Supporting Materials

Table S1. Selected bond lengths (Å) and dihedral angles(°) of R and Q in phase of vacuum and solvent.

Dyes	V-R	S-R	V-Q	S-Q
C2-C3 (Å)	1.473	1.474	1.482	1.470
C4-O5 (Å)	1.370	1.373	1.550	1.373
O5-C6 (Å)	1.445	1.445	1.450	1.455
C1-C2-C3-C4 (°)	-35.438	-35.780	-65.395	21.705
C3-C4-O5-C6 (°)	128.985	129.893	54.764	116.200
C4-O5-C6-O7 (°)	-120.791	-111.489	42.702	118.087

Table S2. The calculated PDOS of S-Q and S-R.

Dyes	S-Q	S-R
НОМО	97%	95%
LUMO	100%	99%

Table S3. The calculated NBO of S-Q and S-R.

D	yes	q _{s0}	q <i>s</i> 1	\varDelta_q	Δ_q/q_{s0}
S-Q	Black	0.34366	0.33281	-0.01085	3.16%
	Red	-0.34362	-0.33283	0.01079	3.14%
S-R	Black	1.36283	1.40278	0.03995	2.93%
	Red	-1.36282	-1.40274	-0.03992	2.93%

Table S4. The dipole moments μ (D), the polarizability α (a. u.), the average polarizability α_{tot} (esu), the anisotropy of the polarizability $\Delta \alpha$ (esu), and the first hyperpolarizability β_{tot} (esu) of S-Q and S-R.

Dyes	S-Q	S-R
μ_x	2.369	-4.851
μ_{normal}	15.997	2.001
μ_z	3.178	-1.538
A_{xx}	465.123	614.275
A_{xy}	39.469	20.355
$A_{\gamma\gamma}$	445.354	648.377
A_{xz}	-16.362	-68.116
A_{yz}	21.555	32.774
A _{zz}	179.191	399.567
β_{xxx}	-669.782	1665.694
β_{xxy}	-2999.843	-595.604
β_{xyy}	-3003.958	-2069.564
β_{xxz}	-70.385	-884.451
β_{xyz}	-128.747	-155.406
β_{yyz}	6.126	366.560
β_{xzz}	83.683	367.315
β_{yzz}	-22.914	203.916
β_{zzz}	75.598	-386.774

μ_{tot}	16.480	5.468
α_{tot}	363.222	554.073
Δ_{α}	288.732	270.128
β_{tot}	5639.846	3619.623

Table S5. Charge transfer distance (DCT), overlap extent (Sr), t and H index derived through electron and hole analysis.

Dyes	$D_{CT}/Å$	Sr	t/Å	H/Å
S-Q	0.370	0.6935	-1.808	3.289
S-R	0.650	0.70478	-1.247	3.211

Table S6. The experimental stokes shift of Q and R in three different solvents (water, dimethyl sulfoxide (DMSO), methanol).

Experiment	Absorption(nm)		Emission(nm)		Stokes(nm)	
Solvent	Q	R	Q	R	Q	R
Water	347	350	396.6	467.4	49.6	117.4
DMSO	358	357	398.6	438.8	79.6	81.8
Methanol	349	353	430	458.4	81	105.4

Table S7. The theoretical calculated stokes shift of Q and R.

Theory	Absorption (nm)		Emissio	on (nm)	Stokes (nm)	
Solvent	Q	R	Q	R	Q	R
Water	347.48	336.43	417.01	422.63	69.53	86.2
DMSO	348.03	336.91	418.94	423.98	70.91	87.07
Methanol	347.44	336.26	418.80	422.18	71.36	85.92

Table S8. The fluorescent lifetime of S-Q and S-R.

Dyes	E (eV)	λ (nm)	f	τ (ns)
S-Q	1.815	683.11	0.0324	215.92
S-R	2.985	415.41	0.4773	5.42

Table S9. The I-V parallel experiments of S-Q and S-R.

Dyes	S-Q			S-	-R
$J_{sc}(\text{mAcm}^2)$	5.293	5.480	5.346	1.826	1.851
$V_{oc}(V)$	0.596	0.582	0.585	0.547	0.538
η(%)	2.008	2.151	2.156	0.713	0.685

Figure captures:

Fig S1. The schematic structure of DSSC devices

Fig S2. The optimized ground state structures of S-Q and S-R.

Fig S3. The labels of S-Q and S-R corresponding to the FT-IR spectrum.

Fig S4. Frontier molecular orbitals of S-Q and S-R.

Fig S5. The CDD pictures of S-Q and S-R.

Fig S6. The composition of Q (A, B, C represents the group of 3,5,7-trihydroxy-4H-chromen-4-one; pyrocatechol; 2-methyl-tetrahydro-2H- pyran-3,4,5-triol, respectively) and R (A,B,C represents the group of 2,2'-(1,2-Phenylenebis(oxy)diethanol;3,5-dihydroxy-7-(2hydroxyethoxy)-2-methyl-4H-chromen-4-one;2-methyl-6-((3,4,5-trihydroxytetrahydro-2-H-pyran-2-yl)methoxy)tetrahydro-2-H-pyran-3,4,5-triol respectively).

Fig S1. The schematic structure of DSSC devices

Fig S2. The optimized ground state structures of S-Q and S-R.

Fig S4. Frontier molecular orbitals of S-Q and S-R.

Fig S5. The CDD pictures of S-Q and S-R.

Fig S6. The composition of Q (A, B, C represents the group of 3,5,7-trihydroxy-4H-chromen-4-one; pyrocatechol; 2-methyl-tetrahydro-2H- pyran-3,4,5-triol, respectively) and R (A,B,C represents the group of 2,2'-(1,2-Phenylenebis(oxy)diethanol;3,5-dihydroxy-7-(2hydroxyethoxy)-2-methyl-4H-chromen-4-one;2-methyl-6-((3,4,5-trihydroxytetrahydro-2-H-pyran-2-yl)methoxy)tetrahydro-2-H-pyran-3,4,5-triol respectively).