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Abstract: Focusing on water resources assessment in ungauged or sparse gauged areas, a comparative
evaluation of areal precipitation was conducted by remote sensing data, limited gauged data,
and a fusion of gauged data and remote sensing data based on machine learning. The artificial
neural network (ANN) model was used to fuse the remote sensing precipitation and ground
gauge precipitation. The correlation coefficient, root mean square deviation, relative deviation
and consistency principle were used to evaluate the reliability of the remote sensing precipitation.
The case study in the Qaidam Basin, northwest of China, shows that the precision of the original
remote sensing precipitation product of Tropical Precipitation Measurement Satellite (TRMM)-3B42RT
and TRMM-3B43 was 0.61, 72.25 mm, 36.51%, 27% and 0.70, 64.24 mm, 31.63%, 32%, respectively,
comparing with gauged precipitation. The precision of corrected TRMM-3B42RT and TRMM-3B43
improved to 0.89, 37.51 mm, –0.08%, 41% and 0.91, 34.22 mm, 0.11%, 42%, respectively, which indicates
that the data mining considering elevation, longitude and latitude as the main influencing factors
of precipitation is efficient and effective. The evaluation of areal precipitation in the Qaidam Basin
shows that the mean annual precipitation is 104.34 mm, 186.01 mm and 174.76 mm based on the
gauge data, corrected TRMM-3B42RT and corrected TRMM-3B43. The results show many differences
in the areal precipitation based on sparse gauge precipitation data and fusion remote sensing data.
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1. Introduction

Precipitation is one of the essential links in the water cycle process and varies significantly whether
it is spatial or temporal [1,2]. Traditionally, the measurement of precipitation is based on a ground
gauge station such as a hydrometric station or meteorological station. The gauge precipitation is
identified in terms of both effectiveness and accuracy due to its direct measurement. The spatial
distribution of precipitation is mostly interpolated from the gauged data. However, the accuracy of
interpolation in the sparse and uneven gauged area is generally not reliable [3]. Therefore, the fusion
of remote sensing data and gauged data for evaluation has become a challenging topic [4–8].

There are many high-resolution rainfall products at both the global and regional scales which
have been released successively [9,10], such as the Global Precipitation Climate Program (GPCP),
Global Satellite Mapping Precipitation Program (GSMaP), Tropical Precipitation Measurement Satellite
(TRMM) and Global Precipitation Measurement (GPM) [11–13]. Many remote sensing precipitation
products [14–17] are widely used to compensate for the shortage of gauged data areas [18–21].
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However, the remote sensing precipitation production is not highly reliable due to its
indirect observation which needs adjusting and evaluation [22–25]. There are many achievements
published about the evaluation of remote sensing precipitation products. [26–30]. The precision
evaluation index of remote sensing precipitation products mainly includes a correlation coefficient,
determination coefficient, scatter slope, fuzzy comprehensive score, etc. [31–34]. For those remote
sensing precipitation products with low precision, it is necessary to be corrected. The most used
method is machine learning, such as the classification and regression tree (CART), random forest (RF),
multi-factor data mining set correction, etc. [18,35]. An artificial neural network (ANN) is a powerful
machine learning algorithm with a complex network structure formed by the interconnection of a
large number of processing units (neurons) [36]. It is an information processing system based on
imitating the structure and function of the brain neural network [37]. The theory of an ANN has
made significant progress in pattern recognition [38,39], automatic control, signal processing [40],
assistant decision-making, artificial intelligence [41], networking and healthcare [42–45]. It has been
successfully introduced into the field of hydrology and water resources [46,47].

There are many publications on TRMM remote sensing precipitation products for applicability in
specific areas [48–50]. Dominque et al. [51] found that the accuracy of both the total and the monthly
precipitation of TRMM in the Amazon basin are high enough. Ji et al. [52] validated the accuracy of
TRMM precipitation products and found it has a high accuracy in Sichuan and Chongqing in China
on seasonal and monthly scales. Wang et al. [53] analyzed TRMM precipitation products with the
observation data of meteorological stations in the Tianshan Mountains and its surrounding areas,
and the results showed that the TRMM products had good applicability. A large number of research
results showed that the accuracy of TRMM precipitation products was higher on monthly and annual
scales [54,55], which could be used for analyzing the dynamic variability of a long-time precipitation
sequence [56].

However, Qu et al. [57] evaluated the daily precipitation products of TRMM in the Irrawaddy
River basin and found that the remote sensing precipitation and the measured values had a high
correlation but a large deviation. Xu et al. [58] evaluated the TRMM precipitation in the southern part
of the Qinghai–Tibet Plateau by gauged data from high-density rainfall stations and found that TRMM
overestimated the amount of light rains. The altitude, slope, direction, latitude, longitude and other
factors impact the accuracy of TRMM precipitation [18]. Therefore, TRMM precipitation products
should be corrected before being applied in some areas, especially high mountain areas. Based on the
evaluation of TRMM 3B42RT and 3B43 in the Qaidam Basin, northwest of China, this paper fused the
gauged data and remote sensing data of precipitation by machine learning and assessed the rainfall
resources in the Qaidam Basin. The methodology can be used in other sparse gauged areas.

2. Data and Methods

2.1. Study Area and Data Sources

2.1.1. Study Area

The Qaidam Basin is located in the northeastern edge of the Tibetan Plateau. The geographical
coordinates are 34◦41′–39◦20′ N and 87◦48′–99◦18′ E, spanning the Gansu Province, Qinghai Province
and Xinjiang Uygur Autonomous Region. The vast majority of the Qaidam Basin is in the Qinghai
Province with an area of 234.14 thousand km2. The area in Xinjiang Uygur Autonomous Region is
17.42 thousand km2 and that in the Gansu Province is 17.89 thousand km2. The northwest, northeast and
south of the Qaidam Basin are surrounded by the Altun Mountains, Qilian Mountains and Kunlun
Mountains, respectively, as shown in Figure 1. The Qaidam Basin is the only large plateau inland basin
in the world and its elevation ranges from 2653 m to 6748 m. The basin is deep in the mainland and
surrounded by mountains. It is hard for the warm and humid airflow from the southwest to reach
the basin, forming the typical cold-dry continental climate. Affected by the topography and latitude,
the temperature of the basin is high in the central portion, but low all around. The lowest temperature
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occurs in January with −9.8–−16.1 ◦C in the basin area and −14.7–−17.2 ◦C in the mountainous area.
The highest temperature is in July with 13.5–19.2 ◦C in the basin area and 5.6–10.4 ◦C in the mountainous
area. The annual sunshine duration is generally above 3100 h.
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2.1.2. Data Sources

The data used in this study include Digital Elevation Model (DEM), representing ground elevation,
TRMM 3B42RT and 3B43, representing remote sensing precipitation, and gauged precipitation data
by surface ground meteorological and hydrometric stations. The DEM data is from the Geographical
Information Monitoring Cloud Platform (GIM Cloud) [59], and the spatial resolution is 1 km × 1 km.
The TRMM 3B42RT and 3B43 are from the NASA website [60] with a spatial resolution of 0.25◦ × 0.25◦

and a time resolution of 3 h. The TRMM products were processed by ArcGIS to fit the Qaidam
Basin and the data is from 2001 to 2016. In order to consider the effect of elevation, the 1 km × 1 km
spatial resolution matched with DEM data was used when resampling the TRMM data. The gauged
precipitation data, including 9 meteorological stations and 11 hydrometric stations from 2001 to 2016,
was from China Meteorological Science Data Sharing Service Network [61] and Hydrological Red Book
of the People’s Republic of China [62], respectively.

2.2. Methodology

2.2.1. Evaluation of Remote Sensing Precipitation Precision

(1) The TRMM products’ precision in gauged grids:
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The correlation coefficient (R2), relative deviation (Bias) and root mean square deviation (RMSD)
were calculated in the grids where a gauge station was located. The data series is from 2001 to 2016
and the temporal resolution is all on an annual scale. The formulas are as follows:

R2 =

[
n∑

i=1

(
Psi − Ps

)(
Pti − Pt

)]2

n∑
i=1

(
Psi − Ps

)2
·

n∑
i=1

(
Pti − Pt

)2
, (1)

Bias =

n∑
i=1

(Pti − Psi)

n∑
i=1

Psi

× 100%, (2)

RMSD =

√√
1
n

n∑
i=1

(Pti − Psi)
2, (3)

where, Ps is the gauged precipitation by the ground gauge stations (mm); Pt is the remote sensing
precipitation retrieved from TRMM products (mm); Ps and Pt are the average value of Ps and Pt,
respectively; n is the number of years (2001–2016). The R reflects the correlation between the gauged
precipitation and the TRMM precipitation. The relative deviation (Bias) and root mean square deviation
(RMSD) reflect the deviation degree between the gauged precipitation data and the TRMM precipitation.

(2) The TRMM products’ precision in ungauged grids:
There are only 20 gauges in the study area which means the gauged grids are equal or less than

20. All the other grids are ungauged. According to Xia’s achievements [9], the accuracy of the remote
sensing precipitation on the grids without a gauge station can be evaluated by the criteria of the
consistency rate (CR). The formulas are as follows:

Counti =

{
1,
0,

if Pti ∈ D
if Pti < D

i = 1, 2, · · · , N, (4)

S =
N∑

i=1

Counti, (5)

CR =
S
N
× 100%, (6)

where, D is the precipitation-elevation mask (PEM) derived from the relationship of gauged precipitation
and the elevation of the gauge stations; N is the total number of grids without gauge stations; S is the
total number of grids in which remote sensing precipitation falls into the PEM. If the remote sensing
precipitation value falls into the mask, then the remote sensing precipitation is considered consistent
with the gauged precipitation at the same elevation region, that is, the remote sensing precipitation is
reliable and vice versa.

2.2.2. Correction of Remote Sensing Precipitation by ANN Model

A three-layer ANN model was set up for remote sensing precipitation correction. The model has
five input variables (i.e., gauged precipitation (Ps), elevation (DEM), longitude (X) and latitude (Y)
of the gauge stations, and TRMM precipitation). Specifically, the Ps is the target value of the model,
and the four others are the variables of the model input layer. The output variable is only the corrected
precipitation in the model output layer. The hidden layer nodes are set to 20 by the preferred selection.
The structure of the ANN model in this paper is shown in Figure 2.
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The model training function is ’trainlm’ which updates weight and bias values according to
Levenberg–Marquardt optimization. At the same time, we chose the ‘tansig’ as the model neural transfer
function to calculate a layer’s output from its net input. The divide function is accessed automatically
whenever the network is trained, which is used to divide the data into training, validation and
testing subsets. In this study, the net divide function is set to ‘dividerand’, and the ratios for training,
validation and testing are 0.7, 0.0 and 0.3 according to the needs of the training function of ‘trainlm’.
The prepared sequence data is randomly divided into the training subset (70%) and testing subset
(30%) using the division parameters by the divide function. The fusion models for 3B42RT and 3B43
correction completed 103 and 127 times of training, and the convergence error (mean square error) was
0.0036 and 0.0041, respectively.

The process of data fusion mainly includes four steps: (1) the Pt is extracted by combining ArcGIS
technology according to the spatial locations of the gauge stations. Moreover, the data of Ps, DEM, X,
Y and Pt are stored in a one-to-one correspondence; (2) training and testing the model after setting each
function of the artificial neural network. When the parameters such as the R2 reach certain conditions,
the construction of the model is completed; (3) correction remote sensing precipitation based on the
fusion model which is established in the previous step; (4) the fused precipitation data are inversed to
the research area on a spatial–temporal scale according to the spatial information of the grids.

2.2.3. Assessment of Rainwater Resources

The areal rainwater resources (i.e., precipitation) is evaluated by the mean value. The variation
trend of the areal precipitation is predicted by the improved Mann–Kendall method [63–65].

Corresponding to the time series X with n sample sizes, the order column is constructed as follows:

Sk =
k∑

i=1

ri ri =

1 xi > x j

0 xi ≤ x j
j = 1, 2, · · · , i. (7)

It can be seen that the order sequence S is the cumulative number of values at the ith moment
greater than that at the jth moment. Under the assumption that the time series is randomly independent,
the statistics are defined as follows:

UFk =
Sk − E(Sk)√

Var(Sk)
k = 1, 2, · · · , n, (8)
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where UFk = 0, E(Sk) and Var(Sk) are the mean and variance of the cumulative number Sk, respectively.
When x1, x2, . . . , xn are independent of each other and have the same continuous distribution, they can
be calculated by the following formula:

E(Sk) =
n(n + 1)

4
Var(Sk) =

n(n− 1)(2n + 5)
72

, (9)

where UFi is the standard normal distribution, which is the statistical sequence calculated according to
the time series X (x1, x2, . . . , xn). The significance level α is determined and the normal distribution
table is checked. If |UFi| > Uα, it indicates that there is a significant trend change in the sequence.

Repeating the above process according to the time series X in inverse order xn, xn−1, . . . , x1,
while letting UBk = −UFk, k = n, n − 1, . . . , 1, UB1 = 0. If the calculated value of UBk or UFk is greater
than 0, it indicates that the sequence has an upward trend; if lower than 0, it indicates a downward
trend. When they exceed the critical line, it suggests that the upward or downward trend is significant.

3. Results and Discussion

3.1. Precision of Original TRMM Products

3.1.1. Grids with the Gauge Station

According to the methods above, the precision criteria of original TRMM products on
the 20 grids with the gauge station are shown in Table 1. The names of the gauge
stations are LengHu (LH), XiaoZaoHuo (XZH), GeErMu (GEM), HeXi (HX), MangYa (MY),
NuoMuHong (NMH), GeErMu4 (GEM4), DaChaDan (DCD), HuaiTouTaiLa (HTTL), GaHai (GH),
NaChiTai (NCT), WuLan (WL), DeLingHa (DLH), DuLan (DL), ChaHanWuSu (CHWS), XiaRiHa (XRH),
XiangRiDe (XRD), KeEr (KE), ShangGaBa (SGB), ChaHanHe (CHH), respectively.

Table 1. The precision of original Tropical Precipitation Measurement Satellite (TRMM) products
(2001–2016). LH: LengHu; XZH: XiaoZaoHuo; GEM: GeErMu; HX: HeXi; MY: MangYa;
NMH: NuoMuHong; GEM4: GeErMu4; DCD: DaChaDan; HTTL: HuaiTouTaiLa; GH: GaHai;
NCT: NaChiTai; WL: WuLan; DLH: DeLingHa; DL: DuLan; CHWS: ChaHanWuSu; XRH: XiaRiHa;
XRD: XiangRiDe; KE: KeEr; SGB: ShangGaBa; CHH: ChaHanHe; MAP: Mean Annual Precipitation.

Gauges Original 3B42RT Original 3B43

No. Name X (◦) Y (◦) DEM
(m)

MAP
(mm)

MAP
(mm)

Bias
(%)

RMSD
(mm)

MAP
(mm)

Bias
(%)

RMSD
(mm)

1 LH 93.33 38.75 2777 19.88 41.10 106.79 23.17 36.19 82.07 18.42
2 XZH 93.68 36.80 2772 30.34 81.60 168.97 57.76 77.49 155.44 52.74
3 GEM 94.90 36.42 2812 47.32 126.01 166.30 81.28 113.31 139.46 68.68
4 HX 94.60 36.38 2822 47.34 121.63 156.91 77.60 111.21 134.89 68.22
5 MY 90.85 38.25 2942 50.16 68.37 34.55 26.85 60.59 19.79 20.07
6 NMH 96.42 36.43 2796 55.54 118.66 113.65 67.30 117.21 111.05 65.48
7 GEM4 94.78 36.30 2957 61.76 126.01 104.05 67.61 113.31 83.48 55.44
8 DCD 95.37 37.85 3190 104.00 122.89 18.17 38.35 119.28 14.69 28.18
9 HTTL 96.73 37.35 2867 107.94 160.30 48.51 65.39 162.39 50.45 63.29

10 GH 97.43 37.23 2877 161.24 157.18 −2.52 32.02 168.12 4.27 26.18
11 NCT 94.57 35.87 3966 182.31 230.40 26.38 70.91 222.21 21.89 65.31
12 WL 98.48 36.92 2959 222.26 157.31 −29.22 83.38 174.37 −21.55 66.26
13 DLH 97.37 37.37 2988 228.68 201.19 −12.02 41.53 203.84 −10.86 35.93
14 DL 98.10 36.30 3190 240.73 183.92 −23.60 73.11 195.62 −18.74 58.43
15 CHWS 98.12 36.23 3273 244.97 211.97 −13.47 54.70 218.89 −10.65 45.53
16 XRH 98.15 36.42 3143 252.91 183.92 −27.28 95.16 195.62 −22.65 81.60
17 XRD 97.87 35.97 3100 285.18 264.48 −7.26 57.26 265.41 −6.93 55.43
18 KE 97.70 35.95 3269 307.43 278.26 −9.49 70.71 277.94 −9.59 70.63
19 SGB 98.58 37.00 3168 332.05 170.04 −48.79 171.22 187.25 −43.61 151.87
20 CHH 98.57 37.05 3351 432.30 257.26 –40.49 189.76 258.21 –40.20 187.08

– Average – – – 170.72 163.12 36.51 72.25 163.92 31.63 64.24
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It is clear in Table 1 that the average mean annual precipitation (MAP) of 3B42RT and 3B43 on
the 20 grids are 163.12 mm and 163.92 mm, respectively, which look quite close to that of the gauged
precipitation (170.72 mm). However, it can be found that the TRMM precipitation is higher in the low
gauged precipitation areas (LGPA), including the stations of LH, XZH, GEM, HX, MY, NMH, GEM4,
DCD and HTTL. On the contrary, the TRMM precipitation is lower in the high gauged precipitation
area (HGPA), including the stations of WL, DLH, DL, CHWS, XRH, XRD, KE, SGB and CHH. As a
result, the average MAP of TRMM is approximately equal to that of the gauged precipitation, but the
underestimated HGPA and overestimated LGPA will lead to systematic bias. The systematic error
is considered the result of planarization of the original TRMM when calibration was done with too
limited gauged data.

The average RMSD of the original 3B42RT and 3B43 in the Qaidam Basin is 72.25 mm and
64.24 mm, respectively. Considering with the bias together, the minimum RMSD (23.17 mm of 3B43RT
and 18.42mm of 3B43) relates to the overestimation (bias of 106.79%, 82.07% and value of 21.26 mm,
16.31 mm) of 3B42RT and 3B43 in the LGPA (LH station), while the maximum RMSD (189.76 mm of
3B43RT and 187.08 mm of 3B43) relates to the underestimation (bias of –40.49%, –40.20% and value of
–175.04 mm, –174.09 mm) in the HGPA (CHH station). It is obvious that the bias of underestimation is
smaller than that of overestimation, but the absolute amount of underestimation is far greater than that
of overestimation, as shown in Figure 3. Therfore, it is supposed that the average TRMM precipitation
in the Qaidam Basin would be an underestimation overall.
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Figure 3. The Original TRMM Precipitation Products Errors.

3.1.2. Grids without a Gauge Station

Most of the grids have no ground gauge so that we could not evaluate the precision by precipitation
itself. Some other validation principle is introduced. Here, it is the consistency principle (CR), which is
a relationship rule of rainfall and elevation retrieved from the gauged data. The situation of 3B42RT
and 3B43 precipitation falling into the PEM is shown in Figure 4.Appl. Sci. 2019, 9, x 8 of 19 
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It can be found that the CR value of original 3B42RT and 3B43 precipitation on the grids with
gauge is 60% and 68%, while on the grids without gauge it is only 27% and 32%, respectively. It means
the TRMM precipitation on the gauged grids is more reliable than that on the ungauged grids.

3.2. Correction of TRMM Products

3.2.1. Calibration and Validation

The regression machine learning by the ANN model mentioned above was carried out. In the
process, we have a total of 20 gauges with 16 years of data sets, of which 224 sets of data are used for
the model training, and the remaining 96 sets are used for model testing. The result of a comparison of
output and target is shown in Figure 5.
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Figure 5. The calibration and validation of TRMM precipitation by artificial neural networks (ANN).
(a) Training and testing for 3B42RT; (b) correction for 3B42RT; (c) training and testing for 3B43;
(d) correction for 3B43.

It can be seen from Figure 5a,c that the training and testing are very good with the determinant
coefficients 0.90, 0.91 and 0.88, 0.90, respectively. There was also improvement with the determinant
coefficients 0.89, 0.91 of corrected TRMM precipitation compared with the original TRMM determinant
coefficients of 0.61, 0.70. It also can be seen that the values of original 3B42RT and 3B43 are all mostly
above the 1:1 line when gauged precipitation was less than 100 mm, while a lot of the values of
original TRMM precipitation are under the 1:1 line when gauged precipitation was more than 200 mm.
This indicates that the original TRMM precipitation in the LGPA was overestimated and the TRMM
precipitation in the HGPA was underestimated. On the whole, the dispersion of TRMM precipitation
points on both sides of the 1:1 line is large and uneven, the R2 is only 0.61 and 0.70, respectively.
Fortunately, the 3B42RT and 3B43 precipitation improved significantly both in the LGPA and HGPA.
They closely dispersed on the both sides of the 1:1 line after the correction by the ANN model. The R2
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increased to 0.89 and 0.91, respectively. It was proven that the fusion model based on an ANN is
effective for the correction of TRMM products.

3.2.2. The Precision of Corrected TRMM Products

After the correction, the precision of TRMM precipitation in the Qaidam Basin on the grids with
the gauge station is shown in Table 2. It can be found that the average bias is significantly reduced,
from 36.51% to –0.08% (3B42RT) and 31.63% to 0.11% (3B43), respectively. It also can be seen from the
RMSD that the fusion model has a significant correction effect on TRMM products. The average RMSD
value decreased from 72.25 mm and 64.24mm to 37.51 mm and 34.22 mm after correction.

Table 2. The precision evaluation of corrected 3B42RT and 3B43 (2001–2016). - LH: LengHu;
XZH: XiaoZaoHuo; GEM: GeErMu; HX: HeXi; MY: MangYa; NMH: NuoMuHong; GEM4: GeErMu4;
DCD: DaChaDan; HTTL: HuaiTouTaiLa; GH: GaHai; NCT: NaChiTai; WL: WuLan; DLH: DeLingHa;
DL: DuLan; CHWS: ChaHanWuSu; XRH: XiaRiHa; XRD: XiangRiDe; KE: KeEr; SGB: ShangGaBa;
CHH: ChaHanHe; MAP: Mean Annual Precipitation.

Gauges Corrected 3B42RT Corrected 3B43

Name X (◦) Y (◦) DEM
(m)

MAP
(mm)

MAP
(mm)

Bias
(%)

RMSD
(mm)

MAP
(mm)

Bias
(%)

RMSD
(mm)

LH 93.33 38.75 2777 19.88 19.03 −12.15 8.21 17.80 −10.44 7.21
XZH 93.68 36.80 2772 30.34 31.60 4.15 11.71 32.25 6.32 12.21
GEM 94.90 36.42 2812 47.32 45.53 −3.78 11.06 44.48 −6.00 10.49
HX 94.60 36.38 2822 47.34 45.53 −3.82 14.92 45.09 −4.77 15.71
MY 90.85 38.25 2942 50.16 48.87 −2.46 22.2 52.54 4.52 22.01

NMH 96.42 36.43 2796 55.54 54.30 −2.23 17.24 53.51 −3.66 17.53
GEM4 94.78 36.30 2957 61.76 55.26 −10.52 13.57 56.97 −7.74 12.57
DCD 95.37 37.85 3190 104.00 98.31 −5.47 29.43 105.38 1.33 23.10
HTTL 96.73 37.35 2867 107.94 123.67 14.57 38.85 123.21 14.15 35.36

GH 97.43 37.23 2877 161.24 160.28 −0.60 31.44 158.83 −1.50 26.12
NCT 94.57 35.87 3966 182.31 182.35 0.02 35.08 185.47 1.74 34.19
WL 98.48 36.92 2959 222.26 243.09 9.38 56.33 231.36 4.10 48.45

DLH 97.37 37.37 2988 228.68 226.20 −1.08 31.62 223.36 −2.32 24.75
DL 98.11 36.30 3190 240.73 246.18 2.26 48.60 247.77 2.93 40.58

CHWS 98.12 36.23 3273 244.97 290.87 18.74 63.93 289.24 18.07 58.15
XRH 98.15 36.42 3143 252.91 247.61 −2.11 66.42 247.41 −2.17 59.82
XRD 97.87 35.97 3100 285.18 271.46 −4.81 54.38 275.56 −3.37 52.80
KE 97.7 35.95 3269 307.43 304.7 −0.89 62.78 308.31 0.29 63.06

SGB 98.58 37 3168 332.05 316.19 −4.78 57.49 305.51 −7.99 51.4
CHH 98.57 37.05 3351 432.3 449.37 3.95 74.96 426.29 –1.27 68.8

Average – – – 170.72 173.02 –0.08 37.51 171.52 0.11 34.22
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For those grids without gauges, the CR values were also evaluated. The CR of 3B42RT and 3B43 on
the grids with and without the gauge station improved up to 75%, 73% and 41%, 42% after correction
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(Figure 6). This means the precision of TRMM precipitation on grids with and without gauge station
are also improved.

3.3. Assessment of Rainwater Resources of the Qaidam Basin

3.3.1. The Average Amount of Precipitation

The spatial distribution of the mean annual precipitation from 2001 to 2016 before and after the
correction of 3B42RT and 3B43 in the Qaidam Basin is shown in Figure 7. It can be seen that the
precipitation on the eastern, southern and southeastern edges of the Qaidam Basin is high, while in the
center and northwest it is small. The original distribution of precipitation in the east and west of the
Kunlun Mountains is not even, but the trend of decreasing from east to west is enhanced significantly
after the correction. The main reason for this is the increase of precipitation in the eastern Kunlun
Mountains after the TRMM products corrected. The precipitation in the Qilian Mountains and the
southeastern edges of the Qaidam Basin was also relatively high and increased after correction. At the
same time, there was a higher consistency between precipitation and elevation in those regions, that is,
precipitation increased with elevation.
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For the 12 subregions of the basin, including MA, LE, DCD, DLH, WL, DL, GEM, QML, MD, ZD,
XJR and GSR as shown in Figure 1, the areal precipitation in each region is shown in Table 3.

We can see from Table 3 that the average annual precipitation of the Qaidam Basin based on the
original 3B42RT and 3B43 are 148.45 mm and 146.26 mm, respectively, while the new assessment value
is 186.01 mm and 174.76 mm based on corrected TRMM 3B42 and 3B43. It is obvious that the annual
precipitation (104.34 mm) based on the interpolated precipitation by gauges is significantly less than
that of original and corrected TRMM products.
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The previous studies on precipitation in the Qaidam Basin were mostly based on the gauged
precipitation data to get the areal precipitation of the Qaidam Basin according to the traditional
interpolation method. The pity is that the gauge distribution is too sparse and uneven, causing an
unreliable interpolation result. It is obvious that the precipitation in the area was underestimated in
the past. The fusion remote sensing precipitation with local ground information in high mountainous
areas is helpful.

Table 3. Assessment of annual precipitation in each region of the Qaidam Basin.

Region Name Area
(103 km2)

Interpolated
Precipitation by Gauges

Original
3B42RT

Corrected
3B42RT

Original
3B43

Corrected
3B43

LE 19.3 29.65 43.79 22.42 39.43 25.3
MY 31.3 42.43 67.72 55.27 62.22 62.48

GEM 69.4 65.64 162.73 118.69 157.5 114.27
DCD 21.3 69.55 100.92 128.46 97.61 126.22

XJ 17.4 74.31 114.1 131.95 108.28 133.53
ZD 4.8 83.98 239.7 171.39 238.79 141.03
GS 17.9 86.57 112.33 221.02 107.09 208.24

QML 6.5 157.57 275.74 363.65 273.22 321.82
DLH 22.7 168.45 190.01 369.43 192.47 343.08
DL 43.8 183.01 203.43 302.37 205.56 273.62
WL 10.4 259.57 171.17 299.41 185.38 288.63
MD 4.7 292.9 354.29 602.71 358.21 523.32

The entire basin 269.4 104.34 148.45 186.01 146.26 174.76

3.3.2. The Precipitation Variation Trend

The annual precipitation time series and its variation trend of the gauged precipitation, original and
corrected 3B42RT and 3B43 products at the 20 gauge stations are shown in Figure 8 and Table 4.
From Figure 8 we can know that the original 3B42RT and 3B43 precipitation at the GEM, LH, NMH,
XZH. HX, NCT and GEM4 stations, where the precipitation is low, is obviously higher than the gauged
precipitation. On the contrary, the original 3B42RT and 3B43 precipitation at the CHH and SGB stations,
where the precipitation is high, is obviously less than the gauged precipitation. This again indicates
that the original 3B42RT and 3B43 are significantly overestimated in the LGPA and underestimated in
the HGPA. What is nice is that the 3B42RT and 3B43 decreases or increases significantly and tends to
the gauged precipitation values after the fusion model was corrected.
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Table 4. Comparison of the annual precipitation variation trend (2001–2016) between gauged and TRMM
products on the grids with the gauge station. LH: LengHu; XZH: XiaoZaoHuo; GEM: GeErMu; HX: HeXi;
MY: MangYa; NMH: NuoMuHong; GEM4: GeErMu4; DCD: DaChaDan; HTTL: HuaiTouTaiLa;
GH: GaHai; NCT: NaChiTai; WL: WuLan; DLH: DeLingHa; DL: DuLan; CHWS: ChaHanWuSu;
XRH: XiaRiHa; XRD: XiangRiDe; KE: KeEr; SGB: ShangGaBa; CHH: ChaHanHe; MAP: Mean
Annual Precipitation.

Station Name Gauged Original 3B42RT Corrected 3B42RT Original 3B43 Corrected 3B43

GH −2.21 −0.23 −0.18 −0.27 −0.85
XRD −1.32 0.01 −0.02 −0.06 −0.07
DCD −0.63 −1.55 −0.75 −1.07 −0.77
KE −0.62 −0.37 −0.40 −0.47 −0.59

DLH −0.32 −0.94 −0.91 −0.27 −0.33
HTTL −0.15 −1.05 −0.63 0.13 −0.10
CHWS 0.09 2.78 2.87 0.58 0.67

LH 0.13 0.91 0.05 1.10 0.26
XZH 0.14 1.44 0.39 1.94 0.57
DL 0.23 0.01 0.02 0.94 1.05

GEM4 0.58 1.87 0.88 1.29 0.58
NMH 0.63 1.91 0.95 2.33 1.29

HX 0.89 2.08 0.69 2.23 0.85
GEM 0.93 1.87 0.84 1.29 0.54
NCT 1.31 0.63 0.32 0.86 0.35
MY 1.45 0.17 0.06 0.41 0.13
SGB 2.43 4.25 3.95 3.22 3.03
WL 4.71 3.14 2.77 2.28 2.69

XRH 3.21 2.21 2.29 2.94 3.06
CHH 10.45 0.19 0.18 1.16 1.78

Average 1.10 0.97 0.67 1.03 0.71
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From the average change trends of precipitation at the 20 gauge stations in the three data sources,
the annual precipitation of the Qaidam Basin shows an increasing trend. The gauged precipitation
at GH, XRD DCD, KE, DLH and HTTL stations showed a decreasing trend, and the others showed
an increasing trend in different degrees at the other 14 gauge stations. The change trend direction is
basically the same. Therefore, the spatial distribution and temporal variation trend of TRMM products
after correction can characterize the spatial–temporal variation characteristics of precipitation in the
Qaidam Basin.

According to the corrected 3B42RT and 3B43 precipitation in the Qaidam Basin from 2001 to 2016,
the change trend and significance on the grid scale in the study area were calculated, as shown in
Figure 9.
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It can be seen from the Figure 9a,b that the precipitation in the northeast of the Qaidam Basin
(Qilian Mountain area) showed a decreasing trend, while in the southeastern edge of the basin (east of
the Kunlun Mountains) showed an increasing trend based on corrected 3B42RT and 3B43 products.
It is obvious the precipitation slightly increased at the center and northwest of the basin. Figure 9b,d
showed the significant test results of the precipitation change trend. We know that most areas of the
Qaidam Basin were non-significantly increased or decreased, and only a small part of the areas passed
the significant change test (Z ≥ 2.58).

4. Conclusions

(1) The Qaidam Basin is located in an arid and semi-arid region with a dry climate and fragile
natural ecological environment. The precipitation process in the Qaidam Basin is significantly different
spatially and temporally. Due to the sparse gauge stations and maldistribution, the rainwater resources



Appl. Sci. 2019, 9, 2294 15 of 18

are hard to assess. A fusion of remote sensing precipitation of TRMM products and gauged precipitation
is helpful.

(2) The average mean annual precipitation is only 104.34 mm by ground gauges interpolation,
and 148.45 mm and 146.26 mm by original 3B42RT and 3B43. However, the precision evaluation
of TRMM precipitation shows it was overestimated in the LGPA and underestimated in the HGPA.
The original TRMM products need a correction.

(3) The correction result shows the average mean annual precipitation is 186.01 mm by 3B42RT
and 174.74 mm by 3B43. The average bias of 3B42RT and 3B43 at gauge stations are significantly
reduced to −0.08% and 0.11% after being corrected, and the average RMSD is significantly reduced to
37.51 mm and 34.22 mm, respectively. All of those indicated that the precipitation products fusion
model based on ANN could effectively work on TRMM products.

(4) The final result shows there are many differences in areal precipitation based on sparse gauge
precipitation data, original TRMM data and fusion remote sensing data. The rainwater resources in
the study basin have been underestimated in the past year, and both were derived from ground gauge
stations and from original TRMM products.

In the future, research needs to test the ANN effectivity on mining the normalized difference
vegetation index and rainwater resources in this area.

Author Contributions: Conceptualization, Z.W. and G.X.; methodology, Z.W. and T.X.; formal analysis, G.X.;
writing—original draft preparation, G.X.; writing—review and editing, Z.W. All authors read and approved the
final manuscript.

Funding: This research was funded by the National Key Research and Development Program
(No. 2016YFC0402900), Key R&D and Transformation Projects in Qinghai Province (No. 2017-SF-116), and the
National Natural Science Foundation of China (NSFC, Grant No. 41671020).

Acknowledgments: The authors would like to thank all the colleagues who generously provided their dataset.
The authors greatly thank the editors and reviewers for providing thorough and constructive comments to improve
the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Bohnenstengel, S.I.; Schlünzen, K.H.; Beyrich, F. Representativity of in situ precipitation measurements—A
case study for the LITFASS area in North-Eastern Germany. J. Hydrol. 2011, 400, 387–395. [CrossRef]

2. Marzano, F.S.; Cimini, D.; Montopoli, M. Investigating precipitation microphysics using ground-based
microwave remote sensors and disdrometer data. Atmos. Res. 2010, 97, 583–600. [CrossRef]

3. Zhuoqi, C.; Xiaogu, Z.; Shupeng, Z.; Tao, L. Mapping Daily Precipitation over China Based on TRMM
Multisatellite Precipitation Analysis and Gauge Data. In Proceedings of the International Conference on
Remote Sensing, Kyoto, Japan, 29 October–1 November 2012.

4. XIE, P.; Arkin, P.A. Analyses of Global Monthly Precipitation Using Gauge Observations, Satellite Estimates,
and Numerical Model Predictions. J. Clim. 1996, 9, 840–858. [CrossRef]

5. Huffman, G.J.; Adler, R.F.; Rudolf, B.; Schneider, U.; Keehn, P.R. Global Precipitation Estimates Based on a
Technique for Combining Satellite-Based Estimates, Rain Gauge Analysis, and NWP Model Precipitation
Information. J. Clim. 1995, 8, 1284–1295. [CrossRef]

6. Vila, D.; Goncalves, L.; Toll, D.; Rozante, J.R. Statistical Evaluation of Combined Daily Gauge Observations
and Rainfall Satellite Estimates over Continental South America. J. Hydrometeorol. 2009, 10, 533–543.
[CrossRef]

7. Rozante, J.R.; Moreira, D.S.; de Goncalves, L.G.G.; Vila, D.A. Combining TRMM and Surface Observations of
Precipitation: Technique and Validation over South America. Weather 2010, 25, 885–894. [CrossRef]

8. Shen, Y.; Zhao, P.; Pan, Y.; Yu, J. A high spatiotemporal gauge-satellite merged precipitation analysis over
China. J. Geophys. Res. Atmos. 2014, 119, 3063–3075. [CrossRef]

9. Huffman, G.J.; Robert, F.A.; David, T.B.; Nelkin, E.J.; Acheampong, M. The TRMM Multi-Satellite Precipitation
Analysis (TMPA); Springer: Berlin, Germany, 2008.

http://dx.doi.org/10.1016/j.jhydrol.2011.01.052
http://dx.doi.org/10.1016/j.atmosres.2010.03.019
http://dx.doi.org/10.1175/1520-0442(1996)009&lt;0840:AOGMPU&gt;2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1995)008&lt;1284:GPEBOA&gt;2.0.CO;2
http://dx.doi.org/10.1175/2008JHM1048.1
http://dx.doi.org/10.1175/2010WAF2222325.1
http://dx.doi.org/10.1002/2013JD020686


Appl. Sci. 2019, 9, 2294 16 of 18

10. Kubota, T.; Ushio, T.; Shige, S.; Kida, S.; Kachi, M.; Okamoto, K. Verification of High-Resolution Satellite-Based
Rainfall Estimates around Japan Using a Gauge-Calibrated Ground-Radar Dataset. J. Meteorol. Soc. Jpn.
2009, 87, 203–222. [CrossRef]

11. Kidd, C.; Huffman, G. Global precipitation measurement. Meteorol. Appl. 2011, 18, 334–353. [CrossRef]
12. Tapiador, F.J.; Turk, F.J.; Petersen, W.; Hou, A.Y.; García-Ortega, E.; Machado, L.A.T.; Angelis, C.F.; Salio, P.;

Kidd, C.; Huffman, G.J.; et al. Global precipitation measurement: Methods, datasets and applications.
Atmos. Res. 2012, 104, 70–97. [CrossRef]

13. Seto, S.; Iguchi, T.; Oki, T. The Basic Performance of a Precipitation Retrieval Algorithm for the Global
Precipitation Measurement Mission’s Single/Dual-Frequency Radar Measurements. IEEE Trans. Geosci.
Remote 2013, 51, 5239–5251. [CrossRef]

14. Zhu, Z.; Yong, B.; Ke, L.; Wang, G.; Ren, L.; Chen, X. Tracing the Error Sources of Global Satellite Mapping of
Precipitation for GPM (GPM-GSMaP) Over the Tibetan Plateau, China. IEEE J. Stars 2018, 11, 2181–2191.
[CrossRef]

15. Guo, H.; Chen, S.; Bao, A.; Behrangi, A.; Hong, Y.; Ndayisaba, F.; Hu, J.; Stepanian, P.M. Early assessment of
Integrated Multi-satellite Retrievals for Global Precipitation Measurement over China. Atmos. Res. 2016,
176–177. [CrossRef]

16. Haile, A.T.; Yan, F.; Habib, E. Accuracy of the CMORPH satellite-rainfall product over Lake Tana Basin in
Eastern Africa. Atmos. Res. 2015, 163, 177–187. [CrossRef]

17. Liu, S.; Yan, D.; Qin, T.; Weng, B.; Li, M. Correction of TRMM 3B42V7 Based on Linear Regression Models
over China. Adv. Meteorol. 2016, 2016, 1–13. [CrossRef]

18. Xia, T.; Wang, Z.; Zheng, H. Topography and Data Mining Based Methods for Improving Satellite Precipitation
in Mountainous Areas of China. Atmosphere 2015, 6, 983–1005. [CrossRef]

19. Zheng, X.; Zhu, J. A methodological approach for spatial downscaling of TRMM precipitation data in North
China. Int. J. Remote Sens. 2015, 36, 144–169. [CrossRef]

20. Tao, Z.; Yuanqing, H.; Jian, M.; Juan, P. Spatial and temporal distribution of precipitation based on corrected
TRMM data around the Hexi Corridor, China. Sci. Cold Arid Reg. 2014, 6, 159–167.

21. Shi, Y.; Song, L.; Xia, Z.; Lin, Y.; Myneni, R.; Choi, S.; Wang, L.; Ni, X.; Lao, C.; Yang, F. Mapping Annual
Precipitation across Mainland China in the Period 2001–2010 from TRMM3B43 Product Using Spatial
Downscaling Approach. Remote Sens. 2015, 7, 5849–5878. [CrossRef]

22. Dinku, T.; Chidzambwa, S.; Ceccato, P.; Connor, S.J.; Ropelewski, C.F. Validation of high-resolution satellite
rainfall products over complex terrain. Int. J. Remote Sens. 2008, 29, 4097–4110. [CrossRef]

23. Bitew, M.M.; Gebremichael, M. Assessment of satellite rainfall products for streamflow simulation in medium
watersheds of the Ethiopian highlands. Hydrol. Earth Syst. Sci. 2011, 15, 1147–1155. [CrossRef]

24. Condom, T.; Rau, P.; Espinoza, J.C. Correction of TRMM 3B43 monthly precipitation data over the mountainous
areas of Peru during the period 1998–2007. Hydrol. Process. 2011, 25, 1924–1933. [CrossRef]

25. Darand, M.; Amanollahi, J.; Zandkarimi, S. Evaluation of the performance of TRMM Multi-satellite
Precipitation Analysis (TMPA) estimation over Iran. Atmos. Res. 2017, 190, 121–127. [CrossRef]

26. Romilly, T.G.; Gebremichael, M. Evaluation of satellite rainfall estimates over Ethiopian river basins.
Hydrol. Earth Syst. Sci. 2011, 15, 1505–1514. [CrossRef]

27. Moazami, S.; Golian, S.; Kavianpour, M.R.; Hong, Y. Uncertainty analysis of bias from satellite rainfall
estimates using copula method. Atmos. Res. 2014, 137, 145–166. [CrossRef]

28. Wang, Z.; Zhong, R.; Lai, C.; Chen, J. Evaluation of the GPM IMERG satellite-based precipitation products
and the hydrological utility. Atmos. Res. 2017, 196, 151–163. [CrossRef]

29. Lu, X.; Wei, M.; Tang, G.; Zhang, Y. Evaluation and correction of the TRMM 3B43V7 and GPM 3IMERGM
satellite precipitation products by use of ground-based data over Xinjiang, China. Env. Earth Sci. 2018,
77, 209. [CrossRef]

30. Lekula, M.; Lubczynski, M.W.; Shemang, E.M.; Verhoef, W. Validation of satellite-based rainfall in Kalahari.
Phys. Chem. Earth Parts A/B/C 2018, 105, 84–97. [CrossRef]

31. Duan, Z.; Bastiaanssen, W.G.M. First results from Version 7 TRMM 3B43 precipitation product in combination
with a new downscaling–calibration procedure. Remote Sens. Env. 2013, 131, 1–13. [CrossRef]

32. Guofeng, Z.; Dahe, Q.; Yuanfeng, L.; Fenli, C.; Pengfei, H.; Dongdong, C.; Kai, W. Accuracy of TRMM
precipitation data in the southwest monsoon region of China. Appl. Clim. 2017, 129, 353–362. [CrossRef]

http://dx.doi.org/10.2151/jmsj.87A.203
http://dx.doi.org/10.1002/met.284
http://dx.doi.org/10.1016/j.atmosres.2011.10.021
http://dx.doi.org/10.1109/TGRS.2012.2231686
http://dx.doi.org/10.1109/JSTARS.2018.2825336
http://dx.doi.org/10.1016/j.atmosres.2016.02.020
http://dx.doi.org/10.1016/j.atmosres.2014.11.011
http://dx.doi.org/10.1155/2016/3103749
http://dx.doi.org/10.3390/atmos6080983
http://dx.doi.org/10.1080/01431161.2014.995275
http://dx.doi.org/10.3390/rs70505849
http://dx.doi.org/10.1080/01431160701772526
http://dx.doi.org/10.5194/hess-15-1147-2011
http://dx.doi.org/10.1002/hyp.7949
http://dx.doi.org/10.1016/j.atmosres.2017.02.011
http://dx.doi.org/10.5194/hess-15-1505-2011
http://dx.doi.org/10.1016/j.atmosres.2013.08.016
http://dx.doi.org/10.1016/j.atmosres.2017.06.020
http://dx.doi.org/10.1007/s12665-018-7378-6
http://dx.doi.org/10.1016/j.pce.2018.02.010
http://dx.doi.org/10.1016/j.rse.2012.12.002
http://dx.doi.org/10.1007/s00704-016-1791-0


Appl. Sci. 2019, 9, 2294 17 of 18
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