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Abstract: Force sensing in robotic-assisted minimally invasive surgery (RMIS) is crucial for
performing dedicated surgical procedures, such as bilateral teleoperation and palpation. Due to the
bio-compatibility and sterilization requirements, a specially designed surgical tool/shaft is normally
attached to the sensor while contacting the organ targets. Through this design, the measured force
from the sensor usually contains uncertainties, such as noise, inertial force etc., and thus cannot
reflect the actual interaction force with the tissue environment. Motivated to provide the authentic
contact force between a robotic tool and soft tissue, we proposed a data-driven force compensation
scheme without intricate modeling to reduce the effects of force measurement uncertainties. In this
paper, a neural-network-based approach is utilized to automatically model the inertial force subject
to noise during the robotic palpation procedure, then the exact contact force can be obtained through
the force compensation method which cancels the noise and inertial force. Following this approach,
the genuine interaction force during the palpation task can be achieved furthermore to improve the
appraisal of the tumor surrounded by the soft tissue. Experiments are conducted with robotic-assisted
palpation tasks on a silicone-based soft tissue phantom and the results verify the effectiveness of the
suggested method.
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1. Introduction

More recently, the robotic-assisted minimally invasive surgery (RMIS) has been introduced into
the operating room with significant advantages such as improved accuracy, intuitive manipulation,
small/invisible incisions and enhanced visualizations etc., as can be witnessed in quite a number
of literatures [1–4]. However, the current RMIS cannot provide proper force/tactile feedback, thus
challenges operations such as the cancer tumor removal procedure, in which tumor palpation is usually
necessary to locate the tumor area [5].

By directly sensing the stiffness characteristics using hand-held rigid instruments, surgeons can
localize the tumor during open surgery. But in RMIS, it is still an unsolved issue for robots to detect
the tumor through sensing technique, data acquisition, and processing etc. In [6,7], detailed surveys
of tactile and force sensing devices for robotic and biomedical applications have been presented
respectively. To benefit the RMIS utilization, the sensors should be designed subject to special
requirements as those mentioned in [8–10], including (a) repeatability, (b) reliability, (c) speed of
sensing, (d) response with static and dynamic, (e) size (limited to about 10mm in diameter for small port

Appl. Sci. 2019, 9, 2573; doi:10.3390/app9122573 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-9361-4340
https://orcid.org/0000-0002-6488-1551
http://www.mdpi.com/2076-3417/9/12/2573?type=check_update&version=1
http://dx.doi.org/10.3390/app9122573
http://www.mdpi.com/journal/applsci


Appl. Sci. 2019, 9, 2573 2 of 21

insertion), (f) sterilizable (using at least one commonly used sterilization method), (g) biocompatible
or with a protective sheath and (h) low cost, etc. Based on these requirements, some tactile and force
sensors have been developed as presented in [11–16].

Motivated to achieve tumor localization in RMIS with a tactile or force sensor, considerable efforts
have been made as shown in the literatures: In [17] a haptic palpation probe is designed to locate
the subcutaneous blood vessel in RMIS. This probe design reduces the cost, and makes the palpation
probe disposable. Sliding indentation experiments on a silicone tissue phantom has demonstrated
its efficiency. Sliding indentation is one of the palpation methods which makes the probe press a
tissue with pre-defined depth and then slides the probe to palpate the tissue. The contact force
measured by the sensor can be used to calculate the mechanical property of the tissue. In [18], a novel
robotic sweeping palpation method is proposed which is inspired by the actual finger motion during
manual palpation in a digital rectal examination (DRE). In [19] a lateral exploration strategy for the
classification of inclusions and surrounding tissue is proposed. The above-mentioned methods measure
the mechanical property of soft tissue, and detect the hard inclusions from the normal surrounding
soft tissue, in which the force information performs the main factor to be sensed during the palpation
task. It should be pointed out that the applied force during palpation should be thresholded to a
certain limit, as if too large a force is applied to the soft tissue, safety problems may arise. The average
maximum force applied by surgeons when manually palpating soft tissue was proved to be around
4.4N from the in vivo experiments in [20]. Furthermore, in [21] it is also mentioned that autonomous
robot palpation can reduce the maximum applied force on the soft tissue by more than 35% compared
to manual palpation with similar tools. In view of the advantage of autonomous robotic palpation, [22]
analyzed the force modulation strategies for robotic palpation to identify the hard region in soft tissue
through a learning from demonstration (LfD) based method. Moreover, in [23] presented a remote
palpation using a machine learning approach and research in [24] illustrated an autonomous surface
recognition using vibration signals.

To quantitatively evaluate the mechanical property of soft tissue, the perceived stiffness value
is usually used. Finite element method (FEM) simulation is recognized as a proper approach to
extract objective and quantitative information of inhomogeneous abnormal tissue, but this method
is highly time consuming and normally has been used to simulate the mechanical property of soft
tissue deformation from a scientific research point of view [25,26]. The Young’s or elastic modulus
is recently widely used to evaluate the perceived stiffness of the soft tissue, which takes into accoun
the tool-tissue interaction and the indentation tip size as used in [22,27]. To calculate the perceived
stiffness of soft tissue, the interaction force must be measured. Although it is possible to obtain
the interaction force with a non-sensory based approach as shown in [28], the sensitivity of this
development is notably lower, which makes it less favorable. In order to better estimate the interaction
force of soft tissue, a sensor-based approach is usually adopted. Considering the surgical application,
sometimes the sensors cannot be used to directly contact the patient body for proper operation, thus the
sensor is normally arranged at the end of the surgical tools. During the operation, the surgical tool
is manipulated in a dynamic manner, and possibly causes measurement uncertainties (such as noise,
inertial force, friction etc.), thus potentially providing wrong or inaccurate diagnoses, for instance,
the force-based palpation.

The inertial force of the sensor based robotic-environment interaction has been investigated
recently within industrial robotic applications, which presents a major issue for force-guided or
force-guaranteed robotic manipulations. In [29], a variant of the recursive instrumental variables
method is used to online estimate the inertial parameter of the payload on the robotic system, and then
an improved force control performance can be achieved. After that, in [30], the authors extended the
recursive instrumental variables method to bilateral teleoperation tasks to eliminate and/or scale the
non-contact force (including inertial force caused by payload). In view of the non-negligible effect of
inertial force from sensor measurements, which potentially degrades the performance of interaction
control, in [31] an observer was developed with two different approaches: The extended Kalman
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filter (EKF) and unscented Kalman filter (UKF), for both type of observers, different measurement
vectors were considered with the first one only using pose and force/torque measurement, and the
second one also considering acceleration measurement. Another work presented in [32] investigates
the inertial force compensation with the industrial robot by using a quaternion-based Kalman filter
for safer human-robot interaction. All these works analyze the main factors such as velocity, position,
and accelerations of the inertial force caused by the sensor measurement, which highly relies on
the accuracy of the inertial force model, and mainly only considers the industrial application with a
heavy payload.

Having reviewed the previous related works, to the best knowledge of the authors, there is
no reported work on the inertial force analysis and compensation in robotic-assisted palpation.
Force sensing is the most important factor to be used to analyze the mechanical property of soft
tissue, and it is normally measured by the force sensor. Consequently, the inertial force will appear
during the data collection process and possibly degrade the detection of tissue and may even be a risk
to safety during palpation. In this paper, we investigate the effect of inertial force for robotic palpation
with a probe on the force sensor, a neural-network-based method is utilized to model the inertial force
during the palpation, and after that the inertial force will be compensated in an online way during
the data collection process. To demonstrate the effectiveness of the proposed approach, the perceived
stiffness of the soft tissue is calculated before and after the inertial force compensation and compared
with each other. Additionally, static experiments are performed to obtain the stiffness of the soft tissue,
in which the measured force is not affected by the inertial force since the force sensor stays still during
the experiments. From the experiment results, it can be found that after the inertial force compensation,
the calculated stiffness of the soft tissue is improved to better describe the real mechanical property of
the soft tissue during dynamic robotic palpation tasks.

The remaining of this paper is organized as follows. Section 2 comprehensively presents the
procedure of robotic-assisted palpation, while also performing a quantitatively stiffness assessment
and noting the force measurement uncertainty. A force compensation framework is also presented.
In Section 3, the neural-network-based approach is utilized to model the inertial force of the robotic
palpation, and the modeled inertial force can be canceled during the palpation tasks to get an improved
force measurement. Experiment results in Section 4 firstly presents the force measurement uncertainties
caused by the probe during dynamic robotic operation, then the force compensation framework is
used with the neural-network-based modelling, and the obtained results verify that the proposed
approach can efficiently remove the effect of inertial force and thus get an improved measurement
result in which Young’s modulus is close to the static experiment results (actual stiffness of soft tissue
defined in this paper). The discussion and conclusion are provided in Section 5 and 6 respectively.

2. Robotic Palpation with Force Based Approach

In this section, a force based robotic palpation approach is introduced. To quantitatively analyze
the stiffness of soft tissue with a hard inclusion embedded, Young’s modulus is used, which considers
the probe size and the materials of the environment. The measured force is the main factor in robotic
palpation which is usually obtained from the force sensor. However, sensor uncertainties are inevitable.
In the robotic palpation process, the probe is often controlled by an operator or moved autonomously
to contact the soft tissue, thus the inertial force will be introduced during the dynamic motion of
robotic palpation. To obtain an accurate stiffness of the soft tissue for better analysis, it is necessary to
compensate for the inertial force measured from the sensor during the dynamic motion.

2.1. Force Based Robotic Palpation

The cancerous nodule in the soft tissue can be palpated by a surgeon during the open surgery,
mainly because the tumor is stiffer than the normal surrounding tissue. Researchers in [33] have
conducted indentation tests of human and porcine abdominal organs in vivo and ex vivo, and proved
that healthy tissues demonstrate similar compliance, but a noticeable difference can be observed for the
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abnormal tissue surrounded by healthy tissue. When the robot is controlled to palpate the tissue with
a force sensor attached to the end, the difference of the force response can be observed when the robot
palpates different parts of the tissue at the same indentation depth. It can further be concluded that the
one with a large force response is more likely to be tumor. A brief schematic of robotic palpation with
a force sensor and probe is illustrated in Figure 1. The force sensor is used to measure the interaction
force between the probe and the soft tissue. During the palpation, the probe will be moved to contact
the soft tissue, and the real-time force response will be measured by the sensor to describe the applied
force during the palpation. When the indentation depths are different, the simple force response is
not sufficient enough to explain the location of a tumor, and it is therefore necessary to quantitatively
evaluate the mechanical property of the soft tissue for detailed analysis.

Figure 1. Schematic of robotic palpation with hard inclusions embedded in a silicone soft tissue
phantom. A 3D printed probe is attached to the force sensor, and the force sensor is attached to the
robot end effector. The probe can be controlled to contact the soft tissue phantom, in which three hard
inclusions (in blue) are considered to be tumors (stiffer than the phantom). The red line denotes the
distance between the probe and the surface of the tissue phantom.

2.2. Stiffness Analysis Through Young’s Modulus

The mechanical property of soft tissue has drawn considerable research interests, and several soft
tissue models have been developed. The Finite Element Method (FEM) is a popular tool to describe
soft tissue deformation, in which the tissue is divided into a serial of discrete elements, and these
elements form a mesh to describe the tissue deformation [34]. The FEM provides a reasonably accurate
depiction of the soft tissue deformation, but it is difficult to implement such a model in real-time due
to the high computation cost. Moreover, the boundary conditions of the FEM model is very difficult to
be defined in vivo, thus limiting its clinical application [35].

In order to quantitatively describe the mechanical property of soft tissue, the Young’s or elastic
modulus is used to evaluate the perceived stiffness of soft tissue in robotic-assisted palpation [22].
Since the spherical indentation tip is used to interact with the tissue to obtain the contact force, Young’s
modulus (YM) of the soft tissue can be derived as [36]:

E =
3 f (1 + v)
8din
√

rdin
(1)

in which E is YM, v is the Poisson’s ratio of the soft tissue phantom, f is the measured interaction force
from the sensor, r is the radius of the indenter, and din is the indentation depth. The YM is used to
determine the mechanical property of the tissue with or without hard inclusions. In YM, the main
factors used are the interaction force f and the indentation depth din. The interaction force can be
measured directly through the force sensor, but the indentation depth should be verified by the robotic
Cartesian vectors or with external devices.
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2.3. Uncertainty Analysis of Force Measurement

Measurement uncertainties are inherent characteristic for sensors, in which noise and random
drift are usually inevitable. Friction is not considered in this paper as the probe is fixed with the force
sensor on the end effector of the robot. Meanwhile, the robot is controlled to move along the Z axis
for the force analysis. When a probe or tool is attached to the force sensor, the measured force during
the dynamic manipulation task will be influenced by the inertial force and gravity of the probe or
tool. Figure 2 illustrates the procedure of robotic palpation, where the probe is controlled by the robot
to move along the Z axis to contact the soft tissue in which several hard inclusions are embedded.
The probe is designed with a spherical tip, and during the palpation, the probe is pressed to proper
indentation depths on the soft tissue. The palpation is a dynamic process within the Z axis of the
Cartesian space of the robot. We focus on the application of robotic-assisted palpation in open space.
The RMIS procedure is not considered in this work, in which the surgical tools are inserted into the
patient body through a small hole around 10 cm. Other friction and disturbances are easily caused in
RMIS. The measured force from the sensor can be expanded as:

fm = fe + fi + fg (2)

in which the fm is the measured force from the sensor, fe is the actual interaction force between probe
and the soft tissue (which can be considered to accurately reflect the tissue interaction force), fi denotes
the inertial force during the palpation and fg is the gravity effect due to the probe attached to the force
sensor. Through the analysis of the force measurement uncertainties, it is noticed that simply adopting
the measured force from a sensor cannot accurately reflect the interaction force, which may affect the
further analysis of the stiffness using YM, thus YM calculated by the measured force from a sensor can
be obtained as:

Em =
3 fm(1 + v)
8din
√

rdin
=

3( fe + fi + fg)(1 + v)
8din
√

rdin
. (3)

However, the actual YM of the soft tissue should be calculated as:

Ee =
3 fe(1 + v)
8din
√

rdin
. (4)

The force uncertainties indicated as fi and fg, easily make the obtained YM inaccurate,
thus challenging further analysis of robotic palpation.

Figure 2. Force analysis of robotic palpation: The probe is moved to press the soft tissue phantom, A is
the measured force from the sensor denoted as fm; B is the actual interaction force between the probe
and the environment defined as fe; C is the palpation depth between the spherical tip of the probe and
the surface of the soft tissue phantom as din.
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2.4. Robotic Palpation with Force Compensation

The uncertainties of force measurement exist widely in a robotic system, and thus may cause
unexpected performance. In the robotic palpation, we use YM to quantitatively analyze the mechanical
property of the soft tissue and to detect the tumor area based on YM values. But the uncertainties of
the sensor measurement may mislead the determination of the tumor inside the soft tissue. Most force
sensors are capable of providing a good initialization step before recording force data, which can
remove the influence of the probe gravity ( fg as shown in the previous section). However, the inertial
force ( fi as presented in the previous section) cannot be solved simply by initialization as it may change
during the dynamic robotic manipulation. To achieve an accurate interaction, the inertial force cannot
be ignored, and the proper method is desired to cancel the influence of the inertial force.

A force compensation framework of the robotic palpation is developed as shown in Figure 3.
The yellow block shows the normal robotic palpation approach as used in previous studies, in which
the measured force from the sensor is directly used for the analysis of the mechanical property of soft
tissue (as shown in Equation (3)). It is possible to obtain the close stiffness of the soft tissue once the
whole procedure is arranged as static measurement (in which the robot is controlled to palpate the
soft tissue with a defined indentation depth and the force data is collected when the robot keeps still
at the indentation depth until the force data is stable. The static force data in this paper is defined as
an average value from the sensor measurement for 10 s.). However, this static measurement usually
slows down the procedure and also requires the operator to focus on the data collection.

Figure 3. Force compensation framework of robotic palpation. The yellow block contains the original
information measured directly from the sensor and robot. By using this information, the YM can
be calculated but with potential measurement uncertainties such as inertial force. In the blue block,
a force compensation framework is designed to remove the influence of inertial force from the sensor
measurement. Thus the YMs can be obtained by the compensated force.

It is desired and necessary to get an accurate determination during the dynamic surgical procedure.
Thus a force compensation solution is developed to remove the effect of inertial force during palpation,
as shown in the blue block. The inertial force can be modeled online as f̃i, and then canceled from the
force measurement fm. By this method, the compensated contact force fc during the robotic palpation
can be derived as:

fc = fm − f̃i − fg. (5)

Before the procedure, the gravity influence can be removed by the sensor initialization, thus fg

can be considered as 0. The modeled inertial force f̃i can also be canceled by using Equation (5).
With this compensated approach, an accurate interaction force during the palpation task can be
obtained, and thus can be used to calculate the perceived stiffness of the soft tissue. To model the
inertial force, a neural-network-based method will be introduced in the next section.
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3. Neural-Network-Based Modelling of Inertial Force and Compensation

In order to get the accurate model of inertial force during the dynamic robotic motion, a neural-
network-based approach is used. The general structure of the feed-forward fully-connected artificial
neural network (ANN) can be viewed in Figure 4, in which a three-layer neural network is presented,
namely the input, hidden and output layers. The input layer passes the nin-dimensional input vector
(feature vector) to the hidden layer and then to the output layer. In a more detailed way, the output of
the i-th node in the input layer is given as follows:

f (1)i (t) = xi(t), i = 1, 2, . . . , nin, (6)

and the output of the j-th node in the hidden layer is given as follows:

f 2
j (t) = t f (1)

( nin

∑
i=1

w(1)
ji f (1)i (t) + b(1)j

)
,

j = 1, 2, . . . , nh, (7)

where t f (1)(·) denotes the transfer function for the hidden layer, nh denotes the number of hidden
nodes, b(1)j denotes the bias in the hidden layer, and w(1)

ji denotes the weight between the j-th node in
the hidden layer and the i-th node in the input layer.

The j-th output of the neural network is given as follows:

yj(t) = t f (2)
( nh

∑
i=1

w(2)
ji f (2)i (t) + b(2)j

)
,

j = 1, 2, . . . , nout, (8)

where t f (2)(·) denotes the transfer/activation function for the output layer, nh denotes the number of
hidden nodes, b(2)j denotes the bias in the output layer, and w(2)

ji denotes the weight between the j-th
node in the output layer and the i-th node in the hidden layer.

x1(t)

x2(t)

xnin(t)

(bias) 1

(bias) 2

y1(t)

y2(t)

ynnout
(t)

Hidden layerInput layer Output layer

w(1)
ji w(2)

ji

b(1)j b(2)j

...

...
...

Figure 4. A three-layer feed-forward fully-connected neural network. In the proposed force compensation
approach, the input of the neural network is the state feature of the force sensor during moving and
the output the force response of the force sensor.
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It has been proved that the three-layer neural network is capable of approximating any smooth
nonlinear function in a compact domain to an arbitrary accuracy [37]. Given that the structural
complexity indicates the over-fitting issue, the above three-layer structure is adopted in the proposed
approach without increasing the layers to improve the generalization of the model.

To eliminate the effects of inertial force, unknown disturbance and uncertainty from the output of
the force sensor, it is helpful to build the model of the force sensor. In the model, the state information
of movement will be utilized as the input of the model while the force output of the force sensor
will be used as the output of the model. During the model design process, we seek to observe the
relationship between the movements and the outputs of the force sensor, thus the model can be
employed to compensate the output of the force sensor. By considering the mapping from the input
to the output, it is natural to adopt the supervised learning method [38]. It is worth mentioning
that the artificial neural-network-based approaches are reported in [37,39], in which the ANN-based
methods are used to successfully classify the materials by the force sensor. In this paper, we propose
the neural-network-based approach to model the force sensor in a supervised learning manner.

4. Experiment Studies and Result Analysis

In this section, experimental verification of the force compensation framework is performed.
We conduct the uncertainties analysis of the force sensor during the dynamic palpation procedure
and use the neural-network-based method to model the inertial force. Then the inertial force can be
online estimated and canceled during the robotic palpation. The corrected force for the palpation is
used to analyze the mechanical properties of the soft tissue, and thus can be used to detect the hard
inclusions inside the soft tissue quantitatively. Static robotic palpation experiments are performed as
well to verify the efficacy of the proposed approach.

4.1. Experiment Setup

The experiments are performed with the UR5 robot (Universal Robots, Denmark), which is a
collaborative robot used for various circumstances. Optoforce (Hungary-based) 6 Axis F/T force
sensor (HEX− 70− XE) is attached to the end effector of the robot to measure the interaction force.
A 3D printer probe with a spherical indentation tip (radius 5 mm, weight 200 g—close to the weight
of handled surgical tools) is designed and fixed with the force sensor to perform the palpation task.
The soft tissue is made by silicone (Poisson’s ratio v = 0.5), in which three hard inclusions (stiffer than
the phantom tissue and can be considered as a tumor in the experiments) are embedded at different
depths under the surface of the tissue (5 mm, 8 mm and 10 mm respectively). The robot and force sensor
are running under the Robot Operating System (ROS) with the ur_modern_driver [40] for low-level
control of the robot, and the Cartesian position of the robot is planned using the moveit package.
The experiments are conducted to palpate the soft tissue with four different setups: A: No hard
inclusion (tumor); B: Hard inclusion (tumor) with 5 mm depth; C: Hard inclusion (tumor) with 8 mm
depth; and D: Hard inclusion (tumor) with 10 mm depth (the depths denote the distance between the
hard inclusion place and the surface of the soft tissue). The palpation task is performed along the Z
axis of the robot, and the surface of the tissue is determined by various contact experiments, thus the
indentation depth can be calculated from the Cartesian position of the robot. The whole experiment
setup is shown in Figure 5.
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Figure 5. Experiment Setup with UR5 robot and silicone based soft tissue phantom with hard inclusions.
Opto f orce sensor is attached to the robot end effector to measure the contact force during the palpation.
Three hard inclusions which are stiffer than the soft tissue phantom are embedded at different depths
(depth here denote the distance between the place of hard inclusions and the surface of the tissue
phantom): 5 mm, 8 mm, 10 mm.

4.2. Uncertainties of Force Measurement

To deal with the uncertainties exist in the force sensor measurement, free motion experiments are
performed, the free motion experiments mean that the robot is moving along the Z axis but without
contacting any objects, in which the probe does not contact any object, and the robot is moving while
performing the palpation task along the Z axis. The experiment setup is shown in Figure 6. Since the
probe is not influenced by any contact force, the force sensor is supposed to only contain the inertial
force and unavoidable noise, the expected mean of the noise is supposed to be 0.0 N in the experiments.
The effect of gravity of the probe is compensated by the initialization of the force sensor before the
robot starts to move. Two different experiments are conducted to move the robot 15 times, and the force
read from the sensor are recorded and analyzed as shown in Figure 7. It is noticed that even without
contacting any object and with no probe attached on the sensor, a noticeable force (average force is
−0.0874 N) is obtained from the sensor due to the noise and other force measurement uncertainties.
When the probe is attached to the sensor, an even larger force is provided from the sensor (average
force is−0.1929 N). These experimental results show that force measurement uncertainties exist during
the robotic palpation task; when a probe is attached to the sensor, significant force measurement
uncertainty is caused, which may further deviate the force measurement. Figure 8 shows the force
response of 10 times that of free motion experiments with the probe attached on the force sensor,
which needs to be compensated to get accurate force measurements. From Optoforce sensor datasheet,
it is mentioned that the sensor measurement range is 200 N, and the resolution (typical) is 133.33 mN,
but all with static measurement considering sensor movement and the object attached on the sensor.
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Figure 6. Force uncertainty experiment setup. Experiment A: The probe is not attached on the sensor.
Experiment B: A 3D printed probe is attached on the sensor. The experiments are performed by moving
the robot in the Z axis with moving up 2 cm and down 2 cm 10 times, which last for around 80 s.

Figure 7. Force uncertainty experiment result analysis. All of the force information is recorded and
analyzed for experiment A and B. Significant force uncertainty can be observed in experiment B,
where the probe is attached on the sensor. The unit for the force is N.
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Figure 8. Force data from the force sensor with 10 free motion experiments (with probe attached on the
force sensor). During the experiments, the probe does not contact any environment. Each experiment is
conducted for around 80 s. Noticeable force is observed and recorded as shown in the figures.
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4.3. Static Palpation Experiments

In order to accurately estimate the YM of the soft tissue phantom (with and without hard
inclusions), static experiments are conducted, in which the robot is moved to a predefined indentation
depth. After the robot arrives at the indentation depth, the robot keeps the position until the force
data becomes stable, then the palpation force data with different indentation depths are recorded and
the respective YM is calculated. Table 1 shows the detailed experimental data and YM calculated.
The interaction force (static), indentation depth and YM are presented under different setups with
indentation depths ranging from 3–10 mm. The results of the static experiments can be used to
accurately reflect the Young’s modulus of the soft tissue under different setups, which will also be
used to verify the result of the proposed framework with force compensation. In this work, we mainly
focus on the force measurement uncertainties caused by the dynamic robotic palpation procedure,
and the static experimental results are used to verify the proposed compensation framework. From the
results presented from Table 1, we noticed that the YM of soft tissue without hard inclusion is quite
small. The one with a hard inclusion at a depth of 5 mm is the biggest, since the distance between the
inclusion to the surface of the soft tissue is small, which provides a bigger interaction force during the
palpation. Similarly, the YM of the one with a hard inclusion embedded at 8 mm depth is smaller than
the one at the depth of 5 mm. It is interesting that the YM of the setup in which the hard inclusion is
embedded at 10 mm depth is bigger than the one at 8 mm depth, but always smaller than the one at
5 mm depth. It might be caused by the position of the hard inclusion at 10 mm depth, as it is arranged
in the middle of the soft tissue phantom and the YM might be affected by the tensions from both sides.
Besides, the distribution of the material for soft tissue phantom might not be the same at each point of
the tissue.

Table 1. YM with static palpation experiments (Unit: Pa).

Time No Hard Inclusion Hard Inclusion 5 mm Hard Inclusion 8 mm Hard Inclusion 10 mm

1 7.8037× 104 (1.62 N and 3 mm) 1.4403× 105 (2.99 N and 3 mm) 1.0212× 105 (2.12 N and 3 mm) 1.3777× 105 (2.86 N and 3 mm)

2 8.1764× 104 (2.61 N and 4 mm) 1.3627× 105 (4.35 N and 4 mm) 1.0526× 105 (3.36 N and 4 mm) 1.3251× 105 (4.23 N and 4 mm)

3 7.0185× 104 (3.11 N and 5 mm) 1.3643× 105 (6.10 N and 5 mm) 1.005× 105 (4.48 N and 5 mm) 1.3643× 105 (6.10 N and 5 mm)

4 6.7953× 104 (3.98 N and 6 mm) 1.3487× 105 (7.84 N and 6 mm) 1.2595× 105 (7.34 N and 6 mm) 1.2959× 105 (7.59 N and 6 mm)

5 6.721× 104 (4.98 N and 7 mm) 1.4133× 105 (10.45 N and 7 mm) 1.2985× 105 (9.58 N and 7 mm) 1.3971× 105 (10.33 N and 7 mm)

6 7.1527× 104 (6.47 N and 8 mm) 1.477× 105 (13.31 N and 8 mm) 1.3394× 105 (12.07 N and 8 mm) 1.362× 105 (12.32 N and 8 mm)

7 6.8273× 104 (7.34 N and 9 mm) 1.5738× 105 (16.92 N and 9 mm) 1.4328× 105 (15.43 N and 9 mm) 1.3498× 105 (14.56 N and 9 mm)

8 6.8231× 104 (8.59 N and 10 mm) 1.6283× 105 (20.53 N and 10 mm) 1.4822× 105 (18.66 N and 10 mm) 1.3324× 105 (16.80 N and 10 mm)

4.4. Neural-Network-Based Force Compensation of Robotic Palpation

Besides determining the structure of the neural network model, the training process is also
important to build a proper model and the training data should be selected carefully. In addition,
the training process should be designed in a simplified way to provide for the concerns of the real
application. In the proposed approach, the training data is generated by the free movement of the force
sensor without any touch on the tip. However, non-negligible noise is found during the movement,
which makes the data hard to analyze. To address the random noise, the same free movement
experiments are conducted 10 times and then we use the average of those data to train the neural
network model. The data of the 10 experiments can be viewed in Figure 8 and the average of the data
can be viewed in Figure 9. It can be found that after averaging all of the 10 experiments, the force
response in Figure 9 is much smoother than those in Figure 8.
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Figure 9. Average of force data output from 10 same free motion experiments.

From the movements of the force sensor, the velocity and acceleration of the movements can be
calculated by the differential of the distance according to time, which are very important information
of the movements. The values of the distance, velocity, and acceleration can be viewed in Figure 10.
It should be pointed out that a moving average process is conducted on those values (the distance,
velocity, and acceleration) to make them more smooth, which will further make the obtained model
more robust.
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Figure 10. Top sub figure: The average of the same free movements (black curves) of the force sensor.
Bottom sub figure: The velocity (red curves) and acceleration (blue curves) calculated by the movements
and time.

To train the neural network model, the state variables such as the distance, velocity, and acceleration
of the force sensor can be used as the training input while the force output of the force sensor will be
used as the training target output. The purpose of the modeling is to establish the mapping from the
states of the force sensor by the input and output data, as illustrated in Figure 11.

In the training process, 500 uniformly sampled data from the state variables and the force output
are used as the training input and output. To make the modeling method easier to implement, we adopt
only the velocity and acceleration of the force sensor as the training input instead of including the
distance. The main reason is because the distance depends on the coordinates we choose while velocity
and acceleration do not (the constant terms due to coordinate shift will disappear in the differentials of
the distance according to time), which means the trained model can be used in different coordinates.
In the neural network modeling, the number of input layer nodes is chosen as 2 since only the velocity
and acceleration are used, the number of output layer nodes is chosen as 1, and the number of hidden
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layer nodes is chosen as 10. The number of hidden layer nodes is chosen experimentally to have
enough approximation ability without increasing the complexity.

Figure 11. Neural network modeling framework using the distance, velocity and acceleration of the
force sensor (which can be read from the robot end effector) as input, and the measured force from the
sensor can be used as the output.

Once the neural network based model is built, the online force compensation framework can be
performed during the robotic palpation task. The state information (velocity and acceleration) can
be transmitted to the model and the estimated inertial force f̃i is given accordingly. Thus the actual
interaction force during palpation can be obtained by compensating the inertial force f̃i. Figures 12–15
present the original force and the compensated force during the palpation tasks. It can be observed
that the original force read from the force sensor (in the blue curve) is below 0 during 10 palpation
tasks. Even when the probe is moved up after each palpation task, the force read from the sensor does
not reach 0 and significant inertial force can be noticed during the entire task. After the inertial force is
compensated, the corrected force (the black curve, obtained by fm − f̃i) is able to reach 0 when each
palpation task is finished and the probe is moving up without contacting any object. Accordingly,
it is also noticed that the force peak points which mean the probe is contacting the soft tissue with
indentation depth are also compensated to provide improved force measurements during robotic
palpation tasks.
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Figure 12. Force correction of the ’no hard inclusion’ case. The blue curve is the original measured
force from the sensor, and the black curve shows the corrected force by using the force compensation
approach. Peak forces are highlighted with red circles.
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Figure 13. Force correction of the ’hard inclusion 5 mm beneath the surface’ case. The blue curve is the
original measured force from the sensor, and the black curve shows the corrected force by using the
force compensation approach. Peak forces are highlighted with red circles.
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Figure 14. Force correction of the ’hard inclusion 8 mm beneath the surface’ case. The blue curve is the
original measured force from the sensor, and the black curve shows the corrected force by using the
force compensation approach. Peak forces are highlighted with red circles.



Appl. Sci. 2019, 9, 2573 15 of 21

0 10 20 30 40 50 60 70 80
−10

−8

−6

−4

−2

0

2

Time (Sec)

F
or

ce
 (

N
)

 

 
Original
Corrected
Peaks

Figure 15. Force correction of the ’hard inclusion 10 mm beneath the surface’ case. The blue curve is
the original measured force from the sensor, and the black curve shows the corrected force by using the
force compensation approach. Peak forces are highlighted with red circles.

In addition, to further verify the effect of force correction in palpation, the YM analysis at
those peak points are conducted since YM is an important aspect to be considered during robotic
palpation [22]. For the purpose of comparison, the static experiments have been conducted under the
same depth of hard inclusion. The YM from the static experiments is used as the reference value to
reflect the stiffness of soft tissue in the palpation. The original and corrected YM at the peak points can
be viewed in Figures 16–19. The average original, corrected and static YM is also presented in Table 2.
From Table 2, it can be found that the YM calculated by the corrected force data is more close to the
static experiments, which verifies again the effectiveness of the proposed method.
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Figure 16. Young’s modulus (YM) for the ’no hard inclusion’ case. The blue curve denotes the YM by
original force measured by sensor, and the black curve indicates the YM by compensated force.
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Figure 17. YM for the ’hard inclusion 5 mm beneath the surface.’ The blue curve denotes the YM by
original force measured by sensor, and the black curve indicates the YM by compensated force.
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Figure 18. YM for the ’hard inclusion 8 mm beneath the surface’ case. The blue curve denotes the YM
by original force measured by sensor, and the black curve indicates the YM by compensated force.
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Figure 19. YM for the ’hard inclusion 10 mm beneath the surface’ case. The blue curve denotes the YM
by original force measured by sensor, and the black curve indicates the YM by compensated force.
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Table 2. The average YM during palpation (Unit: Pa).

Palpation Cases Original Corrected Static

No hard inclusion 1.0158× 105 0.94711× 105 0.71647× 105

Hard inclusion at 5 mm 1.7233× 105 1.6567× 105 1.45105× 105

Hard inclusion at 8 mm 1.2957× 105 1.2283× 105 1.2364× 105

Hard inclusion at 10 mm 1.5441× 105 1.4772× 105 1.3505× 105

In order to further demonstrate the improvement of force compensation approach in terms of
YM in the previous experiments, a YM bias term (YMBT) is designed to present the difference of the
original/corrected and static YMs as shown:

YMBTos =

∣∣∣∣YMoriginal −YMstatic

YMstatic

∣∣∣∣ , (9)

YMBTcs =

∣∣∣∣YMcorrected −YMstatic
YMstatic

∣∣∣∣ , (10)

in which YMBTos shows the difference between the original YM and static YM, meanwhile, YMBTcs

indicates the difference between corrected YM and static YM. Since the static YM is used to indicate
the real YM of the soft tissue in this paper, a smaller YMBT value means that the obtained YM is much
closer to the real YM.

Table 3 provides the calculated YMBT of the experiments, it is noticed that after the utilization of
the force compensation approach designed in the paper, the calculated YMs are improved for all the
palpation cases as the YMBTcs is smaller than the YMBTos, which further proves the efficiency of the
proposed approach in robotic palpation.

Table 3. YM bias term (YMBT) during the robotic palpation experiments.

Palpation Cases Y MBTos Y MBTcs

No hard inclusion 41.78% 32.19%

Hard inclusion at 5 mm 18.76% 14.17%

Hard inclusion at 8 mm 4.80% 0.65%

Hard inclusion at 10 mm 14.34% 9.38%

5. Discussion

This paper firstly investigates the sensor measurement uncertainties in the surgical application
of force based robotic palpation, and mainly focuses on the inertial force caused by the surgical tools
and/or probe on the robotic system. The inertial force issue has been noticed and researched in the
industrial robotic application, in which a tool with a certain payload is normally utilized. From the
surgical application point of view, safety and accuracy are important, thus making inertial force
analysis and avoidance critical. Although the sensory technique is developing quite fast, with high
sensitivity and resolution, the uncertainties and the inertial force caused by the tools attached to the
sensor cannot be ignored. Force is a principal factor for some surgical procedures such as robotic
palpation, in which the force is used for the stiffness analysis of the soft tissue. However, such analysis
would be affected by force uncertainties. We have performed several free motion robotic palpation
experiments, and the significant force feedback indicates that inertial force is inevitable, which will
affect the stiffness analysis of soft tissue, further possibly leading to the inaccurate detection of a tumor
in robotic palpation. This free motion force information is used to model the inertial force, and a force
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compensation framework is proposed to cancel the inertial force during the robotic palpation task.
In this paper, a neural-network-based approach is used to model the inertial force by considering the
velocity and acceleration of the robot end effector.

From the experimental studies, it is seen that the inertial force affects the accurate analysis of the
soft tissue stiffness. Since it is the first study of the inertial force in surgical robots, the approach
developed in this paper can also be extended to other surgical applications, such as bilateral
teleoperation for RAS. In bilateral teleoperation, the whole operation is a dynamic procedure, and the
inertial force is caused once the robot is teleoperated either with a small or long distance. Using the
force compensation framework developed in this paper, the operator can obtain enhanced force
feedback from the operative site, thus guaranteeing safe and accurate surgical operations.

It is also worth mentioning that the proposed approach is simple to implement in real applications
when compared with other approaches like a Kalman filter. To train the inertial force compensation
model, one only needs to obtain data from the free motion experiments. The collected data will be
used to train the neural network. Then, the trained neural network is utilized to compensate for the
inertial force during the robotic palpation in an online manner.

Future Work

The future work plan will focus on the following topics:

• In vivo experiments with robotic palpation setup will be performed to present a real clinical
environment.

• Various modeling approaches with different features (force, mass, position, velocity acceleration
etc.) will be conducted to evaluate the performance of inertial force modeling.

• To extract more information from the dynamic palpation process, advanced modeling approaches
that favor the time-series data like recurrent neural network (RNN) will be investigated to further
improve the compensation performance.

• Heterogeneity of the tissue will be considered and various sample of tissues will be used to verify
the proposed approach.

6. Conclusions

In the surgical application, the dedicated tool-tissue interaction is crucial from both the operation
and the safety point of view regarding the sensing techniques. Due to many constraints (size,
sterilization, bio-compatibility etc.), the surgical tools or probes are used to contact the operative
site and to challenge the force measurement. In this paper, we firstly analyze the inertial force
during dynamic robotic-assisted palpation and propose a force compensation framework to reduce the
influence of the inertial force with a neural-network-based modeling approach. Through the robotic
palpation experiments and YM analysis of the soft tissue, it is observed that there is inertial force
existing during the palpation procedure. After the force compensation with neural-network-based
modeling, an improved force measurement is obtained. The YM analysis of the soft tissue presents
a proposed framework that benefits the palpation tasks, and can be further extended to other
robotic-assisted surgical procedure with high tool-tissue force requirements.
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