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Abstract: Among multiple factors that affect the quality of combustion, the intricate and complex
interaction between in-cylinder flow/turbulent field and flame propagation is one of the most important.
In this study, true simultaneous, crank-angle resolved imaging of the flame front propagation and the
measurement of flow-field was achieved by the application of high-speed Particle Image Velocimetry
(PIV). The technique was successfully implemented to avoid problems commonly associated with
PIV in a combustion environment, such as interferences and reflections, avoided thanks to a number
of adjustments and arrangements. All experiments were carried out inside a single-cylinder optical
gasoline engine operated at 1200 rpm, using port fuel injection (PFI) with stoichiometric mixtures.
It was found that the global vortex location of the tumble motion heavily influences the flame growth
direction as well as the flame shape, mainly due to the tumble-induced flow across the ignition source.
The flame propagation also influences the flow-field such that the pre-ignition flow can be maintained
and the flow of unburned region surrounding the flame front will be enhanced.
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1. Introduction

The current stringent emissions regulations as well as demands for better fuel economy in
passenger vehicles require the combustion process in engines to be much more efficient while being
cleaner overall. While other mode of powertrain such as electric or hybrid are developing, their
drawbacks mean the combustion engines will still need to be improved. Researchers have proposed
many approaches in order to achieve cleaner, more efficient combustion engines, including ultra-lean
burning, high compression ratio, high exhaust gas recirculation (EGR), high intake charge pressure and
others. Due to its strong effect on the overall combustion process and the complex in-cylinder turbulent
environment [1–3], understanding the interaction of in-cylinder flow-field and flame development will
be crucial in optimizing the effects of the aforementioned strategies.

Due to its importance and their intricate relationships, researchers have been working toward
imaging both flow-field and flame imaging simultaneously. Flow-field measurement techniques
have been quite well studied and developed, with diagnostics such as (Particle Image Velocimetry)
PIV, (Laser Doppler Velocimetry) LDV and their variations providing useful information for engine
researchers. LDV is a point-based measurement technique that provides the temporal flow velocity
variations at a high sampling rate. Due to its setup, it is possible for a small probe of LDV to be made
and applied to a production engine. For instance, special spark plug modified to contain LDV optics
has been made and applied by engine researchers to provide flow-field information near the discharge
location [4,5]. Despite its benefits, LDV cannot provide the important spatial information of in-cylinder
flow, which is where PIV excels. In recent time, the advances in laser development has made powerful,
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high frequency laser available for researchers. Hence, PIV can now be applied to not just capture
spatial characteristics of the in-cylinder flow but also its temporal evolution and development [6–8].

Most of the previous works about in-cylinder flow diagnostics of internal combustion engines
were performed under motoring condition without combustion by using optical engines. However,
the phenomenon in a practical engine is different from this condition. Figure 1 shows the phenomena
of flow-field, flame propagation and its interaction in a spark ignition engine. During intake and
compression stroke before ignition, the differences in flow-field between motoring and firing condition
need to be discuss. For firing case, residual gas exists and its effect on flow-field, such as mean
flow, turbulence intensity and scale, as well as cyclic variation should be investigated. After the
ignition timing, one of the most interesting topics is the effect of flow-field on spark discharge, flame
propagation speed, heat release and combustion duration. The large-scale flow will stretch the spark
discharge and shift the propagating flame. The small-scale vortex will affect flame configuration and
reaction zone thickness. The correlation between flow-field and flame propagation in the same cycle
can provide the clear indication of the optimum velocity and turbulence distribution in-cylinder to
realize faster flame propagation and combustion. As a result, detail analysis in these areas can provide
valuable information for engine design to improve the thermal efficiency. Another point of interest is
the effect of flame propagation on the flow-field in unburned mixture. Does the flame enhance or decay
the turbulence of unburned mixture? Enhancement in the understanding of physical phenomena and
accuracy of engine combustion simulations can be obtained from such results. Furthermore, heat
loss is the one of the more important issues for thermal efficiency improvement and the information
regarding on flame attachment to the wall as well as the corresponding velocity can help explain the
heat transfer between flame wall (surface of piston top and cylinder head). The additional information
in relation to the flame-wall interaction process can also be derived when using with advanced wall
thermometry technique [9].

Appl. Sci. 2019, 9, x FOR PEER REVIEW 3 of 17 

flame and flow-field inside an operating engine environment. From the same captured PIV images, 

flow-field information as well as flame characteristics can be processed through a series of 

commercially-available and inhouse-developed software. The setup has been demonstrated to be 

able to capture the results at various engine operating conditions and provide valuable information 

on the relationship of flame development and in-cylinder flow [15]. In this report, we will discuss 

with more details on the setup, accuracy of the results and its potential errors. Focus will also be 

placed on the differences between the flow-field of non-reacting and reacting engine environment as 

well as the cyclic reaction on flame movement and combustion quality with respect to the flow-field. 

 

Figure 1. Flow-field, flame propagation, and its interaction in a spark ignition engine. 

2. Materials and Methods  

2.1. Engine Specifications and Operating Conditions 

The experiments were carried out in a single-cylinder optical spark ignition engine. Table 1 

summarizes the specification of this engine and the selected operating condition for this study. The 

engine capacity is 500 cm3 and has a compression ratio of 10.4 with a bore of 86 mm and stroke of 86 

mm. Optical access into the combustion chamber of the engine is provided by replacing certain metal 

parts with quartz window: at the top of the piston (54 mm diameter) and in the pent-roof as shown 

in Figure 2a. The whole metal liner can be replaced by quartz for extended optical view into the 

chamber. To observe the bottom-view of the combustion chamber, a 45° mirror is placed in the hollow 

extended-piston. It also provides an optical-access path for laser for the observation of pent-roof area, 

which is the setup applied for this study. The experiments were carried out with the engine operating 

at 1200 rpm with port fuel injection and an absolute intake pressure of 60 kPa. The spark timing was 

set at −15° Crank-Angle after Top Dead Center (CA aTDC). Due to the focus of this study, only 

mixture at stoichiometry will be considered. In-cylinder pressure are monitored and recorded using 

a pressure transducer (Kistler, 6052C) and the engine is fired continuously during the PIV capturing 

process for synchronization purpose. 

Table 1. Engine specifications and test conditions. PFI: port fuel injection; CA aTDC: Crank-Angle 

after Top Dead Center. 

Engine type 4 stroke, single cylinder, PFI 

Bore × stroke 86 × 86 mm 

Displacement 500 cm3 

Compression ratio 10.4 

Fuel injection Port fuel injection 

Fuel type Regular gasoline 

Injection pressure 300 kPa 

Engine speed 1200 rpm 

Large scale flow
- Tumble flow Small scale flow

- Turbulence intensity
- Turbulence scale

Flame interaction to 
unburned gas flow

Vortex center

Stretch of spark discharge Flame shift

Heat transfer to 
the wall

Flame front
- Propagation speed
- Reaction zone thickness

Figure 1. Flow-field, flame propagation, and its interaction in a spark ignition engine.

There are a number of diagnostics that one can use to observe the flame, ranging from simple
natural emission based such as chemiluminescence or natural-flame luminosity to more complicated
techniques such as tomography of hydroxyl planar laser-induced fluorescence (OH PLIF). Clark et al.
investigated the effect of the timing of the first and second injection for an evenly split dual injection
strategy in an optical engine [10,11]. Performance parameters derived from in-cylinder pressure data
are analyzed alongside high-speed natural flame luminescence images in order to obtain relationships
between engine output and the physical properties associated with flame propagation. They have
been combined with PIV in attempts to observe flame and flow-field simultaneously and allow for
interesting behaviors to be observed [12–14]. For instance, Mounaïm-Rousselle [13] used oil seeds for
PIV that would be evaporated by the flame and hence, creating flame tomography effect to observe the
flame. While this provide some information on the flame growth, it was not combined with flow-field
and PIV results and the flow-field inside the burned region is missing. Other approaches involve
the combination of laser diagnostic techniques: PIV and OH PLIF where there would be multiple
cameras and lasers required to be implemented [12]. As OH PLIF is one of the best diagnostics for
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flame front, this set up has high accuracy and allows for derivation of more fundamental parameters
such as turbulent burning velocity. However, OH PLIF is difficult to get enough signal intensity at
high-speed to detect the change during the cycle.

In this study, true simultaneous, crank-angle resolved imaging of the flame front propagation,
and the measurement of flow-field was achieved by the application of high-speed Particle Image
Velocimetry (PIV). PIV measurement under combustion environment is quite challenging for multiple
reasons, including the interferences of the natural luminosity from the flame, the interaction between
the PIV seeding materials, and the high temperature flame, as well as complications from direct injection
operations. All these issues decrease the optical clarity necessary for successful implementation of PIV.
This is also why it is difficult to be able to observe both the flame and flow-field simultaneously in
a reacting engine environment. Through careful optimization of a high-speed PIV setup and small
modification of our engines, we have been able to observe simultaneously the flame and flow-field
inside an operating engine environment. From the same captured PIV images, flow-field information
as well as flame characteristics can be processed through a series of commercially-available and
inhouse-developed software. The setup has been demonstrated to be able to capture the results at
various engine operating conditions and provide valuable information on the relationship of flame
development and in-cylinder flow [15]. In this report, we will discuss with more details on the setup,
accuracy of the results and its potential errors. Focus will also be placed on the differences between
the flow-field of non-reacting and reacting engine environment as well as the cyclic reaction on flame
movement and combustion quality with respect to the flow-field.

2. Materials and Methods

2.1. Engine Specifications and Operating Conditions

The experiments were carried out in a single-cylinder optical spark ignition engine. Table 1
summarizes the specification of this engine and the selected operating condition for this study.
The engine capacity is 500 cm3 and has a compression ratio of 10.4 with a bore of 86 mm and stroke of
86 mm. Optical access into the combustion chamber of the engine is provided by replacing certain
metal parts with quartz window: at the top of the piston (54 mm diameter) and in the pent-roof as
shown in Figure 2a. The whole metal liner can be replaced by quartz for extended optical view into the
chamber. To observe the bottom-view of the combustion chamber, a 45◦ mirror is placed in the hollow
extended-piston. It also provides an optical-access path for laser for the observation of pent-roof area,
which is the setup applied for this study. The experiments were carried out with the engine operating
at 1200 rpm with port fuel injection and an absolute intake pressure of 60 kPa. The spark timing was
set at −15◦ Crank-Angle after Top Dead Center (CA aTDC). Due to the focus of this study, only mixture
at stoichiometry will be considered. In-cylinder pressure are monitored and recorded using a pressure
transducer (Kistler, 6052C) and the engine is fired continuously during the PIV capturing process for
synchronization purpose.

Table 1. Engine specifications and test conditions. PFI: port fuel injection; CA aTDC: Crank-Angle
after Top Dead Center.

Engine Type 4 Stroke, Single Cylinder, PFI

Bore × stroke 86 × 86 mm
Displacement 500 cm3

Compression ratio 10.4
Fuel injection Port fuel injection

Fuel type Regular gasoline
Injection pressure 300 kPa

Engine speed 1200 rpm
Equivalence ratio 1 (AFR 14.7)
Intake pressure 60 kPa

Spark timing −15◦ CA aTDC



Appl. Sci. 2019, 9, 2678 4 of 15

2.2. High-Speed PIV

Figure 2a also illustrates the laser setup for the application of high speed-PIV (HS-PIV) diagnostic
in the optical engine. An Nd:YLF laser (Litron Lasers Ltd., LDY304) beam of 527 nm wavelength
was converted to a 500 µm thin sheet through a series of optics and then introduced into the engine
combustion chamber from the bottom by reflecting off the 45◦ mirror and then passing through the
piston-top quartz window. The pulse width of the laser shot is 150 ns at 1 kHz repetition rate. An area
of 37 mm × 54 mm in the middle of the side-view of the pent-roof, which includes the spark plug and
its surrounding region was targeted as the measurement area for this study. Figure 2b displays the
schematics of this measurement area (right) as well as the bottom-view of the fire deck to illustrate
the relative position of the laser. The PIV images were captured using a high-speed camera (Vision
Research Inc., Phantom v1611) at 1280 × 800 resolution and the laser was operated at 7.2 kHz (20 kHz
maximum) for a temporal resolution of 1◦ CA in the current engine operating condition. The time
interval for two images was set to 40 µs. A 527 nm bandpass filter with band width of 20 nm FWHM
was utilized to isolate PIV signal from other interferences. The laser and camera operations were
synchronized to engine rotation by using a pulse generator. The pulse generator was triggered by the
engine rotating signal and the pulse generator generated the trigger signals for laser and camera. PIV
data was captured for full crank angles of 19 consecutive fired cycles due to the high-speed camera
memory limitation.
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In this study, HS-PIV diagnostics was applied under engine-firing conditions which in turns
introduces special challenges and difficulties. These will be described and discussed in the later
sections. For optimum signal intensity with high traceability for kHz order, the material of the seeds
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need to be resilient to the harsh conditions of high pressure, high turbulence and high temperature
inside a cylinder of a combustion engine while being inert and not affect the chemistry of combustion.
As the practicability under the combustion condition was proven by previous LDV experiment at our
laboratory [4], we selected a SiO2 particle with 4 µm diameter as our tracer particles. The process on
tuning for the best seeding amount will also be discussed in later sections. The particles in the tank
were carried by the compressed air and seeded into the intake air flow upstream of the fuel injector
of the optical engine to ensure the homogeneous mixing and trace to the intake air motion. Table 2
summaries the PIV setup used.

Table 2. PIV set up specifications.

Sampling frequency 7.2 kHz
Crank angle resolution 1◦. CA

Image size 1280 × 800 (59 × 37 mm)
Spatial resolution of image 0.046 × 0.046 mm

Seeding particles SiO2
Measurement cycle number 19 (consecutive)

Interrogation area 32 × 32 px. (1.5 × 1.5 mm)
Overlap (Duplication degree of interrogation area) 50%

Spatial resolution for vector 0.74 × 0.74 mm

2.3. High-Speed Flame Tomography

Using the same HS-PIV setup, we have been able to optimize such that the burned gas region can
also be identified and distinguished from the unburned region in the PIV images, which allows for
flame front detection. Under combustion condition, the burned gas density and temperature will be
drastically different to those of the unburned gas. The high temperature of the stoichiometric flame
front can even lead to changes in the morphology of these solid seeds despite their resiliency to harsh
environment. Moreover, the interaction between the PIV laser and combustion products and luminosity
can also affect the laser signal intensity. As a result, these changes will be reflected in the seeding
densities and scattering PIV laser intensities. Following these logics, the burned region should appear
different to the unburned region. Hence, it is the gradient in intensity created that can be used for
detection and identification of the burned region and hence, the flame front. To maximize the intensity
gradient differences and avoid unwanted interferences from flame luminosity, a 527 nm bandpass-filter
was placed in front of the camera. This pseudo flame tomography imaging was carried out at the same
time as HS-PIV diagnostics under the same capturing procedures and operating condition.

Therefore, such HS-PIV setup allows for the simultaneous measurement of both flow-field and
flame-front. The characteristics of both elements can be derived from the same captured HS-PIV image,
maximizing the temporal accuracy when discussing the simultaneous relationship between flow-field
and flame.

3. Results and Discussions

3.1. Considerations for Diagnostics Setup

First, the engine was installed with balancers and dampers to minimize vibrations and minimize
any influences it can have on PIV arrangement. The camera and laser were also positioned on structures
that well dampen from the engine vibrations. The results are confirmed to be free of vibration-induced
errors which is normally seen as streaks, proving the effectiveness of this strategy. Secondly, to observe
the side-view of the pent-roof area, the laser will be impinged on the cylinder head and cannot escape
from the combustion cylinder, leading to possible reflections complications. As shown in Figure 3a,
the reflection light can create smearing, scatters on the pent-roof and will decrease the clarity of a large
portions of the measurement area. In this case, a layer of anti-reflection black paint (commercially
available oily black ink) is applied onto the surface of the fire-deck and hence, the reflection light of the
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laser sheet is significantly reduced and the valid measurement area is maximized. However, it should
be noted that the region around 1 mm away from the fire-deck of the pent-roof is still under the effect
of reflection, especially at TDC.

While the stoichiometric combustion with port-fuel injection inside the S.I. engine does not
produce as strong luminosity as other richer combustion seen in direct injection engine or diesel engine,
the luminosity is still strong enough to create complications to the PIV signal. In fact, as seen in
Figure 3b, the luminosity will be scattered on the seeds, especially inside the burned region. By adding
a bandpass filter at the laser wavelength of 527 nm, it is possible to remove most of the scattered
light from luminosity and only capture the dominating scattering signal from the PIV laser sheet.
An example PIV image demonstrates the performance of this bandpass filter during combustion is also
shown in Figure 3b.
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Figure 3. (a) Reducing reflection laser light during PIV measurement, (b) Avoiding the flame luminosity
during combustion PIV measurement using band-pass filter.

For PIV measurement, selection of the seeding particle is crucial to achieve high quality data.
As mentioned earlier, the seeds need to be inert (chemically and fluid-dynamically) and resistant to
high temperature to be applicable for PIV during a combustion event in engine. We have chosen silica
(SiO2) particles in this work to ensure the flame will not burn all the particles such as the case when oil
seeds were used [13]. However, to be able to distinguish between burned and unburned region from
the flame analysis point of view while maintaining flow-field data from all regions, seeds materials
will not be the only deciding factor. In fact, as shown in Figure 4a, depends on the amount of particles
seeded into the cylinder during a firing cycle, we can either get an underexposed image where the laser
scattering is not enough for PIV and flame front detection (top), an overexposed image where seeds
amount was too much (middle) or only enough seeds to get PIV data but the flame cannot be detected
bottom. The correct amount of seeds allows both PIV data and flame to be detected as shown in the
bottom row of Figure 4a. To achieve this correct amount, the seed amount was controlled by adjusting
the air flow rate for this seed supply. Once the image is confirmed, the same flow rate was kept for the
rest of the experiment. Estimating the appropriate amount of seed particles in this experiment is about
1 mm3 in bulk volume per cycle. Figure 4b displays the variation of the average intensity from PIV
particle-scattering laser signal from BDC to TDC of a firing cycle and it demonstrated that the seeding
amount can be used to monitor and measure the flow-field over the whole cycle and the intensity
difference is not overwhelming so overseeding at the TDC has been avoided. It is worth noting that for
this example, a spark timing of −30◦ CA aTDC is used and the dip in PIV signal intensity seen around
−15◦ CA aTDC is most likely due to the lower density seen in the burned region.
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Figure 4. (a) The effects of difference seeds amount on the clarity and feasibility of the information that
can be measured, (b) variation of PIV intensity from BDC to TDC of a firing cycle.

3.2. Data Processing and Validation

3.2.1. PIV Processing

The instantaneous velocity field is first derived from the captured PIV images using commercial
software from Dantec Dynamics. The range of the interrogation areas for considerations are 16 × 16,
32 × 32 and 64 × 64 at 0.046 mm per pixels. The vector results of the TDC flow-field at different
interrogation areas are shown in Figure 5. If the normalized vector residuals r0 calculated by the
following equation exceeds the detection threshold, that vector is defined as an error vector.

r0 =
|U0 −Um|

rm + ε
(1)

Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 17 

 

Figure 5. Validity of in-cylinder flow-field vectors from PIV processing with different interrogation 

areas: 16 × 16, 32 × 32, and 64 × 64 with images on left side and valid vectors % plot on the right side. 

The instantaneous velocity is further processed for mean velocity, velocity fluctuations and 

turbulence characteristics using in-house developed MATLAB software. The most common method 

to derive these specific flow-field characteristics from the instantaneous velocity is to use Fourier 

transformation to split it into the mean velocity (�̅�, �̅�) and the fluctuation of velocity (𝑢′, 𝑣′). The 

instantaneous velocity (𝑢, 𝑣) and turbulence intensity are described as following equations. 

𝑢(𝜃, 𝑛) = �̅�(𝜃, 𝑛) + 𝑢′(𝜃, 𝑛) (2) 

𝑣(𝜃, 𝑛) = �̅�(𝜃, 𝑛) + 𝑣′(𝜃, 𝑛) (3) 

𝑘(𝜃, 𝑛) =
1

2
√[𝑢′(𝜃, 𝑛)]2 + [𝑣′(𝜃, 𝑛)]2 (4) 

Here,  is crank angle and n is cycle number. While spatial filter is commonly used for PIV, high-

speed PIV allows the use of temporal filter. Many studies have investigated the selection of the 

temporal cutoff frequency for turbulent velocity estimation in internal combustion engines, which is 

still a relatively arbitrary process. In this study, we selected four points in the important regions of 

the measurement area, with three points A, B, and C surrounding the spark plug and point D near 

the squish area to assess the derived temporal cutoff frequency at different spatial location. The 

power spectrum calculated from fast Fourier transform at the four selected measurement points is 

shown in Figure 6. The power spectrum was calculated from the instantaneous velocity of each 19 

cycle, then the ensemble-averaged power spectrum was obtained. Around the frequency of 300 Hz, 

all power spectra have an inflection point which indicate that the variability characteristic of velocity 

changed at this frequency. For LDV measurement in the same optical engine under near engine 

operating condition, the inflection point in the power spectrum was also around 300 Hz [4]. 

Therefore, the cutoff frequency of this engine operating condition has been selected to be 300 Hz. 

Figure 5. Validity of in-cylinder flow-field vectors from PIV processing with different interrogation
areas: 16 × 16, 32 × 32, and 64 × 64 with images on left side and valid vectors % plot on the right side.



Appl. Sci. 2019, 9, 2678 8 of 15

Here, U0 is the displacement vector, Um is the median vector calculated using neighborhood
vectors, rm is the median residual calculated using the neighborhood residuals and ε is the minimum
normalization level. The normalized vector residuals r0 was calculated using 7 × 7 neighborhood
vectors and the detection threshold was set to 1.2. Both 32 × 32 and 64 × 64 areas allow for ~95% valid
vectors while the 16 × 16 interrogation area has more than 87% valid vectors, with most of the error
vectors coming from high scattered region near piston. While 87–90% valid vectors might be enough
for interpretation of the flow-field behavior, for the rest of the discussion in the current articles, we will
select 32 × 32.

The instantaneous velocity is further processed for mean velocity, velocity fluctuations and
turbulence characteristics using in-house developed MATLAB software. The most common method to
derive these specific flow-field characteristics from the instantaneous velocity is to use Fourier
transformation to split it into the mean velocity (u, v) and the fluctuation of velocity (u′, v′).
The instantaneous velocity (u, v) and turbulence intensity are described as following equations.

u(θ, n) = u(θ, n) + u′(θ, n) (2)

v(θ, n) = v(θ, n) + v′(θ, n) (3)

k(θ, n) =
1
2

√
[u′(θ, n)]2 + [v′(θ, n)]2 (4)

Here, θ is crank angle and n is cycle number. While spatial filter is commonly used for PIV,
high-speed PIV allows the use of temporal filter. Many studies have investigated the selection of the
temporal cutoff frequency for turbulent velocity estimation in internal combustion engines, which is
still a relatively arbitrary process. In this study, we selected four points in the important regions of the
measurement area, with three points A, B, and C surrounding the spark plug and point D near the
squish area to assess the derived temporal cutoff frequency at different spatial location. The power
spectrum calculated from fast Fourier transform at the four selected measurement points is shown in
Figure 6. The power spectrum was calculated from the instantaneous velocity of each 19 cycle, then the
ensemble-averaged power spectrum was obtained. Around the frequency of 300 Hz, all power spectra
have an inflection point which indicate that the variability characteristic of velocity changed at this
frequency. For LDV measurement in the same optical engine under near engine operating condition,
the inflection point in the power spectrum was also around 300 Hz [4]. Therefore, the cutoff frequency
of this engine operating condition has been selected to be 300 Hz.Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 17 
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Due to the existence of the flame during combustion PIV application inside operating engine,
the propagation of the flame could affect the seed particles by agglomeration or melting/burning of
the particles and hence the velocity measured from PIV processing. To assess this potential issue, we
took a PIV image during the flame developing period and analyze the velocity across the flame front.
Figure 7 displays the PIV image as well as the processed information for the velocity. The difference in
intensity between the burned and unburned region is quite obvious: the top right of the figure shows
the intensity along a line drawn horizontally across the burned and unburned region (the line is shown
in dashed white line on the image top left of the figure) and the intensity is shown to be distinctively
lower in the burned region compared to the unburned region. The intensity transition between burned
and unburned region is also a sharp and steep rise which indicates the error in the detected flame front
will be quite low (± 10 pixels, which is ± 0.5 mm). To estimate the error in velocity due to the flame
front movement, an assessment of the velocity across the flame front at various interrogation area is
carried out. As the interrogation area gets smaller, the less seed particles will be tracked and if the
flame front affects the seeds movement, discrepancy with larger interrogation area that cover more
than the flame front. The results were plotted as shown in bottom left; all the trends were similar with
different interrogation area which see a smooth transition of velocity field across the flame front. This
also suggests the unburned region contains enough valid particles for PIV analysis.
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3.2.2. Flame Analysis

The image processing steps in the algorithm for flame front detection and estimation is shown
by an example at TDC (15◦ CA after Ignition Timing) in Figure 8. This flame front extraction process
involves the use of both automated, in-house developed algorithm and manual visual inspections
of the captured images. The region bounded by the piston and the pent-roof is selected as the area
of interest. First, the images are inverted and background subtraction is applied. A combination of
median and Gaussian filters is then applied to eliminate artefacts due to laser scattering effects from
PIV seeds. An appropriate image intensity range and results of filtering is verified by visual inspections
and binary conversion using most appropriate threshold is finally applied to extract the flame front.
The derived flame front is once again confirmed via visual inspections to eliminate obvious errors due
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to laser intensity fluctuations. The resulted flame front is used to derive the projected flame area, the
flame centroids in the vertical plane, the equivalent flame radius R and global flame-growth speed
dR/dt. Here, the flame centroids are defined as the position of the centroids of the burned region.
The equivalent flame radius R is defined as the radius of a circle having the same area as the burned
area. The global flame-growth speed dR/dt is calculated from the difference of equivalent flame radius
between two time points. The accuracy of the burned region detection and flame front derivation has
an accuracy of around ±1 mm which correspond well to the 1.5 mm resolution of flow-field PIV data.
An example of flame front boundary is found in the bottom of Figure 8. The flame front analysis will
be limited to the early flame period from the first detected signal to when the flame completely fills the
measurement area and pent roof.Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 17 
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3.3. Differences Between Firing and Motoring

Besides firing engine operation, high-speed PIV is also applied when the engine was operated in
motoring mode without combustion. The PIV results were compared between firing and motoring to
identify changes in the flow-field when there is a combustion event. One representative cycle out of
the 19 tested cycles for each firing and motoring condition were chosen; the flow velocity of the two
conditions were shown in Figure 9 and the turbulence intensity were shown in Figure 10. For brevity,
images were shown in 10◦ CA timing increments, from −45◦ CA aTDC to 25◦ CAaTDC. From Figure 9,
it can be seen that the flow-field between motoring and firing were not very different prior to the
ignition timing (−15◦ CA aTDC) and the differences can be attributed to cyclic variations. The vortices
centers are located more centrally in the pent roof which makes the flow across the spark plug stronger.
After ignition, the flame boundary in the firing cycle is overlaid on top of the images, which can be
seen from −5◦ CA aTDC onward. During this phase, significant differences between and firing and
motoring flow-field can be observed, suggested strong effect of the flame on the dynamics of the
unburned region. While in the motoring cycle, the strength of the flow-field is significantly diminished,
the existing tumble flow continues to exist and even enhanced by the propagating flame. The flame
first propagates in the tumble flow direction and the flow-field is maintained in this direction. From
5◦ CA aTDC, the flame continues to grow with the flow: flame propagation can be seen toward the
other side of the pent-roof and interestingly, the flow here is significantly enhanced. This could be
because it is in the later stages of combustion where the flame has occupied a much larger volume
of the combustion chamber and hence the pressure rise, the higher temperature can contribute to a
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more complicated flow-field. This is well reflected in the high turbulence intensity in the pent-roof
seen in Figure 10. The flow-field maintain a high level of turbulence intensity throughout the flame
development period and at the region where the flame enhanced flow is seen, a very high turbulence
intensity is also found, especially close to the flame front. It is interesting that the turbulence did not
decrease at any timing, even when the flame kernel just appears. This could be due to the immediate
pressure and temperature rise.
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Figure 10. Turbulence intensity of a selected motoring cycle (left) and a selected firing cycles (right).

Figure 11 shows the velocity the flow at certain locations as the flame approaches and passes
through them. In this case, 5 points at the same vertical distance of 2.5 mm to the TDC location of
the piston were selected. Each point is 10 mm away from each other. These points were chosen as
they allow the long distance away from each other while still provide a decent data size for analysis.
Also, as they are close to the piston top in the period of investigation, only flow velocity in horizontal
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direction is considered. The colored dots represent the time when the flame front passes through
the points. The flame crosses point D first followed by C, E, B and A which reflects its movement
is influenced by the tumble direction. From the velocity plot, it is quite noticeable that as the flame
passes by, the velocity of the flow achieves a local maximum. This likely suggests that as the flame
approaches the flow is enhanced but quickly lost its energy as the mixture undergoes combustion.
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and passes through those selected locations.

3.4. Connection to Cyclic Variations and Combustion Performance

Figure 12 displays at the top the in-cylinder pressure and the burn durations of all 19 tested firing
cycles. Four cycles were selected to display the cyclic variations in flow and flame behavior. These four
cycles represent different combustion performance at the same operating condition. The peak pressure
of cycle A is the highest because the first initial combustion (short combustion period). On the other
hand, combustion pressure of cycle B is the lowest with long combustion period. In short, cycle A
represents the best performing cycle, cycle B the worst performing cycles while cycles C and D are
closely matching to the ensembled average. Also shown in Figure 12 is the instantaneous flow at the
ignition timing of these four cycles and their flame kernel at TDC (15◦ CA aIT) and 10◦ CA aTDC (25◦

CA aIT) together with the flame centroids movement over the whole investigation period. The plot of
the derived flame growth speeds for the 4 cycles is also shown. All cycles have the same main tumble
direction (clockwise) and the flames in cycles A, B, and C develop and propagate with the tumble
direction, which can be easily observed when the centroids are plotted. Cycle D, while having the
same tumble direction, the tumble center is located very far toward the squish area side of the intake
and that make the flow velocity very minimal near the spark plug. As a result, the flame propagates in
quite a symmetrical fashion across the spark plug axis. The centroids of this flame actually move along
the spark plug axis, interestingly. Clear pattern in the flame speed in correlation with burn duration
is not well observed but it is hinted that the early higher flame speed of cycle A does correspond to
a faster 10% burnt duration. The variations in flame development path does not seem to have any
correlation with the burnt duration.
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Figure 12. (a) In-cylinder pressure and burnt duration of 19 tested cycles with combustion PIV, (b) the
flame velocity of the four selected cycles derived from the extracted flame front and (c) flow-field
vectors at the ignition timing of the four selected cycles and the flame development at 0◦ and 10◦ CA
aIT as well as the movement of the corresponding flame centroids over the whole inspected period.

Upon further analysis of the flow, the turbulence intensity near the spark plug appears to have
stronger correlation with the burnt durations, with the velocity of the flow on the spark plug side
that is downstream of the tumble flow results in a correlation factor of 0.56. This seems to agree with
previous research about flow across the spark plug [2].

4. Conclusions

A high-speed PIV set up for optical spark-ignited engine has been modified and optimized to
allow not only for the measurement of flow-field characteristics but also simultaneous flame front
detection and imaging. Both properties of the flow-field such as flow velocity, turbulence intensity,
and flame properties such as flame area, flame speed, and wrinkleness can be derived from the same
image to explore their relationship in a true simultaneous fashion. Solutions and approach to avoid
and overcome interferences and challenges in applying and developing this diagnostic technique are
detailed in this paper. This include the process to minimize interferences from flame luminosity and
laser reflection. The processing procedures are discussed and a few validation checks were performed
to ensure the technique will yield good accuracy, especially near the flame front region. After the
accuracy is confirmed, the technique was then applied during firing cycles of a stoichiometric operating
optical engine as well as motoring cycles of the same engine. While prior to ignition the flow-field
is similar between firing and motoring case, significant differences were observed after ignition
timing. The flame propagates with the global tumble direction and help maintain this flow across the
pent-roof area. It also enhances flow and turbulence intensity in flow region near the flame front as the
combustion enters later stages and the flame occupies a larger portion of the pent-roof. In terms of
cyclic variations, there seems to be no correlation between flame shape and propagation path with
burning speed. However, there is a correlation between the flow across the spark plug with burning
durations as well as flame propagation path. Additionally, this relatively simple high-speed PIV setup
also has a lot of potential in combining with other diagnostics to capture other combustion species,
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mixture fractions as well as other important and influential processes which will help expanding the
knowledge base for advance engine design and development.
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