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Abstract: The imidazolium-based ionic liquids (ILs) are solvents known for selectively solubilizing
CO2 from a gas CH4/CO2 mixture, hence we have produced new hybrid adsorbents by immobilizing
two ILs on xerogel silica to obtain a solid–gas system that benefits the ILs’ properties and
can be industrially applied in CO2 capture. In this work, the ILs (MeO)3Sipmim.Cl and
(MeO)3Sipmim.Tf2N were used at different loadings via the sol–gel process employing a based
1-methyl-3-(3-trimethoxysylilpropyl) imidazolium IL associated to the anion Cl− or Tf2N− as a
reactant in the synthesis of silica xerogel. The CO2 adsorption measurements were conducted through
pressure and temperature gravimetric analysis (PTGA) using a microbalance. SEM microscopies
images have shown that there is an IL limit concentration that can be immobilized (ca. 20%) and that
the xerogel particles have a spherical shape with an average size of 20 µm. The adsorbent with 20% IL
(MeO)3Sipmim.Cl, SILCLX20, shows greater capacity to absorb CO2, reaching a value of 0.35 g CO2/g
adsorbent at 0.1 MPa (298 K). Surprisingly, the result for xerogel with IL (MeO)3Sipmim.Tf2N shows
poor performance, with only 0.05 g CO2/g absorbed, even having a hydrophobic character which
would benefit their interaction with CO2. However, this hydrophobicity could interfere negatively in
the xerogel synthesis process. The immobilization of ionic liquids in silica xerogel is an advantageous
technique that reduces costs in the use of ILs as they can be used in smaller quantities and can be
recycled after CO2 desorption.
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1. Introduction

Excessive increase in greenhouse gas concentrations, especially carbon dioxide, stems from an
energetic matrix based on the combustion of fossil fuels which causes global warming and has other
environment impacts [1–3]. Mitigation of these impacts has been the subject of research for the
development of adsorbents for CO2 capture by the application of carbon capture and storage (CCS) or
carbon capture utilization (CCU) technologies [4–8].

Ionic liquids (ILs) ionic liquids are a class of materials widely studied in recent times. It has been
proposed as an alternative solvent for CCS or conversion [9–15]. These solvents are selective for CO2

separation in CO2/CH4 gas mixtures [16,17]. As the ILs are non-volatile compounds, when CO2 is
desorbed under depressurized conditions, no loss of solvent occurs. Moreover, one can design the
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chemical structure of ILs, choosing the appropriate cation/anion to optimize the capacity of the ionic
liquid in the CO2 absorption [18–21].

Incorporating ILs in solid matrices emerged as a new and challenging field, allowing the use of
heterogeneous systems for CO2 capture [22–25]. The immobilization process is usually carried out
by cationic or anionic incorporation, or by cationic anchorage, or through in-situ polymerization via
a sol–gel process [26,27]. In the case of cationic or anionic incorporation, the IL is synthesized and
then fixed into the inorganic material through an IL cation or anion anchorage. In the case of the in
situ polymerization via sol–gel process, the IL is used as a templating agent for the synthesis of silica
xerogels due to its surfactant character and the low surface tension which enables control of the silica
particle size, gelation time, structures, and morphology [28,29].

In the classical sol–gel process, an alkoxide precursor is hydrolyzed leading to the formation of
Si-OH bonds (silanol groups) that condensate forming an inorganic three-dimensional network. The
targeted material is then obtained after drying—xerogel or aerogel [30].

The IL acts like a solvent, catalyst or template in in-situ polymerization, bringing with it the
advantage of being easier to handle and having wider applicability in various fields. ILs improve the
efficiency and selectivity and allow easy separation of the products and catalyst recycle, especially in
catalysis [31,32].

With the immobilization of ILs in gels leading to ionogels, these materials are applied in
electrochemistry devices to encapsulate functional molecules (catalysts, sensing molecules, fluorescent
metal complexes) offering a new method to functionalize nanostructured inorganic materials [33,34].
The xerogel silica final structure is highly influenced by the nature of the alkyl-alkoxysilanes precursor
such as the chain length, functionality, and its hydrophobic character. These properties can be modified
adding a wide range of compounds to the alkyl-alkoxysilanes precursor, such as surfactants like ionic
liquids [35].

The combination of the well-known affinity between pure ILs and CO2 [9,11,16–19] and solid
adsorbents leads to a synergic effect reported by Aquino et al. [25]. Therefore, this study aims
to synthesize hybrid silica–IL xerogels via a sol–gel process using different alkyl-alkoxysilanes
compounds: the tetramethoxysilane (TMOS), the methyltrimetoxysilane (MTMS), and a based
1-methyl-3-(3-trimethoxysylilpropyl) imidazolium IL associated to the anion Cl− or Tf2N− incorporated
in the range 1–40% IL/ alkyl-alkoxysilanes v/v. During the synthesis, TMOS and MTMS are hydrolyzed
leading to the formation of silanols groups. Part of these silanol groups condensate producing a
three-dimensional network and the remaining silanol groups will react with the IL ensuring its
participation in the structure building.

These materials were evaluated for CO2 adsorption. It is important to highlight that the use of IL
as a precursor for the synthesis of xerogel is an innovative route for increasing the CO2 adsorption of
the material. The IL is responsible for the three-dimensional matrix formation as well as for increasing
the affinity between the CO2 and the adsorbent. Typical CO2 adsorption values are approximately 0.09
g per g of neat ionic liquid [20].

2. Materials and Methods

2.1. Chemicals

Lithium bis(trifluoromethylsulfonyl) imide (LiTf2N) (Alfa Aesar, 98.0%);
(3-chloropropyl)trimethoxysilane (Alfa Aesar, 97.0%); sodium fluoride (NaF) (Sigma Aldrich,
99.0%); 1-methylimidazole (Sigma Aldrich, 99.5%); tetramethoxysilane (TMOS) (Sigma Aldrich, 98.5%);
polyvinyl alcohol (PVA; Mn 15.000) (Sigma Aldrich, 88.0%); methyltrimetoxysilane (MTMS) (Sigma
Aldrich, 98.5%); carbon dioxide (CO2) (Air Liquide, 99.998%).
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2.2. Ionic Liquid Synthesis

Firstly, 1-methyl-3-(3-trimethoxysilylpropyl) imidazolium chloride was synthesized through the
reaction of 1-methylimidazole with (3-chloropropyl) trimethoxysilane (molar ratio 1: 1.5) at 363 K for
48 h. Then the reaction mixture was cooled down to room temperature and the organic upper phase
separated. The resulting product was a yellow viscous ionic liquid. Then the IL phase was washed
thoroughly with diethyl ether and residual ether was removed under vacuum.

An equimolar amount of LiTf2N was added to a solution of (MeO)3Sipmim.Cl in dry acetone and
left under stirring for five days at room temperature. After concentrating under vacuum, the solid was
solubilized in dichloromethane, dried, filtered over a celite bed, and washed with water until AgNO3

test was negative. The organic phase was dried over anhydrous MgSO4, filtrated and the solvent was
removed under vacuum [36–38]. The structure of the ILs (MeO)3Sipmim.Cl and (MeO)3Sipmim.Tf2N
and was confirmed by 1H-NMR and FTIR.

(MeO)3Sipmim.Cl: 1H-NMR (400 MHz, CDCl3, 298 K) δ (ppm): 0.58 (m, CH2Si); 1.91 (m,
CH2CH2N); 3.49 (s, SiOCH3); 3.63 (s, CH3N); 4.06 (t, CH2N); 4.27 (t, CH2); 7.39 (s, H5); 7.61 (s, H4);
10.39 (s, H2). FTIR ν (cm−1): 3031, Si-O; 2944-2839 for aliphatic C-H stretching (methyl and methylene
groups); 1570-1457 C=C stretching and C-N of the imidazolium ring; 1175-1071 Si-OCH3; 805 from
Cl− anion.

(MeO)3Sipmim.Tf2N: 1H-NMR (400 MHz, CDCl3, 298 K) δ (ppm): 0.51 (m, CH2Si); 1.85 (m,
CH2CH2N); 3.47 (s, SiOCH3); 3.83 (s, CH3N); 4.25 (t, CH2N); 7.70 (s, H5); 7.61 (s, H4); 8.99 (s,
H2). FTIR ν (cm−1): 3161-3115, Si-O; 2934-2853 for aliphatic C-H stretching (methyl and methylene
groups); 1572-1460 C=C stretching and C-N of the imidazolium ring; 1182-1047 Si-OCH3; 791-742 from
Tf2N− anion.

2.3. Ionic Liquid Immobilization

The IL was dissolved in an aqueous solution containing NaF (0.20 g L−1) and PVA (4.64 g L−1).
The amount of water in this solution was fixed (6.86 mmol). The solution was vigorously shaken on a
vortex mixer. The precursors were then added (Figure 1) in amounts that yielded a water/silane molar
ratio of 1:8, irrespective of the type and number of precursors used (e.g., 0.143 mmol of TMOS and
0.714 mmol MTMS in 1:5 TMOS/MTMS gels).
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Figure 1. Ionic liquid synthesis (1) and immobilization by sol–gel method (SILCLX) (2).

The % (v/v) of IL (1, 5, 10, 20, 30, and 40%) was determined by the IL volumes and the total volume
of the solution containing water, NaF, PVA, TMOS, and MTMS.

The mixture was again vigorously shaken on the vortex mixer until it became homogeneous.
It was then placed in an ice bath until gelation occurred (after a few seconds), and kept in the ice bath
for an additional 10 min. The container with the obtained gel was kept at 277 K for 24 h, after which
the gel was put in a kiln at 308 K for 24 h. The white gel obtained was crushed and washed (for about
10 min)/centrifuged (at 10,000 rpm), first using acetone then n-pentane (also 2 mL of each). The gel was
left at 308 K for 24 h in a kiln [34].
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The obtained samples were denominated according to the IL content and the anion present
as described as supported ionic liquid (SIL)-Anion (TF2N or CL for (MeO)3Sipmim.Tf2N and
(MeO)3Sipmim.Cl respectively)–Xerogel (X)–% IL (number corresponding to the % of loaded IL)).

2.4. Characterization

The FTIR spectra were collected on a PerkinElmer Spectrum 100 spectrometer in KBr pellet
form. NMR measurements were performed at room temperature using a Bruker Avance III 400 MHz
spectrometer; solid-state NMR cross-polarization magic angle spinning (29Si CPMAS) at 5 kHz was
selected to record silicon spectra. SEM on Microscope Analytical JEOL, model 7001F FEG-SEM. The
surface area and pore size were calculated from sorption analyses (N2 at 77 K) using a Micromeritics
Instrument Corporation, TriStar II 3020 V1.03 and Brunauer–Emmett–Teller (BET) method. The real
density of xerogel samples (ρs) was determined on Ultrapycnometer 1000—Quantachrome Corporation,
cell volume of 20.45 cm3, and pressure of 21.0 psi (1.45 bar).

2.5. CO2 Adsorption Measurements

The sorption of CO2 in the samples were gravimetrically assessed in a magnetic suspension
balance (MSB), (Rubotherm Prazisionsmesstechnik GmbH, 35 MPa and 673 K) equipped with a single
sinker device for adsorbate density determination and thermostatized with an oil bath (Julabo F25/±

273 K). The apparatus details are well described elsewhere. When compared to other gravimetrical
sorption methods, the MSB device has the advantage of allowing high-pressure sorption measurements
as the sample can be potted into a closed chamber coupled to an external precise balance (accuracy of
±10 µg).

The samples (0.06 to 0.09 g) were weighed and transferred to the MSB sample container, and the
system was subjected to a 10−7 MPa vacuum at the temperature of the sorption measurement, 298 K,
for 24 h (constant weight was achieved in this time). The CO2 was admitted into the MSB pressure
chamber up to the desired pressure, 0.1–2 MPa in this study, a pressure gauge with an accuracy of 10−3

MPa was used to control the system pressure.
The solubility of CO2 in the samples for each isotherm and pressure considered was measured

3–4 hours after no more weight increasing for CO2 sorption had been observed. At this step of CO2

solubility in the samples, the weight reading from the microbalance at pressure P and temperature
T is recorded as Wt(P, T). The mass of dissolved CO2 in the sample (Wabsolute) was calculated using
Equation (1)

Wabsolute =
[
Wt(P, T) −Wsc(P, T) + ρg(P, T)·(Vsc(T) + Vs(T) + Vads)

]
−Ws(vac, T) (1)

where Wsc(P, T) is the weight of sample container, ρg(P, T) stands for CO2 density, directly measured
with the MSB coupled single-sinker device, Vsc(T) is the volume of the sample container, determined
from a buoyancy experiment when no sample is charged into the sample container, Vs(T) the
specific solid sample volume, Ws(vac, T) is the weight of samples under vacuum and the term
ρg(P, T)·(Vsc(T) + Vs(T)), represents the buoyancy force.

The volume of the adsorbed phase Vads must be taken into account in the buoyancy correction
to determine the absolute gas adsorption. In this paper, the density of the adsorbed phase ρads was
assumed to be the density of liquid CO2 in a reference state (boiling point at 1 atm) and the Vads was
obtained by dividing the adsorbed mass, mads by the density of the adsorbed phase, ρads. Further
details on data handling from the adsorption isotherms measured may be found in literature [39,40].

3. Results

The FTIR spectra of the xerogel matrix and SILTF2NX20 (see Figure A1), respectively, show i)
in the region between 3550–3416 and 3488 cm−1 the presence of O-H bands of silanol groups; ii) at
2977 and 2975 cm−1 C-H stretching of CH3 groups; and iii) at 1638 and 1627 cm−1 C-O stretching of
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methoxy groups. In these spectra, the presence of bands 1277 and 1275 cm−1 characterize the Si-CH3

bond and at 1037 and 1049 cm−1 the Si-O-Si bond. The presence of the imidazole IL linked to the
xerogel is mainly characterized by a band at 1577 cm−1 corresponding to a C=C aromatic stretching
and a band at 3167 cm−1 corresponding to an aromatic C-H, both belonging to the imidazolium
ring [37,41]. In addition, the FTIR spectrum of SILTF2NX20 also shows two signals at 1353 and 1196
cm−1 corresponding respectively to the Si-O and Si-O-CH3 stretching [37].

It is noteworthy that the siloxane bands of Si-O-Si, in the range of 1136–1186 cm−1 and disiloxane
band of R3Si-O-SiR3 in the range of 1049–1070 cm−1 are ascribed to the chemical bonds between silicon
and IL indicating a strong interaction between the IL and the gel matrix.

Table 1 presents data corresponding to the 29Si CPMAS analysis of the xerogel matrix synthesized
without IL, XEROGEL, and the xerogel containing IL. This data confirms, in the case of XEROGEL,
the presence of chemical environments for Si at −63.58 and −72.38 ppm related to T2 and T3, and at
−117.31 ppm attributed to Q4, respectively. For all samples containing ILs, the largest composition is
of T2 corresponding to (-O-)2Si-(O-R)2, independently of the anion.

Table 1. 29Si CPMAS results for supported ILs in xerogel matrix.

XEROGEL SILCLX10 SILCLX40 SILTF2NX10 SILTF2NX40

Form δ

(ppm) intgr % δ

(ppm) intgr % δ

(ppm) intgr % δ

(ppm) intgr % δ

(ppm) intgr %

Q2 / / / / / / / / / / / / / / /
Q3 / / / −101.14 0.02 1.74 −102.28 0.02 1.47 / / / / / /
Q4 −117.31 0.49 11.86 −110.21 0.13 11.30 −111.47 0.10 7.35 −110.41 0.13 10.48 −110.56 1.00 14.25
T2 −72.38 2.64 63.92 −66.06 1.00 86.96 −66.68 1.00 73.53 −66.03 1.00 80.56 −65.65 5.09 72.51
T3 −63.58 1.00 24.21 / / / −58.10 0.24 17.65 −56.10 0.11 8.87 −56.49 0.93 13.25

Only the samples with the IL have the Cl− anion present Q3 form corresponding to (-O-)3Si-OH.
The forms T2 and T3 indicate the immobilization of IL, therefore we observed that the major quantity
of T2+T3 is that with a higher load IL (40%). The values of T2 and T3 allow verification if there are
free OH groups on the support or if the IL is bonded through the OH groups and then being part of
the xerogel.

SEM images of the xerogel matrix and of the xerogels containing the (MeO)3Sipmim.Tf2N in
different concentrations are represented in Figure 2. Based on these images it can be observed that
the use of 1% IL (MeO)3Sipmim.Tf2N as precursor is not sufficient to form the typical spheres of the
xerogel matrix. However, as the concentration of IL increases to 5, 10, and 20% the formation of the
microspheres becomes increasingly visible. When the IL load reaches 30%, the collapse of the spheres
can be observed indicating an over concentration of IL as precursor for the synthesis of the xerogel.

The images of the synthesized xerogel also demonstrate a peculiar feature related to the presence
of the ionic liquids that acts as a surfactant resulting in the formation of spherical particles during the
sol–gel process. As the (MeO)3Sipmim.Cl and (MeO)3Sipmim.Tf2N ILs are amphiphilic structures
composed of a polar head (the imidazolium ring) that is hydrophilic and carbon or siloxane chain that
is hydrophobic, they form micelles during the sol–gel process synthesis [42].

The XEROGEL, SILTF2NX20, and SILTF2NX40 were characterized through N2 sorption at 77 K
and helium pycnometry. Specific surface area (SBET), pore volume (Vp), pore and diameter size and
density results are shown in Table 2.

Table 2. Structural properties for ILs in xerogel silica

Samples SBET (m2/g) Vp (cm3/g) Pore Size (nm) a Diameter (nm) b ρs (g/cm3) c

XEROGEL 9 0.016 7.1 8.2 1.80
SILTF2NX20 4 0.008 7.5 10.2 3.08
SILTF2NX40 1 0.002 4.9 5.6 —

a Adsorption average pore width (by BET). b BJH adsorption average pore diameter. c Determined by
helium pycnometer.
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Figure 2. SEM (x 3000)—spheres of ionic liquids (MeO)3Sipmim.Tf2N in xerogel matrix.

Data obtained from N2 sorption (SBET, Vp) shows that partially replacing MTMS with the IL
decreases the specific surface area and the pore volume indicating that the support is more compact
according to the density values.

CO2 adsorption tests were performed immediately after the synthesis of the materials. The tested
materials were the Xerogel, SILTF2NX20, SILCLX20, and SILCLX40. It is worth noting that for the
calculation of the adsorption in excess and absolute from the PTGA data, the density value for the
sample SILTF2NX20 obtained through helium pycnometry (see Table 2) was used. As the experimental
CO2 adsorption curves, absolute and in excess, were very similar due to employing the low working
pressure, only the absolute adsorption data is presented Figure 3 as a function of CO2 pressure.

It is evident that the sample SILCLX20 exhibits the greater capacity to CO2 adsorption, reaching a
value of 0.35 g CO2/g adsorbent at 1.0 MPa. The sample with the same IL, but with greater immobilized
concentration SILCLX40 has a very low performance, only 0.07 g CO2/g adsorbent at the same pressure,
which indicates that increasing the amount of IL immobilized in the xerogel hinders the adsorption
capacity. This effect can be caused by both a block of the solid’s pores by the IL and IL trapped without
accessibility or free volume to adsorb CO2.

Surprisingly, the adsorption result obtained for SILTF2NX20 (0.05 g CO2/g adsorbent at 1.0 MPa)
is very low. As the Tf2N− anion has a hydrophobic character, it was expected that it would improve
the IL–CO2 interaction. This result can be attributed to a low IL interaction with the xerogel
silica networking.

The concentration of IL immobilized in the support as mentioned earlier has a slight adverse
effect on adsorption efficiency, as the higher the concentration of IL support, the lower the mass of
CO2 adsorbed. Results obtained with SILCLX20 were distinguished from all the others and is an
exceptional mark.
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The results represented in Figure 4 clearly show that the IL containing a chloride anion (SILCLM50)
had better CO2 adsorption. For comparison, SILCLX20 (xerogel process) from our study (see Figure 3)
presents a greater capacity to adsorb CO2, reaching a value of 0.35 g CO2/g adsorbent (at 1.0 MPa)
than SILCLM50 (supported on MCM-41) which attains only 0.11 g CO2 /g adsorbent (at 1.0 MPa) (see
Figure 4). In any case, supported ILs (in xerogel or MCM-41) provide higher CO2 adsorption capacity
than when used as solvents due to the contribution of the support. The comparison of the results
reported in Figures 3 and 4 indicates clearly that when using xerogel support a lower amount of IL
(20%) (see Figure 3) is required than when MCM-41(50%) is employed.

Additionally, the literature reports results that described the use of different materials, such as
Zeolite 13X at 303 K [43], β-zeolite at 303 K [44], and MCM-41 at 298 K [25]. The best result obtained
was by Jadhav, P.D., using the zeolite 13X, 0.0550 g CO2 being adsorbed per g of adsorbent. The
addition of amine, that has an affinity with CO2 [5] to the zeolite does not increase the quantity of
CO2 adsorbed.

The best CO2 adsorption amount obtained in this study (SILCLX20: 0.35 g CO2/g adsorbent) is
approximatively 500 and 200% higher than when the zeolite 13X and (MeO)3Sipmim.Cl supported in
(MCM-41 (SILCLM50, see Figure 4) are used as an adsorbent, respectively.

After the CO2 adsorption, the PTGA was depressurized without heating. It was verified that the
sample weight remains equal to its value before the CO2 adsorption process. This result indicates that
CO2 was physically adsorbed, and that the adsorbent material was not modified during the adsorption
experiments enabling its recovery.

The higher thermal stability of the hybrid material and the possibility of their reuse in physical
separation systems are properties that indicate these materials have the potential for CO2 capture.

5. Conclusions

The sol–gel immobilization of ionic liquids is an advantageous technique that reduces costs
in the use of ILs, as they can be used in smaller quantities. When ILs (MeO)3Sipmim.Cl and
(MeO)3Sipmim.Tf2N were supported at different concentrations of IL via the sol–gel process it was
noted that there is an ideal IL concentration that can be immobilized in this matrix type (ca. 20%). The
CO2 adsorption capacity results show that these materials can be applied as adsorbents in a capture
system, as they offer satisfactory CO2 sorption capacity, the best result being obtained by SILCLX20
that reached 0.35 g CO2/g adsorbent at 1.0 MPa pressure.
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