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Featured Application: The effect of imperfections of node locations on the reliability of
single-layer steel domes is a very important issue in the design of steel structures. This paper
shows that, with reliability analysis methods, it is possible to analyze the failure probability
level while moving along the load displacement path towards the limit point. In this paper,
the impact of changes in the standard deviation of random variables describing coordinates of
nodes on the reliability index β of the single-layer steel dome was analyzed. The changes in the
standard deviation of variables describe imperfections of node locations. Reliability analysis is
also employed to find sensitivity of the reliability index to mean values or standard deviation
of random variables by calculating the elasticity index. This method can be used to design
single-layer steel domes.

Abstract: This study is an attempt to assess the effect of node location imperfections on the
reliability dome. The analysis concerns a single-layer steel lattice dome that is very sensitive to node
snap-through. The load-displacement path of the structure was determined using the program, Finite
Element Method-Krata. To determine the failure probability, reliability index, and elasticity index,
the first-order reliability method approximation method was employed. The reliability analysis was
conducted with Numpress Explore software, developed at the Institute of Fundamental Technological
Research of the Polish Academy of Sciences, Warsaw. In this paper, it is shown how large differences
in the assessment of the safety of a structure can appear when we incorrectly estimate the standard
deviation of the random variable responsible for the imperfections of node locations.
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1. Introduction

The reliability theory is a well-established research area. The most well-known textbooks
and monographs are: Madsen, Krenk, and Lind [1], Melchers [2], Ditlevsen and Madsen [3],
Thoft–Christensen and Baker [4], and Augusti, Baratta, and Casciati [5]. Special attention should be
paid to publications by Harr [6] and Nowak and Collins [7]. These publications present the basic
concepts of reliability theory with a particular reference to their uses in civil engineering. The work
of Hasofer and Lind [8], published in 1974, is recognized as the first important step towards the
contemporary methods that make it possible to effectively and accurately estimate structural safety.
Hasofer and Lind developed the concept of localization of the so-called ‘design point’, i.e., such
realization of random variables from the failure surface, which corresponds to the greatest value of the
probability density function. With the linearization of the limit state function at the design point, it is
possible to obtain a measure of reliability that is invariant, due to the equivalent formulations of the
boundary condition, i.e., the so-called Hasofer–Lind reliability index. The lack of invariance was the
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basic shortcoming of the previously applied Cornell index [9]. It was difficult to use this measure of
reliability for comparison of the degrees of safety of different structures.

The concept of the Hasofer–Lind index was used in 1978 by Rackwitz and Fiessler in [10].
Additionally, they applied transformations of independent random variables with arbitrary probability
distributions to standard normal variables and they proposed an algorithm of the approximation
of the design point. In [11], Hohenbichler and Rackwitz proposed the utilization of Rosenblatt’s
transformation [12] to the transformation of dependent random variables to standard space. Rosenblatt
and Nataf’s transformations, applied for the first time by Der Kiureghian and Liu in [13], are most
frequently used at present. They make it possible to analyze reliability problems, both when the joint
probability density function of random variables, as well as the marginal probability density function
of variables, and correlation matrix are known. The approximation of the limit state function at the
design point by the function of the first or second degree leads to the first-order reliability method
(FORM) or the second-order reliability method (SORM).

In the early applications of the FORM and SORM methods, it was most often assumed that the
limit state function was an explicit function of random variables. Unfortunately, with the exception of
a few simple examples, such functional dependency cannot be specified, and in most cases it is given
through a definite numerical procedure, e.g., the finite element method [14–16]. However, with the
first studies of Der Kiureghian and collaborators, the problems of the utilization of the finite element
method in reliability analysis began to be very intensely developed. An overview and test of different
discretization methods can be found in the works of Li and Der Kiureghian [17] and Matthies [18].
Popular reliability analysis codes, such as ANSYS PDS, DesignXplorer, CalREL/FERUM/OpenSees,
COSSAN, NESSUS, PERMAS-RA/STRUREL, PHIMECA-SOFT, PROBAN, PROFES, and UNIPASS, are
reviewed in [19–28].

The separate group of reliability analysis methods are simulation methods. The classical Monte
Carlo method is best known. In the Monte Carlo simulation method, the estimation of failure probability
consists in the n-th generation of basic random variables, in conformity with their joint probability
density function and determination of the number of hits in the failure area. The lower the probability
of failures that we want to estimate, the more simulations ought to be carried out, so that the error
of this estimation could be situated in a fairly small trust range with a sufficiently high probability.
With a predicted failure, with the probability of building structures of the range from 10− 4 to 10 −7, the
number of necessary simulations is estimated to be from 10 6 to 10 9, which is a huge task even for
modern computers, and is hardly feasible in acceptable time. The computational outlay disqualifies,
in the opinion of the author, the usefulness of the classical Monte Carlo method for the analysis of
practical problems of the reliability of building structures. The 1980s marked the development of the
so-called importance sampling method. Through a proper selection of probability density function,
according to which random variables are generated, one can significantly decrease the sampling area
and the number of simulations. Articles by Schuëller and Stix [29], Hohenbichler and Rackwitz [30],
and Doliński [31] stand out in works devoted to this method. Another variety of simulation methods
is the directional sampling method. It is best applicable for the analysis of problems in which the limit
area has a shape close to a hypersphere. An overview of various simulation methods can be found in
the works of Rubinstein [32] and Melchers [2]. In the present paper, simulation methods are not used.
The basic research tool is one of the approximation methods—FORM.

The purpose of this article is an estimation of the influence of node location imperfections on
the reliability of single-layer steel domes. They are subjected to big displacement gradients and are
susceptible to stability loss from the condition of node snapping. When designing such structures, it
is also possible to buckle individual bars locally. However, this is not a form of loss of stability that
determines the load-bearing capacity of the structure. These truss structures are extremely sensitive,
even to the slight changing of node locations [33–35]. Therefore, the imperfection description is very
important for the correct design of such structures. In the analysis by means of the finite element
method we used a space truss element, which is a simple two-node element with three degrees of
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freedom in each node. The shape functions of the displacement field are linear. The displacement field
of an element contains three translational components: u and v and w. The strain tensor is reduced
to one non-zero component of Green’s strain tensor ε11, which characterizes the elongation of the
bar. Other components of the strain tensor are equal to 0. The stress tensor is represented by the
component σ11 of Pioli–Kirchhoff’s second stress tensor. The stress-strain relationship is linear. In the
paper, nonlinear geometrical relations are defined in the Lagrangian description. The stability analysis
of structures by means of the finite element method involves the solution of large systems of nonlinear
equations. The load-displacement history of a structure presents a curve in a (N + 1) dimensional
space, called the equilibrium path. In this paper, the constant arc length method (Riks [36,37]) is used
for the determination of the equilibrium path. The problem of elastic stability is intimately connected
with singularities that occur along the path. These singular points are referred to as critical points. The
classification of critical points includes limit points and bifurcation points that are connected with the
physical concepts of snapping and buckling, respectively [38–41].

Let us now ask a question: What is the advantage of the inclusion of reliability analysis methods
to the analysis of stability? Using methods of reliability analysis, we can determine the level of failure
probability when we approach the critical point. This is a quantitative assessment. Reliability analysis
is also employed to find the sensitivity of the reliability index to mean values or standard deviation
of random variables by calculating the elasticity index. This paper shows large differences in the
assessment of how the safety of a structure can appear when we incorrectly estimate the standard
deviation of the random variable responsible for the imperfections of node locations. The reliability
analysis is conducted with Numpress Explore software, developed at the Institute of Fundamental
Technological Research of the Polish Academy of Sciences, Warsaw [42–45].

The calculations are carried out in two steps. The first (deterministic) step, is directed towards
finding the coordinates of the limit point on the equilibrium path, using the program Finite Element
Method-Krata. These coordinates are necessary to determine the parameters of the limit function in
the reliability analysis. The second step includes the connection of Numpress Explore with Krata. This
analysis allows us to estimate the reliability index, elasticity index, and probability of failure.

2. Reliability and Elasticity Indexes

To conduct the reliability analysis is to find out how the structure state is affected by the random
character of structure-describing parameters X1, X2, . . . , Xn. The parameters can include material
constants, loads, and geometric ratios.

Those parameters can be grouped into the column vector (the random vector) X = {X1, X2, . . . ,
Xn}, where: X1, X2, . . . , Xn are successive single-dimensional random variables (the basic random
variables). In this defined n-dimensional real space Rn, the random vector takes on an indefinite
number of single sets of values of individual basic random variables that are equal to: x1, x2, . . . ,
xn, respectively. A single set, x = {x1, x2, . . . , xn}, is called the realization of the random vector X.
The realization x of the vector X belongs to Euclidean space. The assessment of the structure state is
possible, due to the failure criterion imposed by the designer (random limit function g(X)). It is usually
a stress or displacement criterion. The values of the limit function divide the space as follows:

g(x) ≤ 0 − failure area Ωf

g(x) > 0 − safe area ΩS

g(x) = 0 − limit area
(1)

Using the definition of boundary conditions, failure probability is the probability of a random
event specified by the failure area:

Pf = P(g(x) ≤ 0) (2)
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Alternatively, failure probability can be expressed by an integral:

Pf =

∫
Ωf f (x)dx (3)

where f (x) = f (x1,x2, . . . , xn) denotes the joint probability density function of random parameters.
The reliability of the structure is the probability of the occurrence of the realizations of basic

variables X in the area, which ensures safe performance of the structure.
The nature of the concept above is illustrated in Figure 1. In the two-dimensional space of

random variables, X = {X1,X2}, the sets and contours of the joint probability density function fX(x1, x2)
were marked.
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The values of failure probability of a building are equal from 1.0·10 −7 to 6.9·10 −4 [46]. Relying
on such values could be problematic. Consequently, a reliability measure (the reliability index β =

− Φ −1(Pf)) was introduced, where Φ −1 is the inverse function of the standard normal distribution
function. From the technical standpoint, the most relevant problem concerns the means of the integral
value determination. A large number of variables and the implicit form of the function g(X) make
it impossible to numerically integrate the expression. The reliability analysis of real structures was
conducted using the approximation and simulation methods. In this group of methods, a key factor
was the time of computations. Roughly speaking, it was the time necessary to obtain a single value of
the function g(x) (corresponding to realization x) multiplied by the number of realizations required to
estimate Pf. The values of the function g(x) were computed using Krata.

In this study, the FORM was employed to determine the reliability index. The FORM is one of
the most effective tools for calculating approximate reliability measures. In general, when the vector
of basic variables X is not a Gaussian, random variables are transformed to the standard Gaussian
space Z.

The probability of failure, defined in space X, must be equal to the probability defined in space Z.

Pf =

∫
Ωf

fx(x)dx =

∫
∆f

∏n

i=1
ϕ(zi)dz1dz2. . .dzn (4)

We can write the transformation of regions as:

Ωf = {x:g(x) ≤ 0}→ ∆f = {z : G(z) ≤ 0}
Ωs = {x:g(x) > 0}→ ∆s = {z : G(z) > 0}

(5)

The limit state function is transformed in this way:

g(x) = 0→ g[T−1(z)] = G(z) = 0 (6)



Appl. Sci. 2019, 9, 2742 5 of 16

The reliability analysis problem was formulated using the limit function G(Z). The transformation
of the basic random variables to the standard Gaussian space must ensure that the reliability problem
is formulated in an equivalent way. In the FORM, after random variables had been transformed to the
standard space Z, the limit surface G(z) = 0 was approximated with a hyperplane that was tangent to
the surface at the design point (Figure 2). The hyperplane is described by this equation:

l(Z) = − α T
·Z + β (7)

where α = −
∇G(z)
‖∇G(z)‖

∣∣∣∣
z=z∗

and β = sign[l(0)] δ∗ is the Hasofer–Lind reliability index, related to δ∗,
i.e., the hyperplane distance l(z) = 0 from the origin of the coordinate system and α-unit vector, the
direction of which is opposite to the G(z) function gradient at the design point.
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Thus, the FORM changed the problem of failure probability integration into an issue that concerned
finding the design point, the calculations for which could be performed using an optimization algorithm
with inequality limitations [47,48]. An advantage offered by the FORM is the possibility of determining
sensitivity to the change of parameters without making additional calculations. The fact that sensitivity
of the reliability index is known becomes of key importance for reliable optimization, forecasting trends
in the optimization process, and for initial considerations when the stochastic model is developed.
If the sensitivity of the reliability index to random variable Xi is low compared to other variables,
it is possible to acknowledge that the effect of this variable on the failure probability value is small.
Consequently, in subsequent computations it can be treated as a deterministic variable. For the sake of
interpretation and comparison, a normalized sensitivity measure, namely the elasticity index Eβ(pi),
was introduced.

The elasticity index Eβ(pi) can be defined as the percentage change in the reliability indexβ
(Figure 3]. This article assumes that the pi parameter changes by 1%. We can determine this value
depending on our needs.
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The indicator Eβ(pi) allowed us to describe the sensitivity of the reliability index to changes in all
random parameters pi [49]. It can be written as follows:

Eβ
(
pi

)
=

∂β
∂pi·

pi

β
(8)

For examples:
with standard deviation:

Eβ(σi) =
∂β
∂σi·

σi
β

(9)

or with mean value:

Eβ
(
Xi

)
=
∂β

∂Xi ·

Xi
β

(10)

In a stochastic model, the variable pi can determine a standard deviation σi or a mean value Xi. In
this article, both variables are used.

3. Numerical Results and Discussion

A mesh of the lattice dome, consisting of 25 nodes and 56 elements, is illustrated in Figure 4. The
dome geometry is shown in Table 1. The elements of the structure were assumed to be made of steel
tubes RO 101.6 × 6 with yield point f y = 235 MPa and Young’s modulus E = 210 GPa. The load of the
µ·P value was applied to the keystone (P = 1 kN).
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Table 1. Geometry of the lattice dome.

No. of
Node x [m] y [m] z [m] No. of

Node x [m] y [m] z [m]

1 15.000 15.000 1.6465 14 5.761 11.173 1.14
2 20.000 15.000 1.432 15 5.761 18.827 1.14
3 18.536 11.464 1.432 16 11.173 24.239 1.14
4 15.000 10.000 1.432 17 18.827 24.239 1.14
5 11.464 11.464 1.432 18 30.000 15.000 0
6 10.000 15.000 1.432 19 25.607 4.393 0
7 11.464 18.536 1.432 20 15.000 0.000 0
8 15.000 20.000 1.432 21 4.393 4.393 0
9 18.536 18.536 1.432 22 0.000 15.000 0

10 24.239 18.827 1.14 23 4.393 25.607 0
11 24.239 11.173 1.14 24 15.000 30.000 0
12 18.827 5.761 1.14 25 25.607 25.607 0
13 11.173 5.761 1.14
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In the first deterministic step, the Krata software [50–52] was used to determine the
load-displacement path and the value of the limit load multiplier µcr = 26.15 kN. Figure 5 shows the
dependence between the value of the load multiplier µ and the vertical displacement of node No. 1–q1.
In this paper, the constant arc length method is used for determination of the equilibrium path.
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The second step started with the creation of a stochastic model in the Numpress Explore
program [53]. Based on the coordinates of the limit point, the form of the limit function was formulated
as a condition of non-exceedance of the admissible multiplier of the vertical load on node No. 1:

gµ(x) = 1 − µ(x)/26.15 (11)

The alternative version of the limit state function could be the condition of non-exceedance of the
vertical displacement q1 on node No.1:

gq1(x) = 1 − q1(x)/103.96 (12)

The software allowed us to define two types of random variables, namely, basic and external.
When the reliability analysis was conducted, the following basic random variables were taken into
account: load P, coordinates Zi of nodes i = 1, . . . , 17. Basic random variables were not correlated.
Their description is shown in Table 2. The external variables were implicit functions of basic random
variables, the values of which were obtained with the Krata software. In this paper, the external
variable is the load multiplier µ. Figure 6 shows the procedure of the analysis. The values of external
variables were read from the text sets that contained the results of computations with the Krata
software. The next step involved the introduction of the limit function formula, using the standard
mathematical notation as a dependence on basic and external random variables. In the study, the
condition of non-exceedance of the admissible load multiplier was satisfied. Numpress Explore
software communicates with the Krata software. The latter was used to compute the values necessary
to define the limit function for subsequent sets of random variables. Next, the reliability analysis
method was chosen and computations began. The task ended with the generation of information that
contained the values of the failure probability, reliability index, and elasticity index.
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Table 2. Description of random variables.

Random Variable Mean Value Xi

Probability
Distribution

Type

Case 1 Case 2

Standard
Deviation

σ1,i

Variation
Coefficient

Standard
Deviation

σ2,i

Variation
Coefficient

Load P 1 Normal 0.1 10% 0.1 10%
Coordinate “z” of node 1–Z1 1.6465 Normal 0.16465 10% 0.082325 5%
Coordinate “z” of node 2–Z2 1.432 Normal 0.1432 10% 0.0716 5%
Coordinate “z” of node 3–Z3 1.432 Normal 0.1432 10% 0.0716 5%
Coordinate “z” of node 4–Z4 1.432 Normal 0.1432 10% 0.0716 5%
Coordinate “z” of node 5–Z5 1.432 Normal 0.1432 10% 0.0716 5%
Coordinate “z” of node 6–Z6 1.432 Normal 0.1432 10% 0.0716 5%
Coordinate “z” of node 7–Z7 1.432 Normal 0.1432 10% 0.0716 5%
Coordinate “z” of node 8–Z8 1.432 Normal 0.1432 10% 0.0716 5%
Coordinate “z” of node 9–Z9 1.432 Normal 0.1432 10% 0.0716 5%

Coordinate “z” of node 10–Z10 1.14 Normal 0.114 10% 0.057 5%
Coordinate “z” of node 11–Z11 1.14 Normal 0.114 10% 0.057 5%
Coordinate “z” of node 12–Z12 1.14 Normal 0.114 10% 0.057 5%
Coordinate “z” of node 13–Z13 1.14 Normal 0.114 10% 0.057 5%
Coordinate “z” of node 14–Z14 1.14 Normal 0.114 10% 0.057 5%
Coordinate “z” of node 15–Z15 1.14 Normal 0.114 10% 0.057 5%
Coordinate “z” of node 16–Z16 1.14 Normal 0.114 10% 0.057 5%
Coordinate “z” of node 17–Z17 1.14 Normal 0.114 10% 0.057 5%
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In this paper, the impact of changes in the standard deviation of random variables describing
coordinates of nodes Zi i = 1, . . . , 17 on the reliability index β is analyzed. Two cases were considered,
in which the variation coefficient of coordinates Zi was modified. The variation coefficient of 10% was
adopted for the first case, whereas for the other case it was 5%. Random variable notations correspond
to node numbers in Table 1. Changing the standard deviation of random variables Zi i = 1, . . . , 17
reflects the imperfections of the nodes position in the probabilistic description. In both cases, a constant
variation coefficient of 10% was assumed for load P.

Figure 7 shows how the reliability index β depends on the load multiplier µ for both cases. Values
of the reliability index and failure probability for selected computational steps are collated in Table 3.
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Table 3. Values of the reliability index β and failure probability Pf.

Load Multiplier µ Displacement q1
[mm]

Case 1 Case 2

Failure
Probability

Pf

Reliability
Index
β

Failure
Probability

Pf

Reliability
Index
β

7.07 18.54 0.000248568 3.48229 6.30709 × 10−9 5.69121
14.19 40.40 0.0807931 1.39976 0.0058181 2.52299
16.31 47.80 0.148813 1.04154 0.0286027 1.90174
18.16 54.77 0.217846 0.77949 0.0755421 1.43571
22.87 75.62 0.393263 0.270823 0.305856 0.507631
23.85 81.00 0.42604 0.186542 0.362944 0.3506
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Additionally, this paper examins the elasticity index Eβ(pi). Figure 8 shows the deformed form of
the considered structure. It is necessary to pay attention to the direction of displacement of individual
nodes. The upper node, No. 1, and the middle nodes, Nos. 2 to 9, are moving downwards, relative
to the undeformed form of the structure, while the lower nodes, Nos. 10 to 17, are moving upwards.
Figures 9–12 show the values of the elasticity index Eβ(pi) with respect to the mean value in the first
and the last computational step for all random variables. For the cases of concern, changes in the
values of the elasticity index Eβ(pi) for variables P and Zi, depending on the load value, are shown in
Table 4. We can observe the occurrence of positive and negative values of the elasticity index, which
depends on the direction of the node’s displacement.
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Figure 9. Elasticity index Eβ(pi) with respect to the mean value (pi = Xi) for Case 1 and the load
multiplier µ = 7.07.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 15 

Figure 9. Elasticity index Eβ(pi) with respect to the mean value for Case 1 and the load multiplier 
µ = 7.07. 

 

Figure 10. Elasticity index Eβ(pi) with respect to the mean value for Case 1 and the load multiplier µ = 
23.85. 

Figure 11. Elasticity index Eβ(pi) with respect to the mean value for Case 2 and the load multiplier µ = 
7.07. 

-1,22087

-0,860082

-0,499294

-0,138507

0,2222812

0,583069

P Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 Z12 Z13 Z14 Z15 Z16 Z17

E β
(p

i)

Xi

0,0000

-20,5527

-15,13103

-9,709367

-4,2877

1,1339667

6,5556333

11,9773

P Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 Z12 Z13 Z14 Z15 Z16 Z17

E β
(p

i)

Xi

0,0000

-1,04297

-0,776868

-0,510765

-0,244663

0,02144

0,2875425

0,553645

P Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 Z12 Z13 Z14 Z15 Z16 Z17

E β
(p

i)

Xi

0,0000

Figure 10. Elasticity index Eβ(pi) with respect to the mean value (pi = Xi) for Case 1 and the load
multiplier µ = 23.85.



Appl. Sci. 2019, 9, 2742 12 of 16

Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 15 

Figure 9. Elasticity index Eβ(pi) with respect to the mean value for Case 1 and the load multiplier 
µ = 7.07. 

 

Figure 10. Elasticity index Eβ(pi) with respect to the mean value for Case 1 and the load multiplier µ = 
23.85. 

Figure 11. Elasticity index Eβ(pi) with respect to the mean value for Case 2 and the load multiplier µ = 
7.07. 

-1,22087

-0,860082

-0,499294

-0,138507

0,2222812

0,583069

P Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 Z12 Z13 Z14 Z15 Z16 Z17

E β
(p

i)

Xi

0,0000

-20,5527

-15,13103

-9,709367

-4,2877

1,1339667

6,5556333

11,9773

P Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 Z12 Z13 Z14 Z15 Z16 Z17

E β
(p

i)

Xi

0,0000

-1,04297

-0,776868

-0,510765

-0,244663

0,02144

0,2875425

0,553645

P Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 Z12 Z13 Z14 Z15 Z16 Z17

E β
(p

i)

Xi

0,0000

Figure 11. Elasticity index Eβ(pi) with respect to the mean value (pi = Xi) for Case 2 and the load
multiplier µ = 7.07.Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 15 

 
Figure 12. Elasticity index Eβ(pi) with respect to the mean value for Case 2 and the load multiplier µ = 
23.85. 

In order to better illustrate the influence of random variables P and Zi on the values of the 
reliability index β, the values of the elasticity index were presented in relation to the standard 
deviation (Table 5). 

Table 5. Values of the elasticity index Eβ(pi) with respect to the standard deviation, depending on the 
load multiplier applied. 

 Case 1 Case 2 

 µ = 7,07 µ = 23,85 µ = 7,07 µ = 23,85 
P 0,060838 0,00047 0,683858 0,00588722 
Z1 0,075018 0,003919 0,0575702 0,00598635 
Z2 0,010806 0,00056 0,00792583 0,00085315 
Z3 0,01099 0,000565 0,0107745 0,00085699 
Z4 0,010546 0,000567 0,0085271 0,000851656 
Z5 0,010921 0,000561 0,00969135 0,000852898 
Z6 0,010715 0,000568 0,00941762 0,000848981 
Z7 0,011342 0,000566 0,00963334 0,000856157 
Z8 0,010686 0,000568 0,00871643 0,000851986 
Z9 0,011073 0,00057 0,0106294 0,000841353 
Z10 0,011552 0,000533 0,00893249 0,000836612 
Z11 0,011284 0,000534 0,00910208 0,000821875 
Z12 0,011468 0,000533 0,00917403 0,000820686 
Z13 0,011429 0,000542 0,00910028 0,000835488 
Z14 0,01147 0,000528 0,0090027 0,000833421 
Z15 0,011286 0,000534 0,00901152 0,000836247 
Z16 0,011275 0,000534 0,00912094 0,000832002 
Z17 0,011464 0,000528 0,00919437 0,000820104 

For the cases of concern, a major difference in the reliability index values was observed 
(Figure 7). For Case 1, the maximum value of the reliability index was 3.48229, which constitutes 
61.19% of the value of Case 2. With an increase in the load applied, the reliability index dropped to 
the following values: 0.3506 for the 5% case and 0.186542 for the 10% of index variation. The analysis 
demonstrated a significant increase in the value of the elasticity index Eβ(pi), with respect to the mean 

-20,428

-15,03468

-9,641367

-4,24805

1,1452667

6,5385833

11,9319

P Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 Z12 Z13 Z14 Z15 Z16 Z17

E β
(p

i)

Xi

0,0000
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multiplier µ = 23.85.

Table 4. Values of the elasticity index Eβ(pi) with respect to the mean value depending on the load
multiplier applied.

Case 1 Case 2

µ = 7,07 µ = 23,85 µ = 7,07 µ = 23,85

P −0,960682 −11,3796 −0,94165 −11,295
Z1 −1,22087 −20,5527 −1,04297 −20,428
Z2 −0,633033 −12,1532 −0,55432 −12,1929
Z3 −0,636345 −12,248 −0,63249 −12,2128
Z4 −0,627177 −12,2261 −0,57223 −12,1834
Z5 −0,634882 −12,1534 −0,60514 −12,2013
Z6 −0,63134 −12,2363 −0,59676 −12,1821
Z7 −0,643971 −12,2566 −0,60399 −12,2017
Z8 −0,630684 −12,2457 −0,57788 −12,1823
Z9 −0,638158 −12,2553 −0,62899 −12,1231
Z10 0,583069 11,8805 0,546972 11,9319
Z11 0,578446 11,8845 0,551486 11,8314
Z12 0,580928 11,8773 0,552808 11,8252
Z13 0,580211 11,9773 0,551094 11,9262
Z14 0,58106 11,8772 0,548862 11,9283
Z15 0,578546 11,8836 0,548516 11,9291
Z16 0,578429 11,8875 0,55195 11,9279
Z17 0,58093 11,8778 0,553645 11,8224
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In order to better illustrate the influence of random variables P and Zi on the values of the
reliability index β, the values of the elasticity index were presented in relation to the standard deviation
(Table 5).

Table 5. Values of the elasticity index Eβ(pi) with respect to the standard deviation, depending on the
load multiplier applied.

Case 1 Case 2

µ = 7,07 µ = 23,85 µ = 7,07 µ = 23,85

P 0,060838 0,00047 0,683858 0,00588722
Z1 0,075018 0,003919 0,0575702 0,00598635
Z2 0,010806 0,00056 0,00792583 0,00085315
Z3 0,01099 0,000565 0,0107745 0,00085699
Z4 0,010546 0,000567 0,0085271 0,000851656
Z5 0,010921 0,000561 0,00969135 0,000852898
Z6 0,010715 0,000568 0,00941762 0,000848981
Z7 0,011342 0,000566 0,00963334 0,000856157
Z8 0,010686 0,000568 0,00871643 0,000851986
Z9 0,011073 0,00057 0,0106294 0,000841353
Z10 0,011552 0,000533 0,00893249 0,000836612
Z11 0,011284 0,000534 0,00910208 0,000821875
Z12 0,011468 0,000533 0,00917403 0,000820686
Z13 0,011429 0,000542 0,00910028 0,000835488
Z14 0,01147 0,000528 0,0090027 0,000833421
Z15 0,011286 0,000534 0,00901152 0,000836247
Z16 0,011275 0,000534 0,00912094 0,000832002
Z17 0,011464 0,000528 0,00919437 0,000820104

For the cases of concern, a major difference in the reliability index values was observed (Figure 7).
For Case 1, the maximum value of the reliability index was 3.48229, which constitutes 61.19% of the
value of Case 2. With an increase in the load applied, the reliability index dropped to the following
values: 0.3506 for the 5% case and 0.186542 for the 10% of index variation. The analysis demonstrated
a significant increase in the value of the elasticity index Eβ(pi), with respect to the mean value. As
regards Case 1, the index value increased from 0.96062 to 11.3796 for random variable P, and from
1.22087 to 20.5527 for random variable Z1. With Case 2, the increase was from 0.941646 to 11.295 for
random variable P, and from 1.04297 to 20.428 for random variable Z1. Similarly, in the case of the
elasticity index, with respect to the standard deviation, we can see that, for the random variable Z1, the
values were several times higher than for other random variables, and the random variable P, in the
case for the load multiple value of 7.07, takes values much higher than the others. It was observed
that as the limit value of the load multiplier was approached, the significance of the random variable
that describes load P was reduced. In the last step of the analysis, the obtained values of the elasticity
index Eβ(pi) for random variable P were lower than the values of the elasticity index Eβ(pi) for the
remaining random variables. A change in the variation index of random variables from 10 to 5% led to
an increase in the reliability index, with respect to the mean value by approx. 63.43%.

4. Conclusions

Building the mathematical model of a problem, the designer must make a decision as to which
design parameters should be treated as deterministic or random. It must be remembered that, in
reality, every physical quantity is a random variable; however, for computational purposes, a part of
them are assumed as deterministic parameters. Identification of variables determines the solution of
the problem in a significant way; therefore, it is essential to investigate the elasticity index. In this
paper, the examination of the elasticity index Eβ(pi) indicates a uniform increment of the index value
for all random variables taken into account. Such a change in the elasticity index shows that when
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conducting the reliability analysis of the lattice dome, it is necessary to consider all random variables
adopted in the description.

After considering the randomness of a given parameter, it is necessary to carefully determine
the description of distribution parameters. These parameters have an effect on the results of analysis.
In this article, to describe all random variables, the normal type of distribution is used, described
by the mean value and standard deviation. Two cases of the variation coefficient, namely 10% and
5%, for random variables of Z1 to Z17 were taken into account. Changing the standard deviation of
random variables Zi reflects the imperfections of the nodes position in the probabilistic description.
A constant variation coefficient of 10% for the random variable P was adopted, which corresponds
to the assumed unit load. For the cases of concern, a major difference in the reliability index values
was observed (Figure 7). On the basis of the analyses conducted for the paper, it can be stated that
adequate probabilistic description of the node location significantly affects the structure reliability.

The approach addressed in the Eurocodes makes it impossible to quantitatively assess. It only
gives an answer if the structure is unreliable or safe. This is a qualitative assessment. The FORM,
thanks to the reliability index, gives this possibility. In probabilistic methods, the information on
distribution types of the design variables and their parameters is utilized. Such a formulation makes it
possible to explicitly account for randomness in the design process. Thus, it is possible to develop a
mathematical model to estimate the probability of a specified behavior of the structure. This paper
shows that, with the reliability analysis methods, it was possible to find out the failure probability
level while moving along the load-displacement path towards the limit point. Reliability analysis was
also employed to find the sensitivity of the reliability index to the mean values or standard deviation
of random variables by calculating the elasticity index. With the growth of the degree of complication
that occurs in practical issues of designing, explicit reliability methods lose their functionality. In
connection with the above, the present study proposes the possibility of the use of interface between
methods, dealing with reliability analysis and the numerical methods of the calculation of engineering
structures, e.g., Finite Element Method.

With the growth of the degree of complication that occurs in practical issues of designing, explicit
reliability methods lose their functionality. In connection with the above, the present study proposes the
possibility of the use of interface between methods, dealing with reliability analysis and the numerical
methods of the calculation of engineering structures, e.g., Finite Element Method.
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