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Featured Application: Our method is applied to the automatic detection of the fibre of preserved
Szechuan pickle. This method can be extended to the detection of non-salient contours and
provide ideas for the detection of special contours.

Abstract: Peeling fibre is an indispensable process in the production of preserved Szechuan pickle,
the accuracy of which can significantly influence the quality of the products, and thus the contour
method of fibre detection, as a core algorithm of the automatic peeling device, is studied. The fibre
contour is a kind of non-salient contour, characterized by big intra-class differences and small
inter-class differences, meaning that the feature of the contour is not discriminative. The method
called dilated-holistically-nested edge detection (Dilated-HED) is proposed to detect the fibre contour,
which is built based on the HED network and dilated convolution. The experimental results for our
dataset show that the Pixel Accuracy (PA) is 99.52% and the Mean Intersection over Union (MIoU) is
49.99%, achieving state-of-the-art performance.

Keywords: fibre of preserved Szechuan pickle; contour detection; dilated convolutions; HED

1. Introduction

The production of preserved Szechuan pickle includes peeling fibre, cleaning, cutting and so on.
The cleaning and cutting processes can be easily and efficiently implemented with automatic devices,
but peeling is always done manually, which limits the yield and quality of preserved Szechuan pickle.
An automatic peeling device is needed to effectively solve this problem. Contour detection, as an
important part of the device, is a necessary process to identify the location of fibre and guide the
cutting tool.

In this paper, we address the problem of detecting contour in the fibre of preserved Szechuan
pickle. The preserved Szechuan pickles consist of fibre, flesh and peel, as shown in Figure 1. The fibre
of preserved Szechuan pickle is inedible, while the flesh can be eaten as a dish. In the productive
process, the existence of fibre is not allowed and it is necessary to peel off the fibre.

By analyzing the section of the preserved Szechuan pickle stem, the contour of the preserved
Szechuan pickle can be seen as one kind of non-salient contour. It is unsmoothed, irregular and the
gray distinction between the fibre and flesh is small. The characteristics are not obvious enough and
there is a large difference between individuals. The contour we studied in this paper is non-salient,
which means that it is difficult to distinguish the contour from the background in texture, color and
other aspects. This special contour also puts forward higher requirements for detection.
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Figure 1. (a) Picture of a section of preserved Szechuan pickle; (b)the region within the green line is 

flesh, and the region surrounded by the blue and green line is fibre. 
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Figure 1. (a) Picture of a section of preserved Szechuan pickle; (b)the region within the green line is
flesh, and the region surrounded by the blue and green line is fibre.

Contour detection has broad application prospects and is an important part of object segmentation,
target detection, recognition and tracking [1]. There is a trend of using convolutional networks to detect
contour since convolution neural networks show a strong capability to learn high-level representations
of images. The effective integration of these methods and machines has promoted great developments
in detection, such as the fully convolutional network (FCN) [2], holistically-nested edge detection
(HED) [3], richer convolutional features for edge detection (RCF) [4] and so on. The features of the
contour have the characteristics of large intra-class differences and small differences between classes.
The general contour detection method has limited ability for these features. At present, there is little
research into non-salient contour, but it is also one of the necessary technical means for production.

For this contour, we improve the structure of the HED network and use the output of each stage
effectively. Our method automatically learns rich hierarchical representations and is able to make
multi-scale predictions. We use dilated convolutions [5] to increase the receptive field. It is useful
to reduce the loss of information and enhance the acquisition of spatial hierarchical information to
improve the detection effect of the non-salient contours. In a complex background, our method can
detect the region of contour. Finally, the Pixel Accuracy (PA) of our method [2] is 99.52% and the mean
intersection over union (MIoU) [2] is 49.99%. Compared with the HED and RCF, the PA of our results
increased by 3.80% and 9.61%, and the MIoU increased by 1.91% and 4.83% respectively.

2. Related Work

Contour detection has broad application prospects in computer vision, medical image and
industrial production. At present, the main detection methods include the shallow feature-based
method and deep feature-based method.

Shallow feature-based methods can be divided into edge-based, pixel-based and local region-based
methods. Edge-based approaches are based on contour related edges or curves provided by edge
detectors or human prior experience, aiming to determine whether they are contained in a certain
contour [1]. Traditional operators in edge detection are widely used for high efficiency and strong
applicability, such as Sobel, Laplace and Canny. Sobel [6] is a typical edge detection operator based
on first derivative. Because it introduces a local average operation and has a smooth effect on
noise and can eliminate the influence of noise very well. Laplace [7] is an isotropic operator and a
second-order differential operator, which responds more strongly to isolated pixels than to edges or
lines, so it is only suitable for noiseless images. Canny [8,9] is a multi-stage optimization operator with
filtering, enhancement and detection. Its function is better than the previous examples. In pixel-based
approaches, features are constructed and then employed to determine whether each pixel of the image
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belongs to a contour [1]. The following three methods are pixel-based contour detection methods.
Pb [10] is a probabilistic detector that combines discontinuity features with other gradient features,
including color and texture gradients. Sparse code gradient (SCG) features can automatically learn
from image data through sparse coding, thus minimizing human involvement [1,11]. In view of this
point, an improved normalized cuts algorithm called multiscale combinatorial grouping (MCG) is
proposed, providing a 20-fold increase in speed to the eigenvector computation [1,12]. Regarding
contours as boundaries of interesting regions, region-based approaches take advantage of internal
information of the regions to enhance their effectiveness and robustness [1]. The oriented watershed
transform (OWT) was proposed by Jones et al. [13] and can form initial regions for the construction of
an ultrametric contour map (UCM) [1,14,15], which also belongs to the region-based approaches.

Convolutional neural networks can extract deep features, which refer to the high-level
representation of images. We will detail the method based on a convolutional neural network
that is the most effective and suitable for a large number of samples. Deep convolutional neural
networks (DCNNs) have recently shown impressive performance in various tasks such as classification,
image and video detection, and segmentation [1]. AlexNet [16] is designed by Hinton and Alex
Krizhevsky and it uses a GPU to speed up operations. ReLU, Dropout and LRN have been successfully
applied in CNN for the first time. VGG net (Visual Geometry Group Network) [17] is a deep convolution
neural network, which has 16 layers or 19 layers. In the structure, 3 x 3 filters which can effectively
extract image features were used completely. The filters of GoogLeNet [18] have multiple scales, which
solve the limitation of depth and width by stacking modules together. Jonathan Long et al. proposed
FCN [2] for image segmentation. It converts the fully-connected layers of VGG into convolutional ones
and attempts to harness information from multiple layers to better estimate the object boundaries [1].
The conditional random field (CRF) proposed by Lafferty et al. combines the characteristics of the
maximum entropy model and hidden Markov model. It is also an undirected graph model [19]. In the
same FCN framework, the dilated convolution is used to obtain more information about features,
and the fully connected CRF is used to refine the label maps. The net is called DeepLab [20] and
it can produce high-resolution segmentation. HED is an end-to-end approach based on FCN and
VGG [4]. The edges of different scales are output through multiple side outputs, and the final edge
output is obtained through a training weighted-fusion layer. HED improves the accuracy of edge
detection through feature fusion. Inspired by the HED network, RCF was proposed in 2017 and
achieved state-of-the-art performance on several available datasets [4]. It is very helpful to use this
rich hierarchical information at each stage, so the model increases the number of output layers on the
basis of HED.

With the development of contour detection technology, it is no longer difficult to recognize the
general contour. Because of the non-saliency of the contour, many technical means cannot achieve the
expected results. Under this condition, the detection of non-salient contour can be studied in depth on
the basis of the existing contour detection technology and look for a technical means to distinguish this
non-salient feature to form a complete and accurate contour.

3. Contour Detection for Fibre of Preserved Szechuan Pickle

3.1. HED Architecture

HED is improved and adjusted based on VGG16 net, and it shows a good performance in various
tasks, containing 13 convolution layers and five side-outputs. The side-outputs contain multi-scale
features extracted by the network. Supposing we have M side-output layers in the network, the
classifier corresponding to each side-output can be defined as

Lside(W, w) =
M∑

m=1

αml(m)

side

(
W, w(m)

)
, (1)
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where Lside denotes the image-level loss function of the side-output, W denotes the set of all standard
network layer parameters, the corresponding weight can be denoted as w and M is the number of
layers of the side-output [3].

According to the position of side-outputs, the structure of HED can be divided into five stages.
Multiple stages with different strides can capture the inherent scales of contour maps [3]. After
inputting pictures, we obtain the contour map predictions from both the side-output layers and the
weighted-fusion layer: (

ŶHED
)
= Average(CNN(X, (W, w, h)∗)), (2)

where CNN(·) denotes the map produced by the network, Ŷi denotes the predictions through i stage,
X denotes the raw input image and h is the fusion weight.

This multi-scale and multi-level feature information is conducive to the transmission of holistic
information and helps the network to obtain better prediction results. This structure is beneficial to our
method. In the process of testing, the output results also prove that our choice is effective.

3.2. Dilated Convolutions

Dilated convolution increases the reception field by injecting holes into standard convolution
maps. Compared with the original normal convolution, dilated convolution has a hyper-parameter
called the dilation rate, which refers to the number of kernels intervals (e.g., the normal convolution is
dilatation rate 1). The discrete convolution operator ∗l can be defined as

(F ∗l k)(p) =
∑

s+lt=p

F(s)k(t), (3)

where F denotes a discrete function, and k is a discrete filter of size(2r + 1)2. We will refer to ∗l as a
dilated convolution [5].

Dilated convolution can solve problems such as loss of data structure, loss of spatial hierarchical
information, and an inability to reconstruct small object information. For the contour of preserved
Szechuan pickle, dilated convolution has a better effect on information extraction when the difference
of feature information is small. We hope to give full rein to its advantages and it will play an active
role in our research.

3.3. Dilated-HED

Inspired by many proposed contour detection models, we designed our own model for the contour
detection of preserved Szechuan pickle on the basis of HED. In our repeated tests, this structure has
the best result, as can be seen in Figure 2.
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Figure 2. The structure of our model. The dark red cube represents the dilated convolution layer,
the green cubes represent the convolution layer, the blue cubes represent the pooling layer, and the
side-output layers are yellow. The purple cubes in the transparent cube represent the fusion of the
output of each layer, and finally, a weighted-fusion layer is formed, represented by pink.
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The input is an image and our network outputs a contour possibility map of the same size. Our
model is improved on the basis of HED, adding a stage and dilated convolution, which is more sensitive
to features. There are 16 convolution layers and five max-pooling layers. Its convolution layers are
divided into six stages, in which a side-output layer is inserted after the last convolution of each stage.
There are two convolution layers and one max-pooling layer in the first and the second stage. From
the third to the fifth stage, each stage contains three convolution layers and one max-pooling layer.
The last stage contains only three convolution layers. The outputs of dilated-HED are multi-scale
and are finally integrated into a weighted-fusion layer by deconvolution. The weighted-fusion layer
can automatically learn how to combine and average outputs from multiple scales, which are scaled
according to 1, 2, 4, 8, 16 and 32. Our network architecture has different receptive field sizes and it
will become larger with the deepening of the network. The convolution kernel of 3 × 3 is used in the
HED network, and its receptive field is small. Increasing receptive field can capture more regional
features. We use dilated convolution, which is located on the first layer of the whole structure. Our
experimental results for the test data will be presented in the next section.

4. Experiments

4.1. Dataset of the Contour of Fibre

Due to the lack of data, we built a fibre contour dataset of preserved Szechuan pickle which was
collected from production workshop. The object is the section of the fibre of preserved Szechuan pickle.
We used a 5-million-pixel industrial camera with a 16 mm fixed-focus lens. The distance between
the section of preserved Szechuan pickle and the camera is more than 30 cm to simulate the actual
production process.

The data collected are in two forms: pictures and videos. Pictures serve as the main body of
the dataset and videos serve as data supplements. Labels of each image are quality-controlled and
human-annotated. The collected data are labeled manually by LabelMe [21], which is an open source
annotation tool. We labeled images with two colors: black and white. The region of contour is
white and the background is black. The dataset contains 2120 pairs of pictures. Each pair of pictures
has an original picture and a label. It contains about 600 different individuals, with an average of
approximately 3 images per stem. Some examples of the dataset are shown in Figure 3.
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The method of marking a region can reduce the inaccuracy of contour lines and creates more
possibilities to extract information from the original picture. We divide the dataset into the train set
and test set in the ratio of 8:2, which comprise 1696 pairs and 424 pairs, respectively. The fibres of
preserved Szechuan pickle are irregular. Some of them have contours that are continuous, while others
are discrete regions. A continuous contour means that the contour consists of only one connected
domain, while a discrete contour consists of two or more connected domains. The shape of the region
of the continuous contour is similar to a ring, except that the inner and outer lines of the ring are
unsmooth and irregular. The shape of the region of a discrete contour is usually a part of the ring and
is mixed with many irregular shapes. The number of cases is shown in Table 1.

Table 1. Introduction to our dataset.

Categories Continuous contour Discrete contour Total

Train set 910 786 1696
Test set 256 168 424

The fibre contour dataset of preserved Szechuan pickle is quite different from the public datasets,
such as BSD500, PASCAL VOC2012 which are mainly for people, roads, vehicles and so on. The
dataset of preserved Szechuan pickle is an object with small inter-class differences and large intra-class
differences, and public datasets are the opposite. There are fewer common characteristics of objects
between the public datasets and ours. It is necessary to set up a non-salient contour dataset and our
method is also designed for this kind of dataset.

4.2. Comparison of RCF, HED and Dilated-HED

We evaluate dilated-HED, HED and RCF on the test set, which is composed of 424 pairs of pictures.
The detection accuracy is evaluated using two measures: Pixel Accuracy (PA) and Mean Intersection
over Union (MIoU). Both are proposed in [2] and are standard measures for semantic segmentation.
Pixel accuracy (PA) is the simplest indicator used to calculate the ratio between the number of pixels
correctly classified and the total number of pixels. It can be defined as

PA =

∑k
i=0 pii∑k

i=0
∑k

j=0 pi j
, (4)

k+1 represents the number of categories of contours, including background. pi j represents the number
of pixels that belong to class i but are predicted to be class j. MIoU is a standard metric to calculate the
ratio of intersection and union between sets. Its definition is as follows:

MIoU =
1

k + 1

∑k

i=0

pii∑k
j=0 pi j +

∑k
j=0 p ji − pii

, (5)

Before we loaded the data into the model for training, we first adjusted the size of the picture to
512 × 512. The main reason for this is memory constraints and control parameters. The output images
on the dataset are grayscale, with gray values ranging from 0 to 255. The value of 0 represents the
background, and the value of pixel is closer to 255, the more likely it is to be a contour. By setting the
threshold, we can filter out the possible points to get the predicted contours.

Compared with HED and RCF networks, our method achieves better processing results. For a
specific comparison, see Figure 4.
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Figure 4. Comparison of richer convolutional features for edge detection (RCF), holistically-nested
edge detection (HED) and dilated-HED. From left to right: (a) original images; (b) the results of RCF;
(c) the results of HED; (d) the results of our method; (e) labels, also known as ground-truth.

From the comparison of the above results, we can see that RCF outputs more false regions, which
are distributed on both sides of the right contour, and the background area of non-preserved Szechuan
pickle is also recognized as a contour. HED can detect the area where the section of preserved Szechuan
pickle is located, but there are also many false regions. RCF and HED have low accuracy and high
misjudgment rates, which means they are not suitable for contour detection in our project. Our model
can detect the contour of fibre accurately, which is distributed irregularly. In addition, the PA and
MIoU of the three methods are measured as shown in Table 2.

Table 2. Pixel Accuracy (PA) and Mean Intersection over Union (MIoU) by three methods (Unit: %).

Categories RCF HED Ours Continuous Contour (Ours) Discrete Contour (Ours)

PA 89.91 95.72 99.52 99.52 99.53
MIoU 45.16 48.08 49.99 49.99 49.98

In the evaluation index, the background is also a category, and the background is much larger
than the target in the image, so the value of PA is large no matter which method is used. The result
shows that PA of our method is 99.52% and MIoU is 49.99%. We use dilated convolution at conv1-1 and
the dilated rate is [(2,2), (1,1)]. From the data, we can see that the values of PA and MIoU obtained by
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RCF are the lowest, followed by HED, and our model gets the best results. This is consistent with the
conclusion obtained from Figure 3. Compared with the HED and RCF, the PA of our results increased
by 3.80% and 9.61%, and the MIoU increased by 1.91% and 4.83% respectively. Dilated-HED is more
effective in the detection of fibre contours as shown in the experiment.

We divided the test set into two sets according to the contour types, and then use our proposed
model to test on two sets of data. The results in Table 2 show that the PA of the discrete contour is
higher than the continuous contour by about 0.01%, but the MIoU of the discrete contour is lower than
the continuous contour by about 0.01%. By analyzing the data and predicted images, we believe that
our model will smoothen regions with large variation, which has a greater impact on the continuous
contour. So, the PA of the two sets will be different. The model is more effective for large contours and
the smaller connected areas in discrete contours are more easily omitted, so the MIoU of continuous
contours is higher.

The network structure of HED improves the performance of the model by incorporating multi-scale
information. We retain this structure and add the number of layers of the model, so that the model can
get more useful information. When we obtain the feature map, it is beneficial to use dilated convolution
first in our model. Dilated convolution enlarges the receptive field and is more sensitive to non-salient
features. This extraction method can capture the key features of contour, so it can make effective use of
non-salient features. From the results, we can see that these changes have a promotion effect.

4.3. Training Details

In this part we discuss our detailed implementation. We experimented with our method and HED
in the Tensorflow [22] deep learning framework and trained it on a Nvidia GTX 1080-TI GPU. RCF
was implemented in the PyTorch [23] deep learning framework and trained on the same GPU. Like
HED, our model has filters with size 3 × 3. The pool size of the pooling layer is 2 × 2 and the strides
is 2 × 2. We initialized the network with the weight of VGG16 training on ImageNet ILSVRC—2014
submission [17]. To get a better optimization, we changed the initial values of the parameters in the
convolution layer. The initial values of the parameters are different at different layers. An Adam
optimizer with a learning rate of 0.0001 is used in our method. The batch size is 2, the number of
decay_steps is 10000 and decay_rate is 0.1. We set pos_weights at 0.7, weight_decay_ratio at 0.0002
and sides_weights at 1.0 in every output-layer. It takes about 5 h to train our model.

5. Discussion and Future Work

In this paper, we proposed a dilated convolutional network for non-salient contour detection.
Our method shows promising results in performing image-to-image learning by combining dilated
convolution and multi-scale visual responses. Dilated-HED takes advantage of HED in contour
recognition, combines dilated convolution and makes the network more sensitive to the fibre of
preserved Szechuan pickle by enhancing the ability to acquire non-salient features. In order to achieve
better results, we will try to extract the section of preserved Szechuan pickle and then detect the
contour. In the case of large background and small target, this method can reduce the interference
of background to accuracy. We believe that the work is a step towards non-salient contour detection
which is a crucial step in industrial production. Non-salient contour detection will greatly improve
the accuracy of production and make products more sophisticated. We will also add the categories of
contours and make our method applicable to more fields in the future.
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