperature and
solar irradiation in Hong Kong.

Keywords: photovoltaic systems; MPPT; partial shading condition; transfer reinforcement learning;
space decomposition

1. Introduction

In the past decade, a continuous decline in the overall price of photovoltaic (PV) modules can be
witnessed around the world, thanks to the advancement of new materials and manufacturing, as well
as the ever-growing attention to greenhouse gas emissions [1,2]. As a consequence, solar energy has
rapidly become a promising renewable power source in the global energy market. Technologically,
PV systems own the elegant merits of easy installation, high safety, solar resources abundance, nearly
free maintenance, and environmental friendliness [3–5]. Thus far, large-scale PV systems are widely
installed, due to their short-term and long-term economic prospects [6,7].

In practice, the stochastic variation in actual environmental conditions, e.g., variation of solar
radiation and fluctuation in temperature, usually leads to the power–voltage (P–V) curve to exhibit
a highly nonlinear and time-varying feature. Hence, how to accurately determine the output
characteristics of PV cells, as well as the maximum possible output of PV systems under various
weather conditions, becomes a very challenging issue. This task is often referred to as maximum
power point tracking (MPPT) [8]. For the sake of achieving MPPT, a power converter (DC–DC
converter and/or inverter) is often used to connect with PV systems. Currently, conventional MPPT
techniques have received further development so that, in the recent PV systems, the output power can
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be dynamically adjusted under different environmental conditions, e.g., hill climbing [9], perturb and
observe (P&O) [10], and incremental conductance (INC) [11]. All of these schemes adopt a common
assumption that the PV cells share the same module as well as the modules share the same array,
and are exposed to the same temperature and solar irradiation, upon which only one maximum
power point (MPP) exists. Although they own a simple structure and can efficiently seek the MPP
under uniform solar irradiation conditions, a consistent oscillation around MPP is inevitable, which
causes a long-lasting loss of solar energy. Besides, offline MPPT approaches such as fractional short
circuit current (FSCC) [12] and fractional open circuit voltage (FOCV) [13] have been adopted for PV
systems, which possess the prominent superiorities of relatively lower complexity and inexpensive
implementation. Nevertheless, a common deficiency of these methods is due to the fact that they will
not be applicable when solar irradiation is rapidly changing.

Furthermore, when the distribution of solar irradiation among PV modules is unequal, an uneven
solar irradiation scenario may emerge, namely partial shading conditions (PSC). For example, the
shadows caused by surroundings such as buildings, trees, clouds, birds, dirt, etc. Every single PV
module may receive different levels of solar radiation [14]. Under this circumstance and the presence
of the bypass diodes, the output P–V curve is usually nonlinear, that is, it will contain multiple local
maximum power points (LMPPs) and a single global MPP (GMPP). Generally speaking, at LMPP, the
PV system usually reaches a low-quality optimum point, while the aforementioned methods can be
easily trapped, thus, they are inadequate to fully exploit the solar energy under PSC. To handle this
intractable hindrance, a great number of approaches have been introduced. For example, reference [15]
developed a fuzzy logic controller (FLC) where the approximate optimal design for membership
functions and control regulations were found to be the same by GA. In addition, for the sake of
achieving the rapid tracking of GMPP under PSC, a new method called the improved particle swarm
optimization algorithm (PSO), based on strategy with variable sampling time, was proposed [16].
In literature [17], in order to accomplish MPPT under different environmental conditions and PSC,
an artificial bee colony (ABC) algorithm was proposed, which only requires few parameters and its
convergence has no relation to the initial conditions. In [18], the bio-inspired Cuckoo search algorithm
(CSA) was adopted to effectively tackle PSC by the use of Levy flight with fast convergence. Moreover,
a social behaviour motivated algorithm named teaching–learning-based optimization (TLBO) was
adopted to achieve the accurate tracking of GMPP under PSC, the advantages of this algorithm
are simple structure and fast convergence [19]. Furthermore, the generalized pattern search (GPS)
optimization algorithm [20] was devised to resolve PSC, which has superior performance, such as
high convergence speed, excellent dynamic, and steady state efficiencies, as well as simple operation.
In reference [21], an ant colony optimization (ACO) combined with a novel strategy of pheromone
updating was developed for MPPT, which can effectively improve the speed of tracking, accuracy,
stability, and robustness under various weather conditions and different partial shading patterns.
However, all of these meta-heuristic algorithms have two main deficiencies as they are independently
utilized for MPPT under various scenarios, as follows:

• High convergence randomness: Unlike the deterministic optimization algorithms, since the
meta-heuristic algorithms adopt random searching mechanisms, the final optimal solutions may
be different in different runs, which will cause the output power to fluctuate greatly and is
undesirable to the operation of PV systems;

• Difficult to balance the optimum quality and computation time: To obtain a high-quality optimum,
the meta-heuristic algorithms usually need to establish a larger size of initial population and
carry out many iterations, which results in huge computational burden and long computing time.
However, considering that the MPPT’s control cycle is extremely short, it is inevitable to lessen
the size of population and the iteration numbers, which will lead to a significant reduction in the
quality of optimization.
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Rapid development of artificial intelligence in recent years, especially Google DeepMind’s
AlphaGo [22], which has easily defeated two world champions in two world-renowned Go matches
in 2016 and 2017, respectively, has boosted a tide of artificial intelligence. In fact, the model-free
reinforcement learning (RL) is one of the core algorithms of AlphaGo, which can rapidly construct an
optimal action policy at each state, according to its current knowledge or experience [23]. Motivated from
this outstanding characteristic, a new transfer reinforcement learning (TRL) with space decomposition
for MPPT of PV systems under PSC is proposed in this paper. In comparison with the aforementioned
meta-heuristic algorithms, TRL has the following two advantages:

• Capability of knowledge transfer: Through a positive knowledge transfer from past optimization
tasks, the optimal knowledge matrices of the new optimization task can be approximated by TRL,
hence this method can efficiently harvest an optimum of high quality;

• Capability of online learning: TRL can continuously learn new knowledge from interactions with
the environment based on RL, which can rapidly adapt to MPPT under different solar irradiation,
temperatures, and PSC.

2. Modelling of PV Systems under PSC

2.1. PV Cell Model

A PV cell model is usually combined in both series and parallel for the purpose of providing an
output which is desired [24]. The current–voltage relationship can be given by [25,26]

Ipv = NpIg −NpIs

(
exp

[
q

AKTc

(
Vpv

Ns
+

RsIpv

Np

)]
− 1

)
(1)

where the meaning of each symbol is given in nomenclature. Here, Iph denotes the generated
photocurrent that is mainly influenced by solar irradiation, which can be derived as

Iph = (Isc + ki(Tc − Tref))
s

1000
(2)

In addition, the saturation current Is of PV cells varies with the change of temperature on the basis
of the below relationship:

Is = IRS

[
Tc

Tref

]3

exp
[

qEg

Ak

(
1

Tref
−

1
Tc

)]
(3)

Equations (1) to (3) denote that the current produced by the PV array is simultaneously dependent
on the temperature and solar irradiation.

2.2. PSC Effect

In general, the PV system needs to ensure a certain output voltage; however, a single PV cell can
only output extremely low voltage (almost 0.6 V). Hence, PV cells are always connected with each
other in a string to improve the output voltage. At the same time, when the array is shaded for some
reason, the output voltage of the PV cells in the shaded part will be lower than that of the unshaded PV
cells, due to the decline of received solar irradiation. Consequently, the shaded PV cells will consume a
part of the generated power. This phenomenon causes large loss of output power in the PV string. In
addition, it also leads to hot spots in the location of the shaded PV cells, which will greatly decrease
the service life of PV cells [27].

To solve this issue, the shaded PV cells are usually bypassed by bypass diodes. Figure 1a
demonstrates the operation in a PV array with parallel strings. Although adding bypass diodes can
effectively solve the issues mentioned above in shaded PV cells, they also result in a new problem,
e.g., they will distort the original P–V characteristic curves of PV cells and form a two-peak curve. In
particular, such a situation turns thornier when a few PV strings are connected in parallel for the sake
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of obtaining a larger output current. Generally, when the number of shaded PV cells on each string
changes, each string will generate various PV curves. Because of the parallel connection, those PV
curves with multiple peaks are usually combined to produce a multi-peak curve illustrated in Figure 1b
Hence, in order to determine the maximum solar energy from the PV array, the PV systems ought to
operate at the GMPP all the time. Only in this way, the large amount of energy will not be lost at LMPP.
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3. Transfer Reinforcement Learning with Space Decomposition

The proposed TRL mainly contains two operators, i.e., the RL via uninterrupted interplay with
the environment and the knowledge transfer between the previous and new tasks, as clearly illustrated
in Figure 2.
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3.1. Space Decomposition Based Reinforcement Learning

RL is a commonly used machine learning technique, which can acquire new knowledge in a
dynamic environment via interaction. Here, the famous RL called Q-learning is adopted to learn the
MPPT knowledge. However, if a system needs a high control accuracy, the searching space of the
continuous control variable should be divided into a large number of selected actions (e.g., 106 actions
for a continuous control variable between 0 to 1). As a result, the conventional Q-learning [28] easily
encounters the curse of dimension and a low-efficiency learning rate for selecting an optimal action of
a continuous control variable [29].

To handle this problem, the space decomposition is introduced to decompose the large original
searching space into multi-layered smaller searching subspaces. As illustrated in Figure 3, the
optimization space of the ith controllable variable xi can be decomposed into J smaller searching
subspaces in each layer. If the jth action ai

1j is selected in the first layer’s searching space, then the
agent will seek a more accurate searching space in the corresponding second layer’s searching space.
Therefore, the optimization accuracy of the control variable xi can be calculated as

OAi =
xub

i − xlb
i

c·J
(4)

where c represents the number of decomposition layers; and xi
lb and xi

ub are the lower and upper
bounds of the ith controllable variable, respectively.
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Based on Equation (4), if the number of actions in each layer is set to be 10 (i.e., J = 10), then the
same accuracy (10−6) can be achieved for a continuous control variable between 0 to 1 when c = 6.
This means that the number of selected actions can be significantly reduced from 106 to 10. Therefore,
the learning rate and control accuracy of Q-learning can be considerably improved, based on the
space decomposition.

After selecting all the actions in all the layers, the solution of the controllable variable can be
identified as

xi = xc,lb
i + acj

i ·
(
xc,ub

i − xc,lb
i

)
/J (5)

xl,lb
i =

 xlb
i , if l = 1

xl−1,lb
i + al−1, j

i ·

(
xl−1,ub

i −xl−1,lb
i

)
J , otherwise

(6)

xl,ub
i =

 xub
i , if l = 1

xl−1,ub
i + al−1, j

i ·

(
xl−1,ub

i −xl−1,lb
i

)
J , otherwise

(7)
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where xl,lb
i and xl,ub

i are the lower and upper bounds of the lth layer’s searching space, respectively;
while ai

lj is the jth action in the lth layer’s searching space.

3.2. Knowledge Update

According to the learning mechanism of Q-learning, the knowledge matrix can be updated based
on the executed state–action pair with the feedback reward. By combining the space decomposition,
the knowledge matrix of each searching space layer can be updated as [28]:

Ql
i,k

(
sl

i,k, al
i,k

)
=Ql

i,k

(
sl

i,k, al
i,k

)
+α

Rl
i,k

(
sl

i,k, sl
i,k+1, al

i,k

)
+ γmax

a∈Al
i

Ql
i,k

(
sl

i,k+1, a
)
−Ql

i,k

(
sl

i,k, al
i,k

) (8)

where Ql
i represents the knowledge matrix of the lth layer’ searching space for the ith controllable

variable;
(
sl

i,k, al
i,k

)
is the state–action pair executed at the kth iteration, with k = 1,2, . . . , kmax; kmax

represents the maximum iteration number; α is the knowledge learning factor, with α∈ (0, 1); γ denotes
the discount factor, with γ ∈ (0, 1); Ri

l is the reward function; and Ai
l means the action space of the lth

layer’s searching space, respectively.
It can be seen from Equation (8) that at each iteration, only one element of each knowledge matrix

can be updated since the conventional Q-learning employs a single RL agent for exploration and
exploitation in a dynamic environment. Consequently, it will lead to a slow learning rate; thus a
high-quality optimal solution cannot be rapidly obtained for a real-time control of PV systems. Hence,
a cooperative swarm is employed to further accelerate the learning rate, as it can simultaneously
update multiple elements of each knowledge matrix with multiple state-action pairs. Similar to (8),
each knowledge matrix of TRL can be updated by [30]

Ql
i,k

(
sl,m

i,k , al,m
i,k

)
= Ql

i,k

(
sl,m

i,k , al,m
i,k

)
+ α

Rl,m
i,k

(
sl,m

i,k , sl,m
i,k+1, al,m

i,k

)
+ γmax

a∈Al
i

Ql
i,k

(
sl,m

i,k+1, a
)

−Ql
i,k

(
sl,m

i,k , al,m
i,k

)]
, m = 1, 2, . . . , M.

(9)

where M represents the population size of the cooperative swarm.

3.3. Exploration and Exploitation

In general, a wide exploration will enhance the possibility of searching a global optimum, but
will also consume additional computation time. In contrast, a deep exploitation will enhance the
convergence speed, but will easily result in a local optimum in low quality. In order to keep exploitation
and exploration in balance, the ε-Greedy rule [31] is adopted to select actions on the basis of the current
knowledge matrices, which yields

al,m
i,k+1 =


argmax

al
i∈A

l
i

Ql
i,k

(
sl,m

i,k+1, al
i

)
, if q0 < ε

arand, otherwise
(10)

where q0 is a uniform random number between 0 and 1; ε is the rate of exploitation, i.e., the possibility
of selecting the greedy action; and arand represents a stochastic action in the action space, i.e., the global
search for avoiding a low-quality local optimum, respectively.
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3.4. Knowledge Transfer

Through exploiting the optimal knowledge matrices of the previous tasks, the knowledge
transfer [32] can approximate the optimal knowledge matrices of a new task, and this is how
knowledge transfer works. In this study, the most similar previous task will be chosen for knowledge
transfer, based on its similarity with the new task, which can be expressed as

Qn0
i = r·Qs∗

i + (1− r)·Qinitial
i (11)

where Qi
n0 is the approximated optimal knowledge matrices of the ith controllable variable of the new

task; Qi
s* denotes the optimal knowledge matrices of the ith controllable variable of the most similar

previous task; Qi
initial represents the initial knowledge matrices of the new task without knowledge

transfer; and r represents the comparability between the most similar previous task and the updated
task, with 0 ≤ r ≤ 1, respectively.

4. TRL Design of PV Systems for MPPT

4.1. Control Variable and Action Space

For the purpose of obtaining the GMPP of a PV system, the output voltage Vpv is chosen as the
control variable, in which the entire searching space is decomposed into four layers. In each layer, the
searching space is uniformly discretized into ten actions within the corresponding range from lower
bounds to upper bounds.

4.2. Reward Function

For a given output voltage Vpv, the PV system can generate the corresponding power under the
current solar irradiation, temperature, and PSC. In TRL, the higher the quality of the solution is, the
larger reward the individual will receive. Based on this rule, the reward function can be designed
as [30]:

Rl,m
i,k

(
sl,m

i,k , sl,m
i,k+1, al,m

i,k

)
=

 max
m=1,2,...,M

f
(
Vm

pv

)
, if

(
sl,m

i,k , al,m
i,k

)
∈ SAbest

k

0, otherwise
(12)

where Vm
pv is the obtained solution by the mth individual and SAbest

k denotes the explored state–action
pairs set of the best individual with the maximum power output at the kth iteration.

4.3. Knowledge Transfer

It is clear that the aforementioned three conditions, e.g., solar irradiation, temperature, and PSC,
can be considered as the main similarities between various optimization tasks. On the other hand, the
similarity between two adjacent optimization tasks is usually very high, since these weather conditions
cannot vary dramatically in a very short time. Hence, the optimal knowledge matrices of the adjacent
past task is chosen for knowledge transfer to the new task (See Figure 3), while the similarity described
in (11) can be designed as

r = 1−

∣∣∣Tn
c − Tp

c

∣∣∣
Tref

−

Ns·Np∏
w=1

∣∣∣Sn
w − Sp

w

∣∣∣
Sref

(13)

where Tn
c and Tp

c are the temperatures of the new task and the past task, respectively;

4.4. Overall Execution Procedure

For the PV system, the overall flow diagram of TRL to achieve MPPT under PSC is illustrated
in Figure 4. Firstly, the original searching space of output voltage is decomposed into a four-layered
smaller searching subspace within its corresponding lower bounds and upper bounds. Then, the
knowledge transfer between the new task and the past task is implemented according to their similarity
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of weather conditions. Furthermore, TRL can update the knowledge matrices via multiple explorations
and exploitations in the scheduled iterations. At last, for the PV system, the optimal solution (optimal
output voltage) can be obtained to achieve MPPT under PSC.Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 16 
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5. Case Studies

To further analyze the MPPT practicability of TRL under PSC, it was compared with that of
INC [11], GA [15], PSO [16], ABC [17], CSA [18], and TLBO [19], respectively. Four case studies are
carried out in this section. Here, each meta-heuristic algorithm shares the same optimization cycle,
which is chosen as 0.01 s. Meanwhile, the TRL parameters are given in Table 1.

Table 1. The parameters of TRL. TRL: Transfer Reinforcement Learning.

Parameter Range Value
J J > 1 10
c c > 1 4
α 0 < α < 1 0.01
γ 0 < γ < 1 0.0001
ε 0 < ε < 1 0.9

kmax kmax > 1 5
M M > 1 5
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For MPPT under PSC, a buck–boost converter is employed, due to its advantages described in
reference [33]. Table 2 demonstrates the parameters of the PV system. In addition, the rated values of
environment temperature and solar irradiation are set as 25 ◦C and 1000 W/m2, respectively.

Table 2. The photovoltaic (PV) system parameters.

Typical peak power 51.716 W Nominal operation cell
temperature (Tref)

25 ◦C

Voltage at peak power 18.47 V Factor of PV technology (A) 1.5
Current at peak power 2.8 A Switching frequency (f ) 100 kHz

Short-circuit current (Isc) 1.5 A Inductor (L) 500 mH
Open-circuit voltage (Voc) 23.36 V Resistive load (R) 200 Ω

Temperature coefficient of Isc (k1) 3 mA/◦C Capacitor (C1, C2) 1 µF

5.1. Start-Up Test

The first step to simulate the PSC is to set the solar irradiation of three PV strings to be 200 W/m2,
300 W/m2, and 1000 W/m2, respectively. The online optimization responses of various methods for
MPPT are illustrated in Figure 5. It is clear that INC can easily reach the point of steady convergence
in far less time than the other methods. However, it has a vital drawback in that it cannot make an
effective distinction between GMPP and LMPP, which means it might often be trapped at a low-quality
local optimum as it is readily stagnated at an MPP. Generally speaking, due to their significant ability
of global searching, other meta-heuristic algorithms can usually find a better quality optimum with
larger power and energy. Among them, TRL owns the highest convergence stability as it can avoid a
blind/random search by the use of knowledge transfer.
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5.2. Step Change in Solar Irradiation with Constant Temperature

As shown in Figure 6, the core process is to impose a set of solar irradiation steps on the PV array,
where the step change is applied every second. The temperature is maintained to be constant at 25 ◦C
during the whole test. The online optimization outcomes of various approaches for MPPT with step
change solar irradiations are illustrated in Figure 7. It can be found that the obtained results are similar
to those of the start-up test. The output power and voltage derived by those meta-heuristic algorithms,
except TRL, are relatively prone to volatility if the solar irradiation is not always steady and varies at a
dramatic pace. This also verifies that the knowledge transfer can effectively guarantee the convergence
stability of TRL, i.e., the control strategies of adjacent optimization tasks only have a slight difference
under the same weather conditions.
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Figure 6. Step change of solar irradiation with PSC. PSC: Partial Shading Conditions.
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Figure 7. PV system responses of seven methods obtained on the step change in solar irradiation with
constant temperature. (a) Voltage; (b) Power.

5.3. Gradual Change in Both Solar Irradiation and Temperature

Figures 8 and 9 show the procured results of seven algorithms for MPPT when solar irradiation
and temperature both change gradually. A conclusion can be drawn that, except for TRL, the other
meta-heuristic algorithms are still prone to generating the larger power fluctuations, even when the
solar irradiation and temperature change slowly. Due to the beneficial guidance by knowledge transfer,
TRL can significantly alleviate the power fluctuations without a blind/random search.

This also reveals that, for real-time MPPT, TRL is capable of speedily seeking an optimum of high
quality through the space decomposition on the basis of RL and beneficial knowledge transfer.
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Figure 8. Gradual change in both solar irradiation and temperature. (a) Irradiation and (b) temperature.
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Figure 9. PV system responses of seven methods obtained on the gradual change in both solar
irradiation and temperature. (a) Voltage; (b) Power.

5.4. Daily Field Profile of Solar Irradiation and Temperature in Hong Kong

For the purpose of testing the specific practicability of TRL in practical application, the temperature
and solar irradiation measured in Hong Kong was used to simulate the PV system for MPPT (See
Figures 10 and 11). The metrical data are mainly selected from four representative days of four
different seasons in 2016, in which the interval of data is set to 10 min. Note that the randomness
and intermittence of solar energy and renewable energy system (RES) [34–37] is a very common issue
usually resulting from uncertain atmospheric conditions.
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Figure 10. Daily profile of solar irradiation and temperature in Hong Kong. (a) Irradiation;
(b) Temperature.
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Figure 11. The detailed geographical position of the measuring device for solar irradiation
and temperature.

Figures 12 and 13 demonstrate the output power of seven algorithms for MPPT in different
seasons. It can be well illustrated that, compared with INC, in the PV system, all the meta-heuristic
algorithms can obtain more output power, where the output energy of TRL reaches 115.52% of that of
INC in the spring. That aside, one can derive that although the performances of all meta-heuristic
algorithms are comparatively small during the whole simulation period, TRL can still outperform
other algorithms, which means that it can always give out the most power in any season.
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6. Conclusions

A novel method called TRL using space decomposition has been proposed in this paper, which is
designed for PV systems to obtain the maximum attainable solar energy under PSC, whose contributions
can be summarized as follows:

(1) Through space decomposition, TRL can efficiently learn the knowledge for MPPT with PSC in
real time; thus a high-quality optimum can be obtained to ensure that the PV system produces
more energy under various environmental conditions;

(2) The knowledge transfer can effectively avoid a blind/random search and provide a beneficial
guidance to TRL, which results in a fast convergence and a high convergence stability. Therefore,
not only can the output power be maximized for the PV system under various scenarios, but the
power fluctuation can also be significantly reduced as the weather condition varies;

(3) Compared with the conventional INC and other typical meta-heuristic algorithms, the TRL-based
MPPT algorithm can produce the largest amount of output energy in the presence of PSC and
other time-varying atmospheric conditions, which can bring about considerable economic benefit
for operation in the long term.
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