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Abstract: Laser absorption spectroscopy (LAS) is a promising diagnostic method capable of providing
high-bandwidth, species-specific sensing, and highly quantitative measurements. This review
aims at providing general guidelines from the perspective of LAS sensor system design for
realizing quantitative species diagnostics in combustion-related environments. A brief overview of
representative detection limits and bandwidths achieved in different measurement scenarios is first
provided to understand measurement needs and identify design targets. Different measurement
schemes including direct absorption spectroscopy (DAS), wavelength modulation spectroscopy
(WMS), and their variations are discussed and compared in terms of advantages and limitations.
Based on the analysis of the major sources of noise including electronic, optical, and environmental
noises, strategies of noise reduction and design optimization are categorized and compared.
This addresses various means of laser control parameter optimization and data processing algorithms
such as baseline extraction, in situ laser characterization, and wavelet analysis. There is still a large
gap between the current sensor capabilities and the demands of combustion and engine diagnostic
research. This calls for a profound understanding of the underlying fundamentals of a LAS sensing
system in terms of optics, spectroscopy, and signal processing.

Keywords: laser absorption spectroscopy (LAS); combustion sensing; direct absorption spectroscopy
(DAS); wavelength modulation spectroscopy (WMS); design optimization; noise reduction algorithms

1. Introduction

1.1. Overview of Laser Absorption Sensor Developments and Applications

Laser absorption spectroscopy (LAS) has served as a useful tool for both fundamental and
practical studies in energy and power systems since its earliest demonstration as a species diagnostic
method in combustion-related environments over forty years ago [1,2]. In addition to the non-contact
characteristics of most optically based methods (e.g., emission, Schlieren imaging, laser-induced
fluorescence, particle image velocimetry), LAS benefits from the species-specific nature of molecular
spectroscopy, therefore is capable of achieving highly quantitative and selective measurements
of a number of important species parameters including gas composition, temperature, pressure,
and velocity. The use of narrow-linewidth, tunable, low-power semiconductor lasers, on the other
hand, offers the opportunity for real-time, time-resolved, and long-term stable field monitoring systems
that can be realized under various measurement scenarios.

Up towards the early 2000s, gas sensors based on tunable diode laser absorption spectroscopy
(TDLAS) were extensively applied in continuous emission monitoring and process controls and
diffused in process industries as an accepted technique [3,4]. The maturity and commercialization
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of opto-electronic devices, thanks to the booming telecommunication industry, has allowed TDLAS
sensors to evolve from laboratory-scale benchtop experimental tools to a robust industrial technology.
With further reduction in cost and size, portable and field-deployable systems can be made. Using smart
optical–mechanical designs and sophisticated signal processing schemes, some of these sensors are
able to operate in the field without operator intervention for over 10 years [5].

Today, the design, control, and optimization of complex energy and propulsion systems poses
unprecedented challenges for sensor technology. The extreme conditions associated with combustion
that are typically unfriendly for optical systems, such as high temperature, pressure, and velocity,
mechanical vibrations, high dust levels, and corrosiveness, make LAS still one of the best available
contactless sensor techniques for harsh environments. However, extraction and interpretation of
high-quality, quantitative information under such complicated, demanding conditions requires deeper
understanding of the target environments and tailoring the sensor design to specific measurement
goals. While state-of-the-art laser technology for novel single-mode mid-infrared and hyperspectral
laser sources continues to offer much more freedom in choosing the spectral features and designing
LAS sensors, much remains to be studied in improving their reliability, accuracy, and precision.

1.2. Scope and Organization of the Paper

There has been a number of excellent reviews and books on the development and application of
LAS sensor technology. Even as early as in the late 1990s, several papers reviewed the fundamental
theories and early successes of laser-based spectroscopic methods in gas dynamics and combustion
flow measurements [6–8]. Nasim et al. illustrated the evolution of and confinement methods used
in semiconductor diode lasers and discussed different techniques used to convert free-running diode
lasers into true narrow linewidth tunable diode laser sources [9]. As lasers were much less mature at that
time, these papers also reviewed the available laser light sources as an important part of the diagnostics
development. More recently, several reviews reported the advances of the LAS technique and its
demonstration in various disciplines. Hanson et al. presented an overview of combustion kinetics,
propulsion, and combustion in practical systems and documented the impact of quantitative laser
diagnostics methods [10]. Bolshov et al. highlighted the temperature, concentrations, and flow velocities
in different combustion zones and emphasized the strategies and data processing algorithms for LAS
measurements [11]. Goldenstein et al. provided a thorough review of the underlying fundamentals,
design, and use of infrared LAS sensors for combustion gases and highlighted recent findings and
some of the remaining measurement opportunities, challenges, and needs [12]. Liu et al. summarized
the key principles and recent advances of line-of-sight (LOS) LAS techniques and then focused on
spatially resolved gas sensing with LAS tomography [13].

More specifically, a few papers have focused on reviewing signal-to-noise-ratio (SNR) enhancement
techniques to improve TDLAS performance. Li et al. summarized several commonly employed
noise reduction schemes including signal averaging, modulation techniques, balanced detection,
zero-background subtraction, and adaptive filtering [14]. Zhang et al. focused on the various
mathematical algorithms applied in TDLAS signal processing to enhance the accuracy and resolution
of the sensor [15].

As discussed above, sensing challenges vary largely with measurement targets and conditions.
The maturity of semiconductor lasers and photodetectors allows many researchers in relevant fields to
simply use LAS sensor as an established tool, whereas diagnosticians still strive to push the limit of this
technique. While previous papers have provided comprehensive reviews on all major elements of LAS
sensor systems including fundamental molecular spectroscopy, the development of opto-electronic
devices, and various measurement schemes and applications, we refer the readers to other works for
the fundamentals and will address the design perspectives of a LAS sensing system. Section 2 will
start by summarizing and identifying the measurement challenges and design targets under different
measurement conditions; Section 3 will follow by outlining the fundamentals of different diagnostic
strategies and their underlying models and control factors; Section 4 will then provide a systematic
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analysis of approaches for noise reduction and signal optimization, so to extend the use of the LAS
sensing technique to much more difficult measurement scenarios. In view of the urging demands
in both the use and development of this sensor technology, a goal of this manuscript is to provide
understanding and an overview of the key factors and considerations in the measurement targets, as
well as a reference and guidelines to a strategic design procedure appropriate for obtaining optimized
sensing results.

2. Sensor Design Targets and Measurement Challenges

The fundamental theory lying behind absorption spectroscopy is the Beer–Lambert law, presented
in Equation (1), with multiple forms of expressions. The fractional transmission of light, given by the
ratio between transmitted and incident light intensity, It [W/cm2] and I0 [W/cm2], can be expressed
as an exponential function of absorbance αν, with kν [1/cm] being the spectral absorption coefficient,
L [cm] the absorption pathlength, n [molecule/cm3] the number density of the absorbing species, σν
[cm2/molecule] the absorption cross section, S [cm−2/atm] the absorption linestrength of an individual
transition line, φν [cm] the frequency-dependent lineshape function, P [atm] the total pressure, and Xi
the mole fraction of the absorbing species i. The subscript ν is used to signify the spectral dependence
of the parameter on the light frequency ν:

(It/I0)ν = exp(−αν)
= exp(−kνL)
= exp(−nσνL)
= exp(−SφνPXiL)

(1)

This rather simple but nontrivial relationship roots from the energy balance derivation in the
equation of radiative transfer. In a typical absorption measurement, the total absorbance αν is the
ultimate “signal” to optimize, and the performance of LAS species sensor is commonly evaluated
through detection limits and detection bandwidth. The limits of detection can be quantified as the
noise-equivalent absorbance (NEA) or the minimal detectable concentration (e.g., in ppm), and the
measurement bandwidth (Hz) can be defined as half of the measurement temporal resolution taking
into account the Nyquist criterion.

To directly compare the detectivity of LAS sensors under different measurement conditions,
the pathlength-normalized detection limit (e.g., in ppm·m) is often used, on the basis of the fact that the
absorbance is linearly proportional to the absorption pathlength. Further normalization with bandwidth
renders a detection limit in the unit of ppm·m·Hz−1/2 to account for the improvement of signal-to-noise
ratio (SNR) with averaging. However, it needs to be noted that this inverse square-root dependence on
averaging time can be applied if the signal carries only white noise. A more rigorous assessment of the
validity of such normalization can be done with Allan variance analysis, which analyzes a sequence of
data in the time domain. Although traditionally used as a measure of frequency stability of clocks and
oscillators in metrology, the Allan variance analysis can also be adopted as a useful tool to identify
and quantify different noise terms and indicate signal stability. As shown in the schematic of Figure 1,
the root Allan variance, aka Allan deviation, of a time domain signal is computed as a function of
different averaging times τ. By analyzing the characteristic regions and log–log scale slopes of the
Allan deviation curve, different noise processes and modes may be identified.
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Figure 1. Schematic of different noise processes on an Allan deviation plot.

Even limiting our discussion to combustion-related LAS diagnostic studies, the demands and
achieved performance of the laser sensors vary over a wide range. Figure 2 summarizes some
representative results from a number of sensor development and implementation studies in terms
of detection limits and bandwidths. It compares species concentration measurements in a variety of
combustion systems including laboratory environments [1,16–22], shock tube studies [23–28], industry
processes [29–33], and engines [34–46]. For the purpose of making a direct comparison between
different studies, the reported absolute minimal detection limits for several commonly probed species
in combustion, including CO, CO2, H2O, and C2H2, are plotted on the same diagram against detection
bandwidths. It can be clearly observed that results from different applications naturally separate
into different regimes: the well-controlled laboratory environments allow lower absorbance to be
detected, where chemical kinetics studies in shock tubes typically demand for a much higher detection
bandwidth than stabilized laboratory flames or gas cell; larger scale, more “realistic” environments such
as industrial burners and engines present harsher conditions that lead to higher achievable minimal
detection limits, but industrial process monitoring typically involves stringent emission control targets
and trace species detection over continuous, long-term monitoring periods, whereas engine diagnostics
are usually associated with high-velocity or turbulent flow and reaction conditions.
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Despite its versatility in measuring temperature, pressure, and velocity, LAS is ultimately a species
diagnostic method. It utilizes the “fingerprint” molecular spectra and infer the parameters to be
measured on the basis of a correct interpretation of the recorded spectral feature. Figure 3 plots the
absorption linestrengths over the infrared wavelength range of 0.5–6 µm of several of the representative
C–O, C–H, N–O, N–H, and H–O compound gaseous species commonly studied in combustion.
Today, with semiconductor laser technology, we are able to access almost any wavelength within this
region, so that there is no longer much constraint in making an optimized selection of absorption
transition, which can be solely based on appropriate strength level and minimal cross interference.
For fairly harmonic molecules such as CO, the advantage of using a lower-order vibrational band
at longer wavelength is more prominent in achieving lower detection limits as compared with
a less harmonic molecule such as NH3. One can also make the observation that high temperatures,
often associated with combustion-related sensing, would by themselves present greater challenges for
LAS sensors. The reasoning is twofold from the point of view of molecular spectroscopy: (1) the overall
band strength is approximately inversely proportional to temperature, so that absorption is generally
weaker at high temperatures, and (2) higher energy levels get more populated at higher temperatures,
so that the spectra may get more crowded with hot bands and high J-number lines, especially when
a multicomponent gas mixture is being studied. As will be reviewed in the following, many efforts
have been devoted to reducing a correct absorption-free background and discriminate the molecular
absorption by target species from a medley of various cross interference and noise processes.
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(b) 1800 K. Transitions with line strengths less than 1 × 10−23 cm/molecule are not shown. All data
taken from HITRAN2016 [47].

3. Fundamentals of Different LAS Measurement Schemes

Absorption is based on signal difference between the light intensities before and after propagation
through a medium. When the incident light source has a spectral linewidth much narrower than the
absorption transition feature, the so-gained spectral information can be regarded as single-wavelength
without the need for light dispersion elements which can potentially introduce a reduction in spectral
resolution. The use of semiconductor lasers which can be easily and fast tuned with injection current and
temperature also allows the access to a range of wavelengths and absorption feature profiles with a single
laser device. A detailed description of typical laser sources employed in LAS including distributed feedback
lasers (DFBs), vertical-cavity surface-emitting lasers (VCSELs), Fourier-domain mode-locked lasers (FDML),
quantum cascade lasers (QCLs), interband cascade lasers (ICLs), and their corresponding features, such as
linewidth, power, and tunability has been presented by Goldenstein et al. [12] and Liu et al. [13].

The two most commonly employed schemes in realizing a LAS sensor with wavelength-tunable,
narrow-linewidth lasers include direct absorption spectroscopy (DAS) and wavelength modulation
spectroscopy (WMS), and each can be further associated with fixed- or scanned-wavelength schemes.
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For fixed-wavelength DAS, as the laser wavelength is not tuned or modulated, the detection bandwidth
is solely limited by the detector bandwidth and the sampling rate of the data acquisition system.
Therefore, this scheme is often used in applications where an extremely high temporal resolution at
levels of 1 MHz or above is needed. However, it requires the absolute laser wavelength to be accurately
known and precisely controlled. In contrast, the scanned-wavelength scheme is widely used for its
higher robustness and better immunity against fluctuations in practical combustion system monitoring.

The basic principles of DAS and WMS have been detailed elsewhere [48]. Here, from a different
perspective, we will give a brief summary of each technique and elucidate the fitting algorithms used
to infer gas conditions.

3.1. Direct Absorption Spectrocopy

The direct absorption method infers gas properties directly from the fractional transmission
of light It/I0 using the Beer–Lambert relation. One of the key problems to solve in DAS is thus to
determine the baseline, i.e., the light intensity I0 before absorption by the medium. Certain sensor
systems incorporate an additional reference signal with a non-resonant laser or a broadly tunable light
source to correct for the baseline [12]. However, this is at the expense of added components and may
introduce potential errors from additional optical etalons. The more commonly adopted approach is to
mathematically fit the baseline using non-absorbing portions within a scan.

Two background correction strategies are often adopted, namely, the Levenberg–Marquardt
(LM) fitting algorithm [49–51], and the advanced integrative (AI) fitting algorithm [52]. Both fitting
algorithms involve an iterative process, and the major difference lies in the fitting speed and multi-line
fitting capability. More details are summarized in Table 1 below, and here we illustrate a typical fitting
procedure with an example of AI fitting algorithm.

AI fitting process:
Step 1: Background correction: a polynomial fit is applied to infer the background from the

non-absorbing portions;
Step 2: Retrieval of line center position ν0, which is estimated from the two symmetrical intervals

from the maximum of background-corrected absorbance curve, thus no explicit initialization is needed;
Step 3: Retrieval of absorbance area: absorption linewidth is predetermined, and then the Voigt

function is calculated;
Step 4: Voigt fit: several numerical approaches can be used to approximate the Voigt function [53,54]

as no analytical form is available.
Most commonly, by using a low-order (order two to four) polynomial to fit the baseline and

subsequently fitting the absorbance curve with a Voigt profile through an iterative process, the gas
properties can be inferred. This works well for isolated or slightly overlapped features and if the
baseline is reasonably smooth and the raw spectrum has a good SNR. However, when noises from
harsh environments causing severe beam steering and baseline fluctuation carry frequency components
comparable to the scanning/detection bandwidth, uncertainties in the DAS detection will significantly
grow. Efforts to deal with such background drift will be detailed in Section 4.
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Table 1. Comparison of fitting algorithms in direct absorption spectroscopy (DAS) and wavelength
modulation spectroscopy (WMS) techniques. LM: Levenberg–Marquardt, AI: advanced integrative,
SNR: signal-to-noise-ratio.

Technique Parameter Initialization Parameter Predetermined Feature/Limitation

DAS LM algorithm ν0, T, X no Easy to fit multiple
absorption lines

DAS AI algorithm no ∆ν

Complicated to fit
multiple absorption lines,
a factor of 3-4 faster than

the LM algorithm

2f -WMS T, X P
HITRAN/HITEMP database [47]

Calibrated on the basis of
database, hard to

calculate absolute T

Calibration-free
WMS-2f /1f with
fixed-wavelength

laser characterization

ν0, T, X i1, i2, ϕ1,ϕ2
HITRAN/HITEMP database

Wavelength-dependent
laser characteristics may

lead to
measurement errors

Calibration-free
WMS-2f /1f with

scanned-wavelength
laser characterization

ν0, T, X ν(t), MI0(t)
HITRAN/HITEMP database

Non-linear laser intensity
variation along

measurement beam path
difficult to quantify

Recovery of
DAS lineshapes ν0, T, X ϕ1, Xn f , Yn f

Higher-order harmonics
come with low SNR

DAS-calibrated WMS no P, T

Direct, on-the-fly
calibration,

increased precision and
SNR for trace
gas detection

3.2. 2f-WMS Method

By adding a high-frequency modulation to the laser injection current, the WMS scheme raises the
signal detection band to a designated frequency range and later extracts the signal with band-pass filtering
processes. This allows the method to have better noise rejection capability, and a 2~100 improvement in SNR
has been demonstrated over DAS [55].

When the absorption features introduce distortions to the sinusoidally modulated laser intensity,
harmonic components at integer multiples of the modulation frequency would appear. Due to the
symmetry of an absorption feature about its line center, even orders of harmonic signals would peak
near the line center position. For small modulation depths, the nonlinear laser intensity modulation
can be neglected, and the peak of the second harmonic signal, or the 2f peak height, is a function of
species concentration, pressure, and temperature and therefore can be taken as the target signal to
measure [56,57]. The dependence on multiple non-precalibrated parameters is the major limitation of
2f -WMS method, however, for two-line thermometry, the 2f peak height ratio of the two selected lines
can be directly reduced to linestrength ratio with the use of suitable modulation depth and line pair.
Figure 4 shows the flow chart of the fitting procedure of the 2f -WMS method, including 2f peak ratio
thermometry and species concentration extraction. To account for the unknown proportionality to
environmentally dependent factors such as transmission losses and instantaneous laser intensity, the 2f
peak magnitudes need to be pre-calibrated on the basis of HITRAN/HITEMP database line parameters
with known pressure and temperature conditions and a nominal value of gas concentration.
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3.3. Calibration-Free WMS-2f/1f Method

The calibration process needed for the WMS-2f method requires all environmental conditions
to remain the same between the calibration stage and the actual measurement stage. Apparently,
this luxury of having stable and known conditions is not always available, especially in practical
applications where laser transmission fluctuations are much more difficult to predict or monitor.
One solution is to normalize the 2f signal with the 1f component, referred to as the calibration-free
WMS-2f /1f method.

The normalization process cancels out the unknown or changing laser intensity. However,
to directly associate the measured WMS-2f /1f value with absolute gas conditions, laser intensity
and frequency tuning parameters need to be accurately characterized. Typically, this laser
characterization process identifies the first- and second-order laser intensity modulation indices (i1, i2)
and intensity–frequency modulation phase shifts (ϕ1, ϕ2) at a specific center frequency ν0, which are
sufficient to describe the intensity and frequency modulation behavior of a DFB semiconductor laser.

Rieker et al. summarized potential sources of uncertainty in calibration-free WMS, with particular
emphasis on the influence of pressure and optical depth in harsh environments [55]. Under such
conditions, measurement uncertainties induced by pressure deviation between the simulation and
the experimental conditions become more significant, and preference for stronger absorption features
voids the optical-thin assumption so that larger measurement errors may result.

In view of such problems, scanned-wavelength WMS with larger scan ranges and modulation
depths may be used. A modified calibration-free WMS scheme with an entirely different laser
characterization strategy is proposed to account for the time-variant and wavelength-dependent
change of the laser characteristic parameters [16,58,59]. The flow chart of this method is shown
in Figure 5. This analysis scheme differs from previous WMS strategies in two apparent ways:
(1) the use of measured intensity in real time avoids the need for a pre-determined analytic model to
describe laser intensity, and can at the same time account for the wavelength-dependent transmission
of optical components in the beam path, and (2) using the same data processing procedure for both
simulation and measurement introduces equal contributions from any potential non-ideal performance
of the lock-in and low-pass filter.
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Figure 5. Flow chart of a calibration-free WMS scheme with scanned-wavelength laser characterization.

This method is applicable without constraints on optical depth or modulation index, so that
pressure-broadened and blended absorption features can also be studied. However, nonlinear variations
in laser characteristics due to calibration drift, temperature variations, and laser aging that add to the
residual amplitude modulation (RAM) at different harmonic orders may introduce errors that mostly
occur over longer terms.

3.4. Recovery of the Absorbance Profile Based On Higher-Order Harmonic Signals

While previous WMS approaches use the harmonic signals directly, a phasor decomposition
method has been proposed to recover the absorbance profile from the first harmonic on the basis
of RAM [60,61]. However, these earlier attempts only worked well with small modulation indices
(m < 0.2) when the first-order harmonic shape is close to the first derivative of the absorbance
profile. Peng et al. employed additional higher odd harmonics (3rd, 5th, . . . ) to enhance the recovery
accuracy with large modulation indices [62]. Figure 6 shows the flow chart of the recovery and data
reduction process. It is worth noting that while considering more harmonic components improves the
model recovery accuracy, these high-order terms usually have low SNRs and are difficult to detect
in practical measurements.
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3.5. DAS-Calibrated WMS

From the discussion above, one may conclude that DAS and WMS have their own advantages and
limitations. While being more noise-immune in practical environments, calibration-free WMS methods
rely on extensive laser characterization, and the nonlinear response to the sinusoidal modulation over
the entire wavelength scan could lead to significant distortion in the 2f lineshape, especially with wide
wavelength scans. Klein et al. have thus proposed a DAS-calibrated WMS method, which combines
the simplicity and accuracy of the intrinsically calibration-free direct TDLAS (dTDLAS) with the
enhanced precision of WMS-2f [63]. A rapid (125 Hz) time-division multiplexed scheme alternating
between triangular scan and scanned modulation was used to realize quasi-simultaneous DAS and
WMS measurements. The concept of this on-the-fly calibration is illustrated in Figure 7. An absorbance
level of 0.1 was chosen as the decision criterion of whether DAS only or DAS-calibrated WMS will be
used. This largely extends the dynamic range of a single sensor and is especially advantageous for
in-field measurements without the need for reference gases or measurement interruption.
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3.6. Summary of Measurement Schemes

A summary of various scanned-wavelength LAS techniques discussed above is presented in Table 1.
For the purpose of comparison, fitting parameter initialization, parameter predetermination, as well as
features and limitations for each algorithm are listed.

DAS is preferred for its calibration-free detection capability and simplicity, for applications
where relatively isolated transitions are used. However, laser intensity fluctuations, excess noises,
and baseline fitting errors put limitations to the use of this method especially for difficult environments.
Thus, DAS is the method of choice for measurements with transitions of sufficient linestrength and
narrow linewidth to allow laser access with wavelength scanning.

By contrast, the WMS method is more promising for measurement systems with small absorbance,
high pressure broadening, or blended absorption features precluding a straightforward determination
of the non-absorbing baseline. With 1f normalization, the calibration-free WMS-2f /1f method can
account for variations in laser intensity such as non-absorption losses due to light scattering or
beam steering. This makes it advantageous for measurements in harsh environments involving high
pressures, high opacity, high emission levels, and high temperatures.

The accuracy of DAS lineshape recovery from harmonic signals is limited by the low-SNR high-order
terms, making this method unsuitable for practical measurements. A time-division multiplexed
spectroscopic scheme is applied by alternating laser modulation and allows the enhancement of precision
and dynamic range. This is an attractive strategy for in-field trace gas measurements without any need
for reference gases or measurement interruption.

The LAS techniques discussed above typically provide a path-averaged parameter measurement
over the zone of interest. Parameters including temperature, concentration, etc., are inferred by fitting
measured and simulated spectral profiles. On the other hand, strategies have been developed to
identify non-uniform characteristics in practical environments that commonly result from heat transfer,
flow mixing, and combustion.

Two types of approaches including single line-of-sight (LOS) absorption and tomography
have been proposed and experimentally demonstrated for the measurement of non-uniform zones.
The first approach is based on either the a priori temperature (concentration) distribution profile
or the probability density function along the LOS, namely, profile fitting and temperature binning,
respectively [64]. It depends on simultaneous measurements of multiple absorption transitions
with different temperature dependence. Tomography, on the other hand, relies on multiple LOS
measurements and computational reconstruction algorithms. It reduces the requirements for spatially
continuous optical access in traditional planar imaging and exhibits great potential for harsh and even
optically dense environments [65]. However, this may complicate the optical system design and data
processing of the experimental results.

Improvement in laser source and tomographic algorithms will contribute to greater accuracy in the
temperature and concentration distribution reconstruction, using either of the two approaches above.
Rieker et al. have extended the single LOS technique from advanced and expensive diode lasers with much
broader tuning range (up to 10–15 cm−1) to a dual-frequency comb spectrometer [66,67]. The temperature
distribution reconstruction accuracies increase as more absorption lines are incorporated. In addition,
the development of hyperspectral laser sources enables measurements of a large number of absorption
transitions and thereby significantly reduces the number of projections [68,69]. A detailed summary of
laser absorption tomography (LAT) algorithms has been given by Cai et al. [65].

4. Strategies for Noise Reduction and Design Optimization

4.1. Souces of Noise

For any sensing system, the noise and uncertainty in the obtained results need to be assessed to
evaluate the performance of the sensor. High noise levels not only obscure the signal to be measured
but also make the data reduction process difficult and time-consuming. In the following, we will
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first discuss the several major sources of noise in a LAS system, including laser noise, detector
noise, analogue-to-digital conversion (ADC) noise, optical noise, and environmental noise [70,71].
Then, different approaches for noise reduction and signal optimization will be reviewed to guide future
design considerations.

4.1.1. Laser and Detector Noise

The laser and detector excess noise are both frequency-dependent and known to have a pink
noise spectrum. They are known as 1/f noise and are usually the dominant noise component at
low frequencies from 1 to 10 kHz. The detector shot noise and thermal noise, on the other hand,
are independent of frequency and known to have a white noise spectrum. Table 2 gives a brief summary
and comparison of the different laser and detector noises.

Table 2. Comparison of laser and detector noises.

Type of noise Cause Feature Frequency Range

Laser excess noise Intensity fluctuation Frequency dependent 1–10 kHz

Detector thermal noise Thermal agitation of
the charge carriers

Frequency
independent 0.1–140 kHz

Detector shot noise Discrete nature of
electric charge

Frequency
independent 0.1–140 kHz

Detector excess noise Intensity fluctuation Frequency dependent 1–10 kHz

4.1.2. Quantization Noise and ADC Resolution

The demands for accuracy and precision in trace species detection present great challenges for
DAS. Therefore, high-speed and high-resolution ADC is required to recover the analogue detector
signal with low quantization noise and to reduce the laser relative intensity noise (RIN, same as excess
noise) through fast sampling. The frequency filtering feature of WMS has been widely adopted as
it could improve the SNR by modulating and demodulating the absorption signal at an elevated
frequency band. On the other hand, Lins et al. pointed out that as long as RIN is the dominating noise,
the requirements for ADC resolution in 2f -WMS and DAS setups are in fact similar [72]. As suggested
by the simulation results, when the RIN is low and sufficient ADC resolution is provided, DAS can
provide higher SNR than WMS. In this case, with the advances of modern electronics and digital signal
processing, DAS can have more advantages over WMS [73].

4.1.3. Optical Interference Fringe Noise

In a multi-element optical system with coherent light source, many flat surfaces can lead to
optical interference fringes, often referred to as optical etalons. These optical fringes often exhibit
a free-spectral-range (FSR) comparable to the linewidth of the absorbing species, so that they are
difficult to be distinguished from target absorption features.

Various means have been attempted to minimize the influence of optical etalons, including careful
optical design [74–76], mechanical dithering of optics [77–79], balanced-ratio detection schemes [80,81],
calibration-free WMS [82–84], and digital filtering techniques [85–89]. A summary of these approaches
is given in Table 3 and briefly discussed in the following.
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Table 3. Comparison of strategies to minimize interference fringe noise. AR: anti-reflective, EMD:
empirical mode decomposition.

Strategy Solutions Feature

Optical design
Wedged or AR-coated windows; Difficult to minimize etalon

in complex optical systemsOptical isolators;
Etalon immune distance

Mechanical modulation
Dithering or rotating of mirrors; Increased system complexity;

Limited detection bandwidthBrewster-plate spoiler

Balanced detection schemes Split laser beam into the sample
beam and reference beam

Difficult to replicate all optical
effects in reference path

WMS
Modulation index optimization;

SNR sacrificedUse of higher harmonics

Digital filtering technique
Wavelet transform;
Kalman filtering;
EMD

Increasing computation cost;
Parameters need to be set carefully

Optical etalons essentially arise from the constructive and destructive interferences when light
bounces back and forth between parallel surfaces, similar to the way optical cavity modes are formed.
Optical designs to avoid etalons are therefore approaches to reduce reflections and to scramble these
standing-wave modes. This includes using wedged or anti-reflective (AR) -coated windows, optical
isolators, and placing the optical elements at “etalon-immune distances” to avoid etalon effects from
optical feedback. Collimated laser beams can be intentionally diverged before passing through optical
thins and re-collimated thereafter. In addition to these passive optical designs, an active control of
the optical system can be applied to effectively reduce etalons. Mechanical modulations, such as
dithering or rotation of the mirrors and use of a Brewster-plate spoiler, are active control approaches
taken in high-performance optical systems. However, these do largely increase the system’s cost and
complexity and may limit the achievable detection bandwidth.

Certain laser devices exhibit unsuppressed cavity mode noise or fiber-coupling noise due to
imperfect optical isolation, which appear as etalons on the output scans. Balanced-ratio detection
schemes, also known as common-mode rejection schemes, are commonly employed to reduce such
optical fringes. The laser beam is split into a measurement and a reference beam, and signals from the
two detectors are fed into a balanced-ratio detection circuit that automatically cancels out the noises
commonly present in the two signals. Etalons originated from the optical path external to the laser
cannot generally be canceled in this way, since it would be difficult to achieve exactly the same beam
path other than the portion being absorbed.

Etalon fringes often appear as low-frequency noises and can therefore be suppressed through the
band-pass filtering process of WMS. On the other hand, fringe noises may add to the RAM and put
additional constraint on selecting the optimal modulation parameters. This can lead to reduced SNR
and larger uncertainties, especially since the optical alignment and etalon fringe profiles may change
over time.

Digital filtering techniques are extensively investigated in absorption signal processing, including
wavelet transform, Kalman filter, and empirical mode decomposition (EMD). These methods are
purely from a standpoint of digital signal processing and frequency-domain analysis, thus require
no additional optical or mechanical components. However, these techniques will inevitably increase
the computation complexity, and the filter parameters need to be carefully designed on the basis of
an appropriate understanding of the signal and noise characteristics. The extent of improvement that
such techniques can achieve is ultimately limited by the quality of the light signal measured, so it is
still of utmost importance to devote the best effort in designing a better optical system.
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4.2. Strategies Based On Laser Control Parameter Optimization

The absorption signal can be enhanced by optimizing a number of laser control parameters
including scanning amplitude, scan rate, modulation depth and frequency, and time delay constant of
the lock-in amplifier.

A number of researchers have discussed parameter selection criteria for the WMS system.
Werle et al. conducted a comprehensive analysis of the modulation degree so as to obtain maximum
signal amplitude [8]; a Fourier series was utilized by Uehara et al. to analyze the relationship between
modulated signals and optical penetration depth in frequency modulation [90]; Kluczyrrski et al.
theoretically studied the effect of modulation frequency [91]; Neethu et al. studied the optimization of
a number of modulation parameters in realizing a LAS oxygen sensing system [92].

Table 4 summaries the effect of different control parameters on the 2f -signal waveforms including
maximum amplitude, SNR, peak width, and peak height ratio (PHR).

Table 4. Effects of different control parameters on 2f signals. PHR: peak height ratio.

Scanning Amplitude Scanning Frequency Modulation Depth Modulation Frequency Time Constant

Maximum 2f - 1
↓

3 ↑↓ ↑↓ ↓

SNR - ↑ or ↓ ↑↓ ↓ -
Peak width ↑

2 ↑ - ↓ -
PHR ↑ ↓ - ↑ or – 4 -

1 no evident correlation, 2 increase, 3 decrease, 4 unchanged.

Due to the complex intercorrelation between various laser characteristic parameters, no explicit
mathematical expressions generally exist to describe the dependence of the WMS signal on the laser
control parameters. Therefore, the selection and optimization of these control parameters usually
rely on empirical attempts and maximization of the target signal. The laser scan range, for example,
is simply set to cover the target absorption feature and just enough non-absorption portions for baseline
fitting, without leaving excessive margin which will decrease the detection bandwidth. For WMS
in general, the modulation depth is chosen so that the WMS-2f signal at absorption line center is
maximized. It has been demonstrated that for an isolated absorption feature, the highest peak value
can be achieved by selecting the modulation depth to be 1.1 times the full-width-at-half-maximum
(FWHM) ∆ν of the absorption feature [55].

In conventional scanned-wavelength WMS, a high-frequency sinusoidal wave is superimposed on
a linear ramp of the laser injection current. As the laser tuning function can now readily be controlled
digitally, variation of this tuning waveform can bring increased flexibility to signal optimization.
Fried et al. employed a jump scanning function and dual fitting analysis to simultaneous optimize
signals from two selected absorption profiles [93]. Chen et al. modified the linear ramp function so
that the laser scanned more slowly near the line center ([94], Figure 8). The scan portion with stronger
absorption thus occupied a larger fraction of the scan, resulting in the improvement of the overall
SNR. Consequently, a factor of 1.8 improvement was observed with 2f detection, and an even higher
enhancement by a factor of 3.3 was obtained with direct absorption measurements.



Appl. Sci. 2019, 9, 2723 15 of 27

Appl. Sci. 2019, 9, x FOR PEER REVIEW 15 of 27 

 

Figure 8. Schematic illustration of the wavelength scanning function: conventional (linear) (a) and 

optimized (nonlinear) (d). The resulting spectrum waveform is shown for direct spectroscopy in (b) 

for linear scanning and (e) for nonlinear scanning as well as for WMS (second harmonic detection) in 

(c,f). Figure adapted from [94]. 

When multi-species detection is attempted by using closely spaced absorption lines accessible 

with a single laser scan, the different widths and line profiles of the target species may impose 

significantly different optimization targets according to the optimal modulation depth criteria stated 

above. Du et al. demonstrated an in situ, multi-parameter LAS sensor during a selective catalytic 

reduction (SCR) process by accessing four H2O spectral transitions and a group of NH3 lines with a 

single diode laser [95]. As can be seen in Figure 9, WMS with varied modulation amplitude (WMS-

VMA) and an optimized multispectral fitting algorithm was used to satisfy the optimization targets 

for both the H2O and the NH3 lines. 

 

Figure 9. Simulated WMS-2f signal with (a) modulation amplitude 0.065 cm−1  and 0.24 cm−1 , 

respectively; (b) wavelength modulation spectroscopy with varied modulation amplitude (WMS-

VMA). Figure adapted from [95]. 

Figure 8. Schematic illustration of the wavelength scanning function: conventional (linear) (a) and
optimized (nonlinear) (d). The resulting spectrum waveform is shown for direct spectroscopy in (b) for
linear scanning and (e) for nonlinear scanning as well as for WMS (second harmonic detection) in (c,f).
Figure adapted from [94].

When multi-species detection is attempted by using closely spaced absorption lines accessible
with a single laser scan, the different widths and line profiles of the target species may impose
significantly different optimization targets according to the optimal modulation depth criteria stated
above. Du et al. demonstrated an in situ, multi-parameter LAS sensor during a selective catalytic
reduction (SCR) process by accessing four H2O spectral transitions and a group of NH3 lines with
a single diode laser [95]. As can be seen in Figure 9, WMS with varied modulation amplitude
(WMS-VMA) and an optimized multispectral fitting algorithm was used to satisfy the optimization
targets for both the H2O and the NH3 lines.
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Figure 9. Simulated WMS-2f signal with (a) modulation amplitude 0.065 cm−1 and 0.24 cm−1,
respectively; (b) wavelength modulation spectroscopy with varied modulation amplitude (WMS-VMA).
Figure adapted from [95].

WMS-2f detection is sensitive to the curvature of the signal. When blending different spectral
features becomes more significant, absorption from the wings of adjacent lines would alter the curvature
at the target line center, so that maximizing the line center 2f magnitude of an individual transition
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no longer renders the optimum of overall signal. In such cases, the optimal modulation depth am

may largely deviate from the theoretical value of ~1.1 ∆ν. Peng et al. proposed a novel procedure for
choosing an optimal WMS modulation depth in the presence of spectral interference by defining a new
figure of merit to account for the spectral interference [96,97].

As shown in Equations (2) and (3), F and σ are defined to quantify the inverse magnitude of the
WMS-2f signal and the sensitivity to spectral interference, respectively:

F(am) =
S2 f , max

S2 f (am)
(2)

σ(am) =

∣∣∣∣∣∣∣S2 f /1 f , int f
(
am,φ

)
− S2 f /1 f (am)

S2 f /1 f (am)

∣∣∣∣∣∣∣ (3)

where S2 f is the total interference-free WMS-2f signal at the target transition line center, S2 f , max is the
maximum possible interference-free WMS-2f signal, and S2 f /1 f is the WMS-2f /1f.

Ideally, am should be chosen so that both the inverse signal magnitude F and the perturbation
from interference σ are simultaneously minimized. Such an am does not generally exist, so the strategy
is to select am, opt = argmin(C), where the cost function C = σF is now the target of optimization.
The so-obtained optimal modulation depth am, opt is indicated by the black dashed line in Figure 10 at
the minimum of C, where the value of F at this modulation depth is 1.5, indicating that 33% of the
potential SNR is sacrificed.
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Figure 10. Inverse WMS-2f signal strength (F, blue line), NH3 interference sensitivity (σ, red line),
and cost function (C, red line) vs modulation depth for a 3 ppm NH3 mixture in CH4 − air φ = 0.6
combustion exhaust at T = 600 K, P = 1 atm. The optimal modulation depth am, opt is shown in the
black/dashed line. Figure adapted from [96].

4.3. Strategies based On Signal Processing Schemes

4.3.1. Baseline Fitting for Blended Absorption Feature

As discussed above, using the AI or LM fitting algorithms to calculate the laser intensity baseline
requires proper identification of the absorption-free flanks. However, for spectra with low SNR,
distinguishing the non-absorption area using direct visual inspection (DVI) is hard. A new strategy was
proposed by Li et al. using wavelet decomposition and iteration to remove the background drift [98].
The application of wavelet transform (WT) for TDLAS signal denoising is based on finding the optimal
wavelet pairs to determine the baseline. Figure 11 shows effective nonlinear baseline correction and
denoising using discrete wavelet transform (DWT). Compared with the commonly used DVI method,
this DWT algorithm demonstrated potential for batch processing of TDLAS spectra. However, system
cost and complexity increased.
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Figure 11. Nonlinear baseline correction and denoising using discrete wavelet transform (DWT).
(a) Noisy signal with apparent baseline drift; (b) baseline drift-removed signal from (a) and noise-free
signal; (c) raw noise and wavelet-removed noise; (d) denoised signal from (a); (e) baseline drift-removed
signal from (d) and noise-free signal; (f) raw baseline and wavelet-removed baselines with different
iterations. Figure adapted from [98].

Weisberger et al. have developed a blended-feature baseline fitting method (BFBL) using a more
efficient iterative lookup table approach [99]. The baseline is estimated by coupling measured data
with simulated fractional transmission at the peaks between absorption features known as baseline
anchor points. Figure 12 illustrates the fitting procedure, and this technique was validated against
measurements in a static heated cell and a wood-fired two-stage hydronic heater. The results indicated
that it can be very useful with multiple overlapping absorption features.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 17 of 27 

 

Figure 11. Nonlinear baseline correction and denoising using discrete wavelet transform (DWT). (a) 

Noisy signal with apparent baseline drift; (b) baseline drift-removed signal from (a) and noise-free 

signal; (c) raw noise and wavelet-removed noise; (d) denoised signal from (a); (e) baseline drift-

removed signal from (d) and noise-free signal; (f) raw baseline and wavelet-removed baselines with 

different iterations. Figure adapted from [98]. 

Weisberger et al. have developed a blended-feature baseline fitting method (BFBL) using a more 

efficient iterative lookup table approach [99]. The baseline is estimated by coupling measured data 

with simulated fractional transmission at the peaks between absorption features known as baseline 

anchor points. Figure 12 illustrates the fitting procedure, and this technique was validated against 

measurements in a static heated cell and a wood-fired two-stage hydronic heater. The results 

indicated that it can be very useful with multiple overlapping absorption features. 

 

Figure 12. Flow chart for DAS baseline fitting data analysis. Figure adapted from [99]. Figure 12. Flow chart for DAS baseline fitting data analysis. Figure adapted from [99].



Appl. Sci. 2019, 9, 2723 18 of 27

4.3.2. In Situ Parameter Fitting

In Section 3, we have discussed the limitation of calibration-free WMS when it is important
to perform accurate assessments of laser characteristics. It is often assumed that the magnitude
of wavelength modulation is constant over the entire scanning range [58] and the differential
current-to-wavelength tuning behavior is linear for small current variations around a bias point [100,101].
Such assumption may nevertheless introduce different degrees of uncertainty under different circumstances.
Zhao et al. presented an improved methodology for assessing the wavelength response of a DFB laser by
using a high-order empirical formula [102].

Although the laser characterization process is not difficult by itself, the task of accurately
tracking its variations in real time is nontrivial. More recently, Upadhyay et al. have proposed a new
calibration-free 2f -WMS technique to measure gas concentration and pressure without the need for laser
pre-characterization [103–106]. Similar to the idea of DAS baseline fitting, the harmonic backgrounds,
i.e., RAMs, are obtained by interpolating the non-absorbing wings of the X and Y components of the
demodulated 1f, 2f, and 3f signals (Figure 13). The intensity modulation indices in can then be obtained
from the RAMs, whereas the intensity–frequency modulation phase shifts ϕn can be obtained by taking
the inverse tangent of the ratio of X and Ys.

The in situ and real-time characterization of relevant laser parameters ensures that the measurements
are not affected by rapid non-absorbing laser intensity variations such as those due to light scattering,
beam steering, vibrations, and window fouling or by slow variation effects such as temperature changes,
calibration drift, and aging of the devices. However, even if it has been demonstrated that higher-order
harmonic signals would have reduced spectral interference from neighboring lines, the requirement for
non-absorbing baseline portions for the fitting still puts limitations to the applicable scope of this method.
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Figure 13. The 1650 nm DFB laser was modulated at m = 2.2, and the transmitted light through a 1%
CH4 sample at 1 bar pressure was demodulated by a lock-in amplifier (LIA) to obtain (a) 1f X-component
along I H1, (b) 1f Y-component orthogonal to I H1, (c) magnitude of 1f Signal, (d) 2f X-component along
I H2, (e) 2f Y-component orthogonal to I H2, (f) magnitude of 2f Signal, (g) 3f X-component along I H3,
(h) 3f Y-component orthogonal to I H3, and (i) magnitude of 3f Signal. Figure adapted from [104].
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4.3.3. Harmonic Wavelet Analysis of Modulated TDLAS Signals

Calibration-free WMS is essentially a signal processing technique to extract information about
molecular absorption from a noisy environment with higher signal fidelity. In view of the unsolved issues
arising from potential uncertainties in laser characteristic parameters, spectroscopic constants, as well as
requirements for digital filter design in the digital lock-in amplification process [107–109], new signal
analysis methodologies have been proposed to better analyze the time-dependent signal harmonics.

Duan et al. have employed signal processing techniques based on wavelet analysis of modulated
signals obtained from TDLAS and demonstrated that wavelets have the potential to enable the detection
of signal harmonics [110]. In addition to a pure frequency domain analysis, windowed Fourier analysis
can provide information on the time dependence of the frequency components but will suffer from
substantial inaccuracy when the window width decreases. As an alternative, wavelet analyses can
provide more accurate information on this time-dependent evolution of different frequency components
and have become popular in recent years.

Figure 14 shows the comparison of wavelet analyses of level 8, 9, and 10 with analytical predictions
from a Voigt absorption profile. Each level corresponds to a specific value related to scaling in DWT.
As the level increases, the frequency resolution of the wavelet analysis increases. With the shown
correlation between the two, it is apparent that wavelet analysis performed well in extracting the
1f and 2f harmonics. This work demonstrated the potential of wavelet analyses in yielding a new
methodology for the improvement of the conventional TDLAS system.
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5. Conclusions and Future Outlook

Efforts in improving LAS sensor performance suitable for practical environments have never
stopped attracting the attention of researchers and developers. By overviewing the achievements
of the developed sensors, particularly with sensor deployment in laboratory studies, industrial
processes, and engine diagnostics, it can be understood that different measurement applications
pose largely different demands in terms of detection limits and bandwidths. In this review, we have
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attempted to establish a logical development from a system design perspective, for the purpose
of better understanding measurement needs and providing guidelines and insights for designing
a laser absorption sensing system. Understanding the different sources and processes of noise is the
prerequisite for proposing appropriate strategies for SNR amelioration. Under typical measurement
conditions, analogue and digital noise from opto-electronic devices, optical noise from the optical
system, and excess noise from the environment are the most relevant disturbances that contribute to
signal deterioration. In addition to designing a better optical system, strategies of noise reduction
and design optimization play important roles in improving a sensor performance and achieving
better adaptation to various environments. This can be done through either optimization of laser
control and tuning parameters or various algorithms for data processing, such as baseline extraction,
in situ laser characterization, and wavelet analysis. It is realized that the need for sensing technology
development is highly fragmented and demand-driven. While each measurement strategy has its
limitations and constraints in face of the challenges from complex environments, much needs to be
done from an engineering design perspective and to profoundly comprehend the underlying scientific
fundamentals in terms of optics, spectroscopy, and signal processing.
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Nomenclature

LAS Laser absorption spectroscopy
DAS Diode absorption spectroscopy
WMS Wavelength modulation spectroscopy
TDLAS Tunable diode laser absorption spectroscopy
LOS Line-of-sight
SNR Signal-to-noise ratio
It [W/cm2] Transmitted light intensity
I0 [W/cm2] Incident light intensity
αν Absorbance
kν [1/cm] Spectral absorption coefficient
L [cm] Absorption pathlength
n [molecule/cm3] Number density of the absorbing species
σν [cm2/molecule] Absorption cross- section
S [cm−2/atm] Absorption linestrength
φν [cm] Frequency-dependent lineshape function
P [atm] Pressure
Xi Mole fraction of the absorbing species i
ν Light frequency
NEA Noise equivalent absorbance
DFBs Distributed feedback lasers
VCSELs Vertical-cavity surface-emitting lasers
FDML Fourier-domain mode locked
QCLs Quantum cascade lasers
ICLs Interband cascade lasers
LM Levenberg –Marquardt
AI Advanced integrative
HITRAN High Resolution Transmission
HITEMP High Temperature
R2f 2f peak ratio
T Temperature
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X0 Nominal concentration
a Modulation depth
i1, 1st-order laser intensity modulation indices
i2 2nd-order laser intensity modulation indices
ϕ1 1st-order laser intensity–frequency modulation phase shifts
ϕ2 2nd-order laser intensity-frequency modulation phase shifts
ν0 Specific center frequency
ν(t) Laser wavelength
α(t) Simulated absorbance
MI0(t) No-absorbing intensity
SIt(t) Measured transmitted intensity
SIt(t) Simulated transmitted intensity
fm Modulation frequency
m Modulation index(
Sn f /1 f

)
M

Measured 1f -normalized nf signal(
Sn f /1 f

)
s

Simulated 1f -normalized nf signal
SSE Sum-of-squared error
RAM Residual amplitude modulation
Xn f Measured X component of nf signal
Yn f Measured Y component of nf signal
LAT Laser absorption tomography
ADC Analogue-to-digital conversion
RIN Relative intensity noise
EMD Empirical mode decomposition
PHR Peak height ratio
∆ν Full-width-at-half-maximum
FWHM Full-width-at-half-maximum
SCR Selective catalytic reduction
WMS-VMA Wavelength modulation spectroscopy with varied modulation amplitude
am Modulation depth
F Inverse WMS-2f signal strength
σ Interference sensitivity
C Cost function
S2 f Interference-free WMS-2f signal at the target transition line center
S2 f , max Maximum possible interference-free WMS-2f signal
am, opt Optimal modulation depth
DVI Direct visual inspection
WT Wavelet transform
DWT Discrete wavelet transform
BFBL Blended-feature baseline fitting method
in nth-order laser intensity modulation indices
ϕn nth-order laser intensity–frequency modulation phase shifts
LIA Lock-in amplifier
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