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Abstract: Bone tissue is a material with a complex structure and mechanical properties. Diseases
or even normal repetitive loads may cause microfractures to appear in the bone structure, leading
to a deterioration of its properties. A better understanding of this phenomenon will lead to better
predictions of bone fracture or bone-implant performance. In this work, the model proposed by
Frémond and Nedjar in 1996 (initially for concrete structures) is numerically analyzed and compared
against a bone specific mechanical model proposed by García et al. in 2009. The objective is to
evaluate both models implemented with a finite element method. This will allow us to determine if
the modified Frémond–Nedjar model is adequate for this purpose. We show that, in one dimension,
both models show similar results, reproducing the qualitative behaviour of bone subjected to typical
engineering tests. In particular, the Frémond–Nedjar model with the introduced modifications shows
good agreement with experimental data. Finally, some two-dimensional results are also provided for
the Frémond–Nedjar model to show its behaviour in the simulation of a real tensile test.

Keywords: cortical bone; damage; finite elements; numerical results

1. Introduction

Damage models arise in order to describe how mechanical properties of materials degrade over
time. This degradation can be caused both because of the loading it is subjected to, and due to external
causes (such as crack formation due to thermal shock or chemical attack). These models have been
deeply studied for structures, usually concrete structures, where the progressive wear of the materials
can be critical to its integrity. In this field, works about damage exist since the decade of 1980 [1].
A later work from Frémond and Nedjar in 1996 [2] became a reference for new concrete damage models
based on the continuum elastoplastic damage approach [3]. In this approach, the principle of virtual
power is modified, including the damage in the term of the power of the internal forces. Also, damage
is represented by a scalar field.

The study of engineering concepts in the field of biology and medicine is more recent, but it is
growing fast. In the particular case of bone tissue, biological aspects such as bone remodelling were
studied also since the decade of 1980 [4]. The model proposed by Weinans, Huiskes and Grootenboer
in 1992 [5] started the possibility of simulating this effect numerically, and led to a large number
of contributions in this field. The effect of damage described previously can be seen in bones too.
In bone tissue, both loading and external causes (now related to illness such as osteoporosis) produce
again a growing deterioration of its elastic properties [6]. The first studies of damage were focused
on cumulative damage caused by cyclic loading [7,8]. This approach allows for fatigue estimations
of the number of cycles that a probe can withstand, but it is not effective for its implementation in
numerical simulations. In 1999, Fondrk, Bahniuk and Davy proposed a model that reproduced the
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tensile behaviour of cortical bone [9]; however, it is limited to one-dimensional simulations, obtaining
bending results by applying beam theory assumptions. A recent work from and García et al. in
2009 [10] introduced rheological bone specific models that reproduced uniaxial and cyclic tests and
could be extended to three dimensional simulations. Other works about bone damage can be seen
in [11–14].

In this work, the Frémond–Nedjar model is compared against the García et al. model in order to
assess its capabilities to reproduce bone tissue behaviour. Indeed, one of the main novelties of this
work is its application in the simulation of the bone damage process. The selection and the interest of
analysing the Frémond-Nejdar model relies on the fact that its formulated as a set of partial differential
equations (in particular a subdifferential inclusion) that couples the damage evolution with the well
known linear elasticity model. This allows for its numerical analysis and its implementation in a finite
element simulation. Also, it is not restricted to one dimensional simulations, like the previously
mentioned Fondrk, Bahniuk and Davy model.

Furthermore, since the formulation is similar to the Weinans–Huiskes–Grootenboer model of bone
remodelling, it would allow for a direct coupling of these models, a future objective of the authors.
Although an existing work presents a coupling between damage and a remodelling model [15], it is
based on a simple remodelling rule and the numerical analysis is not performed.

The paper is structured as follows. In Section 2, the formulations of the studied models are
presented, then, in Section 3, the implementation and results obtained are shown and discussed,
followed by some conclusions in Section 4.

2. Damage Models

In this paper, as mentioned before, two damage models for numerical simulations are analyzed:
the Frémond–Nedjar model, first developed for concrete structures, and the model proposed by García
et al. (bone specific). The particular formulation of each model is described in the following subsections.
Special emphasis is placed on the Frémond–Nedjar model, for which the numerical analysis of the
algorithm proposed for its resolution is shown.

2.1. Frémond–Nedjar Model

The damage model proposed by Frémond and Nedjar in 1996 considers damage as an unknown
of the problem (β) that varies between 1 (undamaged material) and 0 (completely damaged).
This counter-intuitive definition accounts for the fact that the variable multiplies the mechanical
properties of the material (the elastic modulus in the one-dimensional case) in such a way that, in a
damaged material, they will be affected by this variable.

As mentioned before, this model was presented for concrete structures, so some modifications to
include bone behaviour were necessary. Since bone tissue is a living material that can heal over time,
the assumption that this variable cannot recover, β̇ < 0, is no longer true and it is removed from the
initial formulation.

The mathematical formulation of this model with the modifications to account for bone properties
is defined in what follows.

In [2] the damage source function φ was defined by

φ(ε(u), β) = λd

(
1− β

β

)
− λu|ε(u)|2 + λw,

where λd, λu and λw are constitutive parameters. The second term becomes unmanageable
mathematically when strains are very large, but then the whole model becomes inadequate, so we
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truncate the term as follows. Given q∗ > 0, a sufficiently large strain energy truncation constant, let Ψq∗

be given by

Ψq∗(τ) =

{
|τ|2 if |τ|2 ≤ q∗,
q∗ otherwise,

where |τ|2 = τijτij, and here and below, i, j = 1, . . . , d (d is the dimension of the problem), and
a repeated index indicates summation. Therefore, we use the truncated damage source function:

φ(ε(u), β) = λd

(
1− β

β

)
− λuΨq∗(ε(u)) + λw. (1)

Finally, the mechanical problem is written as follows.
Problem P. Find the displacement field u = (ui)

d
i=1 : Ω × [0, T] → Rd and the damage field

β : Ω× [0, T]→ R such that

σ = 2 β µε(u) + β λDiv (u)I in Ω× (0, T), (2)

−Div σ = f 0 in Ω× (0, T), (3)

β̇− κ∗∆β + ∂I[β∗ ,1](β) 3 φ(ε(u), β) in Ω× (0, T), (4)

u = 0 on ΓD × (0, T), (5)
∂β

∂ν
= 0 on Γ× (0, T), (6)

σν = g on ΓN × (0, T), (7)

β(x, 0) = β0(x) in Ω, (8)

where Ω represents the bone, whose boundary Γ is assumed to be decomposed into two parts ΓD and
ΓN such that Γ = ΓD ∪ ΓN , with meas(ΓD) > 0, [0, T], for T > 0, denotes the time interval of interest,
and let Div be the divergence of tensor-valued functions. λ and µ are the classical Lame’s coefficients
and κ∗ > 0 is a damage diffusion coefficient. Moreover, β0 is an initial condition for the damage field,
f 0 and g represent volume and traction forces, respectively, and we include the subdifferential of the
indicator function I[β∗ ,1] into (4) to ensure that the damage function belongs to the interval [β∗, 1]. Here,
β∗ > 0 is a positive constant, assumed small, and it is introduced for mathematical reasons. In any
case, when damage becomes zero, the material is dense with microcracks and modelling it as elastic
ceases to make sense (see [16] for details). Finally, we note that damage function φ is given in (1),
where constants λd, λu and λw are constitutive parameters.

Now, in order to obtain the variational formulation of Problem P, let Y = L2(Ω), H = [L2(Ω)]d

and Q = [L2(Ω)]d×d and denote by (·, ·)Y, (·, ·)H and (·, ·)Q the respective scalar products in these
spaces. Moreover, let us define the variational space V as follows,

V = {v ∈ [H1(Ω)]d ; v = 0 on ΓD},

with the scalar product (·, ·)V , and norm ‖ · ‖V .
Finally, let us define the convex set of admissible damage functions,

K = {ζ ∈ H1(Ω) ; β∗ ≤ ζ ≤ 1 a.e. in Ω}.

By using Green’s formula and boundary conditions (5)–(7), we write the variational formulation
of problem P.



Appl. Sci. 2019, 9, 2710 4 of 12

Problem VP. Find the displacement field u : [0, T]→ V and the damage field β : [0, T]→ K such that
β(0) = β0 and, for a.e. t ∈ (0, T), and for all v ∈ V and ζ ∈ K,

c(β(t); u(t), v) = ( f (t), v)V , (9)

(β̇(t), ζ − β(t))Y + κ∗(∇β(t),∇(ζ − β(t)))H ≥ (φ(ε(u(t)), β(t)), ζ − β(t))Y , (10)

where the bilinear functional c : K×V ×V → R is defined as follows, for all v, w ∈ V and ζ ∈ K,

c(ζ; v, w) =
∫

Ω
ζ (2µε(v) : ε(w) + λdiv v div w) dx.

The operator div represents now the divergence of vector-valued functions, the element f (t) ∈ V′

(as usual, V′ denotes the dual space of V) is obtained from Riesz’ theorem as

( f (t), w)V = ( f 0(t), w)H + (g(t), w)[L2(ΓN)]d ∀w ∈ V,

and we recall that damage function φ is defined in (1).
We now consider a fully discrete approximation of problem VP. To solve it numerically, a finite

element scheme is used. This is done in two steps. First, we assume that the domain Ω is polyhedral
and we denote by T h a regular triangulation in the sense of [17]. Thus, we construct the finite
dimensional spaces Vh ⊂ V and Eh ⊂ H1(Ω) given by

Vh = {vh ∈ [C(Ω)]d ; vh
|Tr ∈ [P1(Tr)]d ∀Tr ∈ T h, vh = 0 on ΓD},

Eh = {ξh ∈ C(Ω) ; ξh
|Tr ∈ P1(Tr) ∀Tr ∈ T h},

where P1(Tr) represents the space of polynomials of degree less or equal to one in the element Tr, i.e.,
the finite element spaces Vh and Eh are composed of continuous and piecewise affine functions. Here,
h > 0 denotes the spatial discretization parameter. Moreover, let Kh = K ∩ Eh and assume that the
discrete initial condition, denoted by βh

0, is given by

βh
0 = Phβ0,

where Ph is the classical finite element interpolation operator over Eh (see, e.g., [17]).
Secondly, we consider a partition of the time interval [0, T], denoted by 0 = t0 < t1 < · · · <

tN = T. In this case, we use a uniform partition with step size k = T/N and nodes tn = n k for
n = 0, 1, . . . , N.

Therefore, using a combination of both implicit and explicit Euler schemes, the fully discrete
approximations are considered as follows.

Problem VPhk. Find the discrete displacement field uhk = {uhk
n }N

n=0 ⊂ Vh and the discrete damage
field βhk = {βhk

n }N
n=0 ⊂ Kh such that βhk

0 = βh
0 and, for all vh ∈ Vh, ζh ∈ Kh,

c(βhk
n ; uhk

n , vh) = ( f n, vh)V n = 0, 1, . . . , N, (11)

(βhk
n , ζh − βhk

n )Y + k κ∗(∇βhk
n ,∇(ζh − βhk

n ))H ≥ (βhk
n−1, ζh − βhk

n )Y

+k
(

φ(ε(uhk
n−1), βhk

n−1), ζh − βhk
n

)
Y

n = 1, . . . , N. (12)

We remark that in problem VPhk the “initial condition” uhk
0 for the displacement field must be

calculated because it is not previously given. Thus, we take it as the solution to the corresponding
discrete problem:

c(βh
0; uhk

0 , vh) = ( f 0, vh)V ∀vh ∈ Vh.
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We have the following theorem which states the linear convergence of these approximations
under suitable additional regularity conditions.

Theorem 1. Assume that problem VP has a unique solution (u, β) with the following regularity:

u ∈ C([0, T]; [H2(Ω)]d) ∩ C1([0, T]; V),
β ∈ H2(0, T; Y) ∩ H1(0, T; H1(Ω)) ∩ C([0, T]; H2(Ω)),

and let (uhk, βhk) be the solution to Problem VPhk. Then, it follows that the numerical approximation is linearly
convergent; that is, there exists a positive constant C, independent of the discretization parameters h and k,
such that

max
0≤n≤N

{
‖un − uhk

n ‖V + ‖βn − βhk
n ‖Y

}
≤ C(h + k).

Proof. First, proceeding as in [16], we have the following estimates for the damage field, for all
ζh = {ζh

j }n
j=0 ⊂ Kh,

‖βn − βhk
n ‖2

Y + k
n

∑
j=1
‖∇(βn − βhk

n )‖2
Y ≤ C

(
‖β0 − βh

0‖2
Y + ‖β1 − ζh

1‖2
Y + ‖βn − ζh

n‖2
Y

+k
n

∑
j=1
‖β j−1 − βhk

j−1‖2
Y + k

n

∑
j=1
‖uj − uhk

j ‖2
V + k

n

∑
j=1
‖β j − ζh

j ‖2
H1(Ω) + k2 + k

n

∑
j=1
‖δβ j − β̇ j‖2

Y

+k
n

∑
j=1
‖φ(ε(uj), β j)− δβ j + κ∗∆β j‖Y ‖β j − ζh

j ‖Y + k−1
n−1

∑
j=1
‖β j+1 − ζh

j+1 − (β j − ζ
j
j)‖2

Y

)
,

where we used the notation δβ j = (β j − β j−1)/k and the regularity of the continuous solution β.
Now, we obtain the estimates for the displacement fields. Subtracting the variational Equation (9)

at time tn for v = vh ∈ Vh ⊂ V and the discrete variational Equation (11) we have

c(βn; un, vh)− c(βhk
n ; uhk

n , vh) ∀vh ∈ Vh,

so it follows that, for all vh ∈ Vh,

c(βn; un, un − uhk
n )− c(βhk

n ; uhk
n , un − uhk

n ) = c(βn; un, un − vh)− c(βhk
n ; uhk

n , un − vh).

Taking into account that

c(βn; un, un − uhk
n )− c(βhk

n ; uhk
n , un − uhk

n ) = c(βhk
n ; un − uhk

n , un − uhk
n ) + c(βn − βhk

n ; un, un − uhk
n ),

c(βhk
n ; un − uhk

n , un − uhk
n ) ≥ C‖un − uhk

n ‖2
V ,

using the fact that βhk
n ∈ Kh (and so, βhk

n ≥ β∗) and the regularity u ∈ C([0, T]; [H2(Ω)]d) we have

‖un − uhk
n ‖2

V ≤ C
(
‖βn − βhk

n ‖2
Y + ‖un − vh‖2

V

)
∀vh ∈ Vh.

Therefore, combining the previous estimates of both damage and displacement fields we
conclude that

‖βn − βhk
n ‖2

Y + ‖un − uhk
n ‖2

V ≤ C
(
‖β0 − βh

0‖2
Y + ‖β1 − ζh

1‖2
Y + ‖βn − ζh

n‖2
Y + k

n

∑
j=1
‖β j−1 − βhk

j−1‖2
Y

+k
n

∑
j=1
‖uj − uhk

j ‖2
V + k

n

∑
j=1
‖β j − ζh

j ‖2
H1(Ω) + k2 + k

n

∑
j=1
‖δβ j − β̇ j‖2

Y + ‖un − vh‖2
V

+k
n

∑
j=1
‖φ(ε(uj), β j)− δβ j + κ∗∆β j‖Y ‖β j − ζh

j ‖Y + k−1
n−1

∑
j=1
‖β j+1 − ζh

j+1 − (β j − ζ
j
j)‖2

Y

)
.
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Finally, keeping in mind that

k−1
n−1

∑
j=1
‖β j+1 − ζh

j+1 − (β j − ζ
j
j)‖2

Y ≤ Ch2‖β‖2
H1(0,T;H1(Ω)),

using the well-known approximation properties by finite elements (see [17]) and a discrete version of
Gronwall’s inequality, we obtain the desired linear convergence.

The fully discrete scheme provided in problem VPhk has been solved using a penalty-duality
algorithm, related to Uzawa’s algorithm, for the numerical resolution of the discrete variational
inequality. The discrete displacements have been obtained solving the discrete linear variational
equation with the classical conjugate gradient method. We note that a similar scheme has also been
employed for the numerical approximation of dynamic contact problems (see, for example, [16]).
Moreover, the resulting algorithm has been implemented within the well-known code MATLAB in
a 3.3 GHz PC (with 16 Gb of RAM memory), and a typical 1D run with parameters h = k = 102 took
about 1.54 s of CPU time.

In order to show the numerical convergence of the algorithm we solve Problem P with the
following parameters:

T = 2, Ω = (0, 1), ΓD = {0}, ΓN = {1}, g = 0,
λ = 0, µ = 1.348× 1010, κ∗ = 0.5, β∗ = 0.01,
q∗ = 105, λd = 17, λu = 4.2× 105, λw = 0,

with the initial condition:
β0(x) = 1 for all x ∈ (0, 1),

and the volumetric force:

f 0(x, t) =

{
90× 106 · t if t < 1,

90× 106 if t ≥ 1.

The numerical errors are given by

Ehk = max
0≤n≤N

{
‖un − uhk

n ‖V + ‖βn − βhk
n ‖Y

}
,

considering as “exact solution” (un, βn) the one obtained for h = 2−12 and k = 10−5. The errors
(multiplied by 100), obtained for different discretizations, are shown in Table 1 and depicted in Figure 1
against h + k. As shown, the linear convergence of the algorithm stated in Theorem 1 seems to
be achieved.
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Table 1. Numerical errors (×100) for some discretization parameters.

h ↓ k → 0.1 0.01 0.001 0.0001

2−2 13.5490 13.5613 13.561268 13.561268
2−3 6.6596 6.6679 6.667863 6.667863
2−4 3.3080 3.3054 3.305386 3.305386
2−5 1.6641 1.6457 1.645661 1.645661
2−6 0.8460 0.8210 0.821036 0.821036
2−7 0.4370 0.4099 0.409942 0.409942
2−8 0.2328 0.2046 0.204565 0.204565
2−9 0.1315 0.1017 0.101652 0.101653
2−10 0.0822 0.0496 0.049597 0.049596

2.2. García et al. Model

The other model examined is the one proposed by García et al. [10,18]. It consists of a rheological
model developed specifically for cortical bone, to reproduce the macroscopical phenomenon observed
in this tissue. The model is written using several internal variables for damage and plastic strain,
as well as laws to describe the evolution of these internal variables.

In [10], several models are presented. For the present study the rate independent model is chosen,
since it allows for a more immediate comparison. The rheological model is composed of an elastic
spring in series with the damageable part, which consists of a secondary spring, whose elasticity varies
with damage, and a friction element that determines the plasticity threshold.

From this rheological model a free energy potential is obtained, which is convex and nonsmooth:

Ψ(ε, εp, D) =





1
2 E0 (ε− εp)2 + 1

2 E0
1− D

D
εp2 + I[0,1](D) if D > 0,

1
2 E0 ε2 + I{0}(ε

p) if D = 0,
(13)

and the state laws of the material can be derived from this potential. The details of this derivation can
be found in [10], and we omit them for the sake of clarity in the presentation.

Regarding the García et al. model, the algorithm they developed to solve their model was used.
Again, we refer to [10] for more details about its implementation. It is based on the combination of the
classical finite element method with a Newton integration scheme and a projection operator. The latter
one is used to satisfy the criterion defined for the internal variables.

3. Numerical Results and Discussion

3.1. Comparison in a One-Dimensional Problem

To compare the performance of the models presented in the previous section, a one-dimensional
version of both was implemented. To test the models, a typical tensile test was reproduced, since there
is experimental data in the literature to evaluate the performance [18]. The one-dimensional model
represents a bone fixed on one end and with an increasing displacement imposed on the other end.
Stress was computed in postprocessing once the deformation was obtained.

First, we solve the Frémond–Nedjar model with the following data:

T = 2, Ω = (0, 1), ΓD = {0, 1}, ΓN = ∅, f 0 = 0,
g = 0, λ = 0, µ = 1.348× 1010, κ∗ = 0.5, β∗ = 0.01,
q∗ = 105, λd = 17, λu = 4.2× 105, λw = 0,

and the initial condition:
β0(x) = 1 for all x ∈ (0, 1).
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That is, at initial time we assumed that the bone was completely healed. Moreover, since no
mechanical forces were applied, the deformation is produced defining an imposed displacement at the
right corner as,

u(1, t) = 5× 10−3 · t for all t ∈ [0, 2].

We note that the modifications needed to include this case into problem P were really
straightforward, so the analysis performed in the previous section could be extended easily.

Using the discretization parameters k = 0.01 and h = 0.05 in Figure 2 (up) the stress–strain curve
obtained with the Frémond–Nedjar model is shown. As it can be seen in the evolution of the damage
variable (down), the mechanical properties of the bone degrade as the strain increases, leading to the
“plastic” region which corresponds with the damage regime of the stress–strain curve.
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probes in uniaxial tests by on middle section.175

Figure 2. Stress–strain curve obtained with the Frémond–Nedjar model in a tensile test (up) and
evolution of the damage variable in the tensile test (down).
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Secondly, the García et al. model was solved, so in Figure 3 the shape of the stress–strain curve
seen before is reproduced again with the rheological model.
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Figure 3. Stress–strain curve obtained with the García et al. model in a tensile test.

Finally, both models were compared with experimental data obtained from [18]. Figure 4
shows the stress–strain curves obtained from both models against the experimental data (black dots).
Both models show good agreement with the experimental results, with small differences in the linear
part of the curve and the beginning of the damage range. The Frémond–Nedjar model shows better
agreement in the linear part, but the curvature of the damage range fits worse than the rheological
model. However, these small differences were not significant, since mechanical properties vary greatly
from bone to bone, making very accurate fittings not useful.
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In any case, both models were capable of reproducing the qualitative characteristics of bone
mechanics. In particular, the modified Frémond–Nedjar model shows its capability to be used to
model bone tissue in spite of it being proposed to model concrete structures.

3.2. A Two-Dimensional Problem Solved Using Frémond–Nedjar Model

Now, we consider a two-dimensional case to simulate a more realistic setting. Thus, the bone
occupied a two-dimensional domain Ω, which was assumed fixed on its left part ΓD (the whole part
clamped on the vertical direction and its lower point also in the horizontal one), and subjected to the
action of a surface force on its right part ΓN (see Figure 5).

The following data have been used in this example:

T = 5, f 0 = 0, g = (5, 0), λ = 21.1× 1010, µ = 24.61× 1010, κ∗ = 1, β∗ = 0.01,
q∗ = 105, λd = 0.01, λu = 15, λw = −0.0001,

and the initial condition:
β0(x, y) = 1 for all (x, y) ∈ Ω.

That is, again at initial time we assumed that the bone was completely healed.Version June 29, 2019 submitted to Appl. Sci. 11 of 13
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Using the time discretization parameter k = 0.1 and the finite element mesh shown in Figure 5,
the damage field at final time is plotted over the deformed configuration in Figure 6. As expected,
the most damaged areas concentrated in the middle of the bone due to the applied force and the
clamping conditions.
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Finally, in Figure 7 the stress field is shown at final time over the deformed configuration. We note
that now the highest stressed areas concentrated in the middle part of the bone. The concentration of
the damage and stress in the middle of the sample agree with the observed fracture of the real probes
in uniaxial tests by on middle section.
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4. Conclusions

In this work, two ways of modelling damage in cortical bone were studied. The first one was
a modification of a well-known damage model for concrete structures, never used for bone tissue.
The second one was developed specifically for bone damage and based on a rheological model.
One-dimensional simulations were performed to compare both models, reproducing a classical tensile
test. Both models show similar solutions and a good agreement with experimental data. Moreover,
a two-dimensional example was also considered using the Frémond–Nedjar model to show the
behaviour of its solution in a more real situation. The advantage of the use of the Frémond–Nedjar
model relies in its formulation, which makes it easier to couple with bone remodelling models, and
it allows for a formal numerical analysis. The number of parameters required for this model is also
reduced with respect to the García et al. model. These results open the possibility of using this model
in bone tissue simulations.
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