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Abstract: The main aim of this study is to develop different hybrid artificial intelligence (AI)
approaches, such as an adaptive neuro-fuzzy inference system (ANFIS) and two ANFISs optimized
by metaheuristic techniques, namely simulated annealing (SA) and biogeography-based optimization
(BBO) for predicting the critical buckling load of structural members under compression, taking
into account the influence of initial geometric imperfections. With this aim, the existing results of
compression tests on steel columns were collected and used as a dataset. Eleven input parameters,
representing the slenderness ratios and initial geometric imperfections, were considered. The predicted
target was the critical buckling load of columns. Statistical criteria, namely the correlation coefficient
(R), the root mean squared error (RMSE), and the mean absolute error (MAE) were used to evaluate and
validate the three proposed AI models. The results showed that SA and BBO were able to improve the
prediction performance of the original ANFIS. Excellent results using the BBO optimization technique
were achieved (i.e., an increase in R by 7.15%, RMSE by 40.48%, and MAE by 38.45%), and those using
the SA technique were not much different (i.e., an increase in R by 5.03%, RMSE by 26.68%, and MAE
by 20.40%). Finally, sensitivity analysis was performed, and the most important imperfections
affecting column buckling capacity was found to be the initial in-plane loading eccentricity at the top
and bottom ends of the columns. The methodology and the developed AI models herein could pave
the way to establishing an advanced approach to forecasting damages of columns under compression.

Keywords: initial geometric imperfections; artificial intelligence approaches; compression members;
adaptive neuro-fuzzy inference system; critical buckling loads; metaheuristic optimization

1. Introduction

Initial imperfections of structural members could be classified into three main categories:
geometric imperfections, fluctuations in mechanical properties of material, and residual stresses [1].
These imperfections directly result from manufacturing processes [2] or after the assembly of parts [3].
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As reported in many experimental studies, imperfections are crucial for structural elements regarding
their initial design, especially for those under compression [4–6]. For instance, in the work of
Shi et al. [7], the authors demonstrated the existence of initial out-of-straightness imperfections of
hollow circular tubes under axial loading by measuring the mid-length deflection over 24 specimens.
The loading eccentricity was also measured by applying compression forces to pinned–pinned columns.
As a result, the ratios of initial geometric imperfections to effective length varied from 0.15 to 12.12%,
which led to a reduction of buckling capacity from 10 to 20% compared with the initial design. It was
noticed that the yield strength, ultimate tensile stress, and elastic modulus fluctuations also existed
in circular steel tubes [3,7]. These defects have a great influence on mechanical behaviors, causing a
decrease in the buckling capacity of tubes under axial loading [3,7]. In addition, many experimental
studies have shown that buckling appeared earlier than estimated because of initial imperfections,
such as in the case of I-sections [6,8], box sections [3,9,10], equal angle columns [11–13], T-sections [14],
circular sections [15,16], and C-sections [17–19] for steel structures or concrete structures [20–22],
composite structures [23–25], and alloy structures [26–29].

Miscellaneous works on modeling and simulation have accounted for the initial imperfections of
structural elements under axial compression in the literature. Analytical approaches based on high
order shear deformation theory to take into account initial geometric imperfections have been reported
for cylinder shells [30], annular spherical segments [31], or plates [32]. Nevertheless, analytical solutions
often demonstrate a limitation as the structures are simplified with regular geometry. In the case of
more complex structures, the numerical finite element technique has been widely applied to investigate
the influence of initial imperfections on the buckling behavior of compression members, such as sigma
section members [17], I-section steel columns wrapped by carbon fibers [24], cylindrical pipes made by
carbon fiber-reinforced plastic material [23], braced columns [33], and multi-layer beams [25]. However,
finite element analysis of buckling problems is mainly based on commercial software, for instance,
ANSYS [7,19], ABAQUS [23,27], and NASTRAN [17]. Such typical instability problems exhibit a
highly nonlinear relationship between load and displacement (i.e., small load increments induce
large deformations) [6,8]. For that reason, finite element code implementing iterative techniques (e.g.,
the arc-length method [34], the Newton–Raphson technique [35], or normal flow [36]) to capture
the nonlinear behavior of compression members remains a challenge for researchers. In addition,
the use of commercial finite element software exposes several inconveniences such as choosing robust
elements [27], mesh size convergence [37], and especially the generation of a large dataset integrating
various types of initial imperfections [38–41].

Over the last two decades, a new and robust branch of computational mechanics using artificial
intelligence (AI) approaches has been widely applied, especially for predicting the failure of structural
members [42–47]. As an example, Jimenez-Martinez et al. [48] introduced an artificial neural network
(ANN) algorithm for investigating the fatigue problem of chassis components. In addition, the durability
of structural components subjected to cyclic loading was evaluated using a neural network in the
work of Didych et al. [49], whereas the failure of concrete columns under fire using a data-driven
technique was reported by McKinney et al. [50]. The investigation on instability of columns under axial
compression using an AI-based approach was promising but still limited, particularly for accounting
initial imperfections of structural elements. The ANN models have been introduced in several studies
for predicting critical buckling load, such as in the work of Kumar et al. [51] on beam-columns, in the
studies of Tahir et al. [52] on thin cylindrical shells, in work by Hasanzadehshooiili et al. [53] on
arch-shells, and in work by Mallela et al. [54] for laminated panels. Last but not least, Bilgehan et al. [55]
developed an adaptive neuro-fuzzy inference system (ANFIS) to estimate the column buckling load
that takes into account initial cracks. Above all, several remaining issues need to be clarified: (i) the
parameter optimization of AI methods, (ii) the possibility of treating the problem with other AI
algorithms, especially the use of hybrid models, and (iii) sensitivity analysis of factors that affect the
buckling responses of structural members under compression.
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Therefore, the main objective of this work is to develop hybrid AI approaches involving ANFIS,
ANFIS optimized with simulated annealing (SA), and ANFIS optimized with biogeography-based
optimization (BBO) for predicting critical buckling load, or the maximum load capacity, of compression
members, taking into account local, flexural-torsional, flexural failure modes and initial geometric
imperfections. The SA and BBO optimization techniques were implemented to increase the prediction
performance of the initial ANFIS model. The developed hybrid AI models were constructed and
performed with data available in the literature on the buckling behavior of Y-section steel columns.
Input parameters of the models were divided into two main groups—slenderness ratios (including
2 inputs) and initial geometric imperfections (with 9 inputs), respectively—while the output was the
critical buckling load of the columns. Statistical criteria, namely the correlation coefficient (R), the root
mean squared error (RMSE), and the mean absolute error (MAE), were evaluated at the end of the
numerical simulations in order to investigate the prediction capability and performance of the AI
models. Sensitivity analysis was finally performed with the aim of estimating the influence of input
parameters on the predicted results, particularly focused on the initial imperfections.

2. Research Significance

As reported in the introduction, the determination of the critical buckling load of columns is
important in the fields of mechanics and civil engineering applications. As instability is a complex
non-linear problem, which depends on various parameters, the estimation of the buckling capacity
has been challenging for researchers/engineers. Although miscellaneous experimental studies have
addressed this problem, it is difficult to deduce a generalized formulation, taking into account all
the parameters that affect the buckling behavior of columns. The use of soft computing techniques
could help to explore the nonlinear relationships between the desired targets and the inputs of the
problem, especially the initial geometric imperfections. The as-obtained information could help
researchers/engineers quickly assess buckling resistance and reduce costly and time-consuming
laboratory experiments. The sensitivity analysis using the developed AI models could also provide
useful instructions that might be used to increase the compression capacity of columns.

3. Materials and Methods

3.1. Machine Learning Methods

3.1.1. Adaptive Networks-Based Fuzzy Inference System

The adaptive neuro-fuzzy inference system (ANFIS) is an artificial intelligence-based algorithm
developed by Jang [56] in the early 1990s. By combining features of artificial neural networks
(ANN) [57–59] along with fuzzy logic (FL) principles, the method has a powerful potential for
predicting complex non-linear processes [60,61]. The ANFIS hybrid learning algorithm could apply
neural networks to optimize its algorithm, so it has a higher learning capability to adapt to its
environment [62]. In the ANFIS, the number of nodes is connected by directional links in the ANN,
and the fuzzy parameters of fuzzy logic algorithm can be estimated [63]. The main principle of
ANFIS is to construct a set of fuzzy “if–then” rules with suitable membership functions to create the
stipulated input and output variables [55]. In a specific manner, it is supposed that there are two input
parameters (x and y) and one output (f ). The FL-based “if–then” rules used in ANFIS can be expressed
as follows [64]:

If x and y are A1 and B1, respectively, then f 1 = p1x + q1y + r1 (Rule 1), (1)

If x and y are A2 and B2, respectively, then f 2 = p2x + q2y + r2 (Rule 2). (2)

where p1, q1, and r1 and p2, q2, and r2 are the linear variables of Rule 1 and Rule 2, respectively, while A1,
A2, B1, B2 are the functions of x and y.
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Such typical ANFIS model with one output (f ) and two inputs (x and y) can be visualized in
Figure 1, including five main layers [56,65]:Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 20 
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Layer 1: In this layer, every node is a squared node with a function as follows:

O1,i = µAi(x) (3)

O1,i = µB i(y) (4)

where µAi(x) and µBi(y) are the membership functions of linguistic labels Ai(x) and Bi(y) of the inputs
x and y, respectively.
Layer 2: In this layer, every node, which is fixed, multiplies the incoming signals and sends the output:

O2,i = µAi(x) × µB i(y). (5)

Layer 3: In this layer, every node is also fixed, and outputs of this layer are normalized as follows:

O3,i =
wi∑2

i=1 wi
. (6)

Layer 4: Every node of this layer is an adaptive node, with the node function indicated as

O4,i= wi(pix + qiy + ri) (7)

where wi infers the outputs of Layer 3, while f i is defined by Equations (1) and (2) (I = 1, 2).
Layer 5: In this layer, every node is a single fixed node; it sums up all incoming signals to compute the
overall output as follows:

O5,i =

∑2
i=1 wi fi∑2

i=1 wi
. (8)

3.1.2. Simulated Annealing

Simulated annealing (SA), an optimization algorithm based on the similarity between metallurgical
annealing and search, is a well-known iterative metaheuristic technique for solving nonlinear and
non-convex optimization problems [66]. In the SA, the annealing algorithm simulates the cooling
process, which is implemented by decreasing gradually the temperature of the system, whereas the
search algorithm looks for promising solutions [67]. The main advantage of the SA is that it is able to
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deal with arbitrary and cost functions to find an optimal solution. However, it has a disadvantage
as its process is quite slow; thus, SA is a time-consuming algorithm [68]. In this study, the SA was
used as a discrete technique to optimize ANFIS parameters for numerically quantifying the influence
of initial geometric imperfections on the critical buckling load of structural compression members.
Considering that the solution at an ith iteration is x(i), and f (x(i)) infers the relatively objective function,
the subsequent solution is then expressed as follows [69]:

x(i + 1) =

 xnew if exp
(
−∆F

T

)
> r

x(i) otherwise
(9)

where T is the temperature, ∆F = f (xnew)− f (x(i)) is the difference between the relevant fitness values,
and r is a uniform random number ranging from 0 to 1.

3.1.3. Biogeography-Based Optimization

Biogeography-based optimization (BBO) is based on the science of biogeography to study, timely
and spatially, the distribution of animals and plants. This is a popular optimization technique with
many important real-world applications, such as the detection of Alzheimer’s disease [70], flood
susceptibility assessments [71], and predicting the consolidation coefficient of soil [72]. The main
purpose of this technique is to explain the allocation of all species changing in different habitats over
time [73]. Thus, it describes the evolution of new species and the migration of species between islands
and the extinction of species [74]. The implementation procedure of BBO can be carried out through
two main steps, namely migration and mutation [75]:

Migration is considered a probabilistic operation that uses the migration rates of an individual
solution to share probabilistically the features between the solutions. The immigration rate of the
βk solution of each feature fk is utilized to select whether or not to immigrate. In the case where
immigration is selected, the emigrating solution, f j, is selected on the base of the emigration rate:

fk(s)←− f j(s) (10)

where s is the solution feature.
Mutation is the second probabilistic operation that can modify a solution feature, where the final

aim is to increase the diversification of the population.

3.1.4. Validation Criteria

In this paper, three quality assessment criteria namely the correlation coefficient (R), the root mean
squared error (RMSE), and the mean absolute error (MAE) were used for validating the developed
AI models. The criterion R is widely used in regression analysis [76] to estimate the linear statistical
correlation between target and predicted data [41], while RMSE and MAE measure the average
magnitude of the error [77,78]. The R, RMSE, and MAE calculations are expressed as [79–82]

R =

√√√√√√√√√√√√√√√√√√
N∑

j=1

(
p0, j − p0

)(
pt, j − pt

)
√

N∑
j=1

(
p0, j − p0

)2 N∑
j=1

(
pt, j − pt

)2
(11)

RMSE =

√√√√
1
N

N∑
j=1

(p0, j − pt, j)
2 (12)
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MAE =
1
N

N∑
j=1

∣∣∣p0, j − pt, j
∣∣∣ (13)

where N is the number of the observations, p0 and p0 are the measured and mean measured values of
the critical buckling load, and pt and pt are the predicted and mean predicted values of the critical
buckling load, respectively.

3.2. Data Preparation

In this work, axial compression tests resulted from 57 Y-section columns, with steel with a yield
strength of 420 MPa, collected by Yu et al. [83], and these tests are briefly summarized in Table 1. In the
data, all measurements of initial geometric imperfections are included. The Y-section columns were
made by welding equal-leg steel angles and steel plates (Figure 2), which were manufactured from
high-strength steel of 210 MPa Young’s modulus. Fifty-seven columns were fabricated with slenderness
ratios (SLDs) uniformly ranging from 30 to 80 and with different width-to-thickness ratios of steel
angles and plates. The columns were tested under pinned–pinned boundary condition (Figure 2).
More details on the fabrication process, the geometry of the columns, and the compression test setup
can be found in the original work of Yu et al. [83].

Initial imperfections of columns, such as fluctuations in mechanical properties of materials, residual
stress, and initial geometric imperfections (out-of-straightness and loading eccentricity), were measured.
First, the mechanical properties of steels were investigated. Tensile tests were conducted to show
that the Young’s modulus varied from 210 to 211 GPa for equal angle steels and from 209 to 214 GPa
for plates, whereas the yield strength ranged from 450 to 455 MPa for equal angle steels and from
485 to 496 MPa for plates. From the obtained results, it could be concluded that the fluctuations in
mechanical properties are small. Second, as regards the residual stress imperfection, the results from
experimental measurements showed about zero resultant force and residual stresses moments over the
measured cross sections. Last but not least, initial geometric imperfections, i.e., out-of-straightness at
mid-length and loading eccentricities at both ends, exhibited a significant variation with respect to the
effective length of columns. From these remarks, two hypotheses could be formulated: (i) the material
constituting 57 columns was assumed to be homogeneous in terms of mechanical properties and (ii)
residual stress had a negligible effect on the behavior of columns under compression. The advantage
of high-strength steel over normal-strength steel in decreasing the impact of residual stress over yield
strength can also be found in the literature [3,11,14].

Table 1. Inputs and output of the present study.

N◦ SLDx SLDy I1 I2 I3 I4 I5 I6 I7 I8 I9 Nu ϕ

1 25.8 30.2 −0.28 0.32 −3.7 0.03 1.67 2.89 0.42 3.46 2.47 1523 0.906
2 26 30.2 0.42 0.49 4.02 0.05 2.15 2.73 0.64 5.43 2.14 1483 0.882
3 25.8 30.4 −0.39 0.57 2.35 0.12 −3.44 4.25 0.68 −3 5.36 1631 0.97
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .

55 78.5 62.6 1.61 1.44 −0.96 −0.12 1 1.21 2.15 −2.09 5.92 760 0.604
56 78.9 63.6 −1.4 1.45 3.37 0.04 7.03 −6.06 2.02 −0.68 −9.69 842 0.669
57 78.1 62.6 1.09 1.52 1.97 0.31 6.1 2.53 1.85 −0.75 4.6 735 0.584

Min 25.80 23.80 −1.40 −1.34 −4.40 −0.75 −10.78 −8.25 0.42 −9.24 −9.69 735.00 0.58
Average 48.56 48.07 0.27 0.45 0.24 0.05 −0.67 1.67 1.14 −0.69 1.72 1247.51 0.86

Max 79.50 80.90 1.79 1.78 5.14 0.67 9.17 9.81 2.15 8.34 10.62 1631.00 1.02
SD* 16.28 14.83 0.84 0.84 3.16 0.29 4.33 4.54 0.53 4.76 5.23 221.01 0.09

* Standard deviation.
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the Y-form cross section.

Based on the mentioned hypotheses above, input parameters for AI algorithms for predicting
the buckling capacity of columns were divided into two main groups: slenderness ratios and initial
geometric imperfections. Slenderness ratios (SLD) of columns containing two inputs around the x
(out-of-plane) and y (in-plane) axes of the Y-section were denoted as SLDx and SLDy, respectively
(Table 1). The out-of-plane slenderness ratio (SLDx) varied from 25.8 to 79.50, whereas the in-plane
slenderness ratio (SLDy) varied from 23.80 to 80.90. The corresponding mean values and standard
deviations were calculated and are summarized in Table 1. On the other hand, the initial geometric
imperfections consisted of nine inputs. The deviation in the u-direction (Figure 2d) of the mid-length
cross section (denoted by I1 where I stands for imperfections) ranged from −1.40 to 1.79 mm.
The deviation in the v-direction (Figure 2d) of the mid-length cross section (I2) ranged from −1.34
to 1.78 mm. The rotation angle of the mid-length cross section (I3) varied from -0.0044 to 0.00514
rad. The initial out-of-plane bending (I4) ranged from −0.75 to 0.67 mm. The initial out-of-plane
loading eccentricity at the top end (I5) ranged from −10.78 to 9.17 mm. The initial out-of-plane loading
eccentricity at the bottom end (I6) ranged from −8.25 to 9.81 mm. The initial in-plane bending (I7)
varied from 0.42 to 2.15 mm. The initial in-plane loading eccentricity at the top end (I8) ranged
from −9.24 to 8.34 mm. The initial in-plane loading eccentricity at the bottom end (I9) ranged from
−9.69 to 10.62 mm. It is noteworthy that the initial out-of-straightness imperfections were estimated
by measuring the deflections and rotation of the mid-length cross section, while assuming that the
latter exposed maximum displacement for pinned–pinned columns under compression. By making
these measurements, initial in-plane and out-of-plane bendings were deduced. Initial in-plane and
out-of-plane loading eccentricities at the columns’ top and bottom ends were also found. The output
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of the prediction tools, the critical buckling load (denoted by Nu), ranged from 735 to 1631 kN with a
mean value of 1247.51 kN and a standard deviation of 221.01 kN. It can be observed that the critical
buckling load factor (denoted as ϕ), ranging from 0.58 to 1.02, exhibited an average value of 0.86 and a
standard deviation of 0.09. Complete values of the dataset could be found in the work of Yu et al. [83].

In this work, the collected dataset was divided into two sets: training and testing. Training
data (approximately 70% of the total data) were used to train the AI models, whereas testing data
(approximately 30% of the remaining dataset) were used to quantify the performance of the AI
models. Different from the original work, the training dataset (including 11 inputs and 1 output) was
normalized in the [−1; 1] range. By considering all variables in a uniform range, bias within the dataset
between inputs could be minimized. In this study, the range [−1; 1] was selected to better capture the
non-Gaussian probability density of variables. A normalization process of parameters, such as the
minimum and maximum values of the training data were performed to scale the testing dataset, as
indicated in Table 2. The latter aims at preventing statistical correlation between training and testing
dataset when normalizing. After the simulation process, a reverse transformation was applied to
convert data from the normalization space to the real one.

Table 2. Normalization parameters of training data.

SLDx SLDy I1 I2 I3 I3 I4 I5 I6 I7 I8 I9

Min 25.80 23.80 −1.40 −1.34 −4.31 −0.71 −10.78 −8.23 0.42 −8.46 −9.69 842.00
Max 79.50 80.70 1.75 1.78 5.14 0.67 7.03 9.81 2.05 8.34 10.62 1631.00

3.3. Methodology

Figure 3 presents the methodology of the present study, in four main steps:
Step 1: Data preparation. In this step, the initial collected dataset is used for training and testing

AI models such as ANFIS and ANFIS optimized with simulated annealing (ANFIS-SA) and with
biogeography-based optimization (ANFIS-BBO). The training process was performed using the first
70% values of the dataset, while the testing process was done using the remaining 30% of the initial
dataset. The ANFIS model was trained with the Gaussian membership function and the C-means
clustering algorithm.

Step 2: Training models. In this step, the training dataset is used for training AI models, such as
ANFIS, ANFIS-SA, and ANFIS-BBO.

Step 3: Validating models. In this step, the trained AI models was tested and validated using the
testing dataset. For this purpose, several error criteria were employed: RMSE, MAE, and R.

Step 4: Sensitivity analysis. In this step, sensitivity analysis of inputs that affect the critical
buckling load of columns was carried out. Statistical results were summarized and plotted for more
quantitative and qualitative visualizations.
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4. Results and Discussion

4.1. Optimization of ANFIS Parameters

The optimization procedure of consequent and antecedent ANFIS parameters using the SA and
BBO techniques is presented in this section. The development of ANFIS, ANFIS-SA, and ANFIS-BBO
codes were done using Matlab [84]. The population size of the SA algorithm was chosen as 25, while the
number of habitats of the BBO technique was set as 50. These values were the optimal choices, deduced
from trial-and-error tests. Performing with normalized data in the [−1; 1] range, the optimization
procedure was investigated for 100 iterations with ANFIS-SA and ANFIS-BBO models. Figure 4
presents the optimization results in terms of R, RMSE, and MAE, showing the optimal iterations
giving the highest accuracy of predicted results (i.e., the iteration when errors of the testing data
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started to increase). It was found that the optimal iterations were 72 and 20 using ANFIS-SA and
ANFIS-BBO, respectively.
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Figure 4. Optimization of ANFIS parameters using the SA technique for (a) R, (c) RMSE, and (e) MAE
using the BBO technique for (b) R, (d) RMSE, and (f) MAE.

4.2. Prediction Capability

The effectiveness of ANFIS, ANFIS-SA, and ANFIS-BBO models is evaluated in this section.
The results shown herein correspond to those obtained with ANFIS-SA at optimized iteration 72 and
ANFIS-BBO at iteration 20. The prediction performance in a regression form is shown in Figure 5,
whereas the corresponding summarized information is indicated in Table 3. It is noteworthy that
a reverse transformation was previously applied to obtain the final critical buckling load from the
predicted normalization space. As regards the training dataset, Figure 5a,c,e present outputs Nu of
ANFIS, ANFIS-SA, and ANFIS-BBO in function of the corresponding measured Nu (in kN). Figure 5b,d,f
present outputs Nu of ANFIS, ANFIS-SA, and ANFIS-BBO in function of the corresponding testing
data, associated with the testing part. Linear equations in the form “predicted Nu = slope * (measured
Nu) + intercept” were also calculated in each case to estimate the goodness of fit between predicted
and measured Nu (slope and intercept values are indicated in Table 3).
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With respect to the training ANFIS, ANFIS-SA, and ANFIS-BBO parts, the slopes of 0.889, 0.872,
and 0.837 were extracted, respectively. The obtained values of statistical criteria were R = 0.943, 0.969,
and 0.926, RMSE = 68.235, 52.552, and 77.692, MAE = 58.722, 40.793, and 60.437, respectively. It could
be deduced that ANFIS-SA is the best model for the training data. This was also confirmed by the
values of the standard deviation of error StDerror (Table 3). For the training part, ANFIS-SA yielded the
lowest value of StDerror compared to ANFIS and ANFIS-BBO (i.e., StDerror = 69.105, 53.190, and 78.553
for ANFIS, ANFIS-SA, and ANFIS-BBO, respectively).
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Figure 5. Graphs of regression results between measured Nu versus predicted Nu for the training part
using (a) ANFIS, (c) ANFIS-SA, and (e) ANFIS-BBO; for the testing part using (b) ANFIS, (d) ANFIS-SA,
and (f) ANFIS-BBO.

Table 3. Summary of prediction capability.

Part Method R RMSE
(kN)

MAE
(kN)

merror
(kN)

StDerror
(kN) Slope Slope

Angle (◦) Intercept

Training
ANFIS 0.943 68.235 58.722 0.000 69.105 0.889 41.652 140.790

ANFIS-SA 0.969 52.552 40.793 1.819 53.190 0.872 41.086 164.965
ANFIS-BBO 0.926 77.692 60.437 4.441 78.553 0.837 39.944 211.516

Testing
ANFIS 0.896 111.830 82.407 −9.651 114.842 0.939 43.202 62.530

ANFIS-SA 0.941 81.990 65.594 16.445 82.796 0.897 41.883 138.937
ANFIS-BBO 0.960 66.558 50.723 4.363 68.459 0.916 42.482 104.257

Let us now consider the testing dataset. It was observed that the ANFIS-BBO model yielded
the best prediction results with respect to R, RMSE, MAE, the mean of error merror, and StDerror (i.e.,
R = 0.896, 0.941, 0.960; RMSE = 111.830, 81.990, 66.558; MAE = 82.407, 65.594, 50.723; merror = −9.651,
16.445, 4.363; StDerror = 114.842, 82.796, 68.459 using ANFIS, ANFIS-SA and ANFIS-BBO, respectively).
Nonetheless, the slope of the fit linear equation using ANFIS-BBO was not the smallest deviation from
the diagonal line. As indicated in Table 3, the slopes were 0.939, 0.897, and 0.916 (the corresponding
slope angles were 43.202◦, 41.883◦, and 42.482◦) using ANFIS, ANFIS-SA, and ANFIS-BBO, respectively.
This indicates that ANFIS gave the best result in terms of linear slope. However, ANFIS-BBO was not
far, with a slope angle value only 0.7◦ smaller.

As observed (Figure 6a,b) for Nu values in the function of sample index, the ANFIS-BBO model
might be not best for the training dataset, but its prediction performance was highest for the testing
dataset. This remark was confirmed by the histograms of the normalized errors for the training dataset
(Figure 7a) and for the testing dataset (Figure 7b). The normalized errors (in %) were calculated by
dividing the relative errors to the measured values of Nu.
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Figure 7. Graphs of normalized error histograms for (a) the training part and (b) the testing part.

For comparison purposes, the performance of the ANFIS-SA and ANFIS-BBO models compared
with the initial ANFIS is also reported. Table 4 indicates the comparison of prediction models with
respect to R, RMSE, MAE, and StDerror, respectively. The increase of performance index, denoted as
Inc, was calculated as

Inc =

∣∣∣WHybrid
−WANFIS

∣∣∣
WANFIS × 100, (14)

where WHybrid and WANFIS were the considered criterions using hybrid and ANFIS models, respectively.
It was shown that the prediction capability was increased: by 5.03% and 7.15% in terms of R; by 26.68%
and 40.48% in terms of RMSE; by 20.40% and 38.45% in terms of MAE; and by 27.90% and 40.39%
in terms of StDerror when using the SA and BBO optimization techniques, respectively. The SA and
BBO algorithms were thus potential for improving the prediction performance of the initial ANFIS
model. However, the BBO technique yielded better results. As a conclusion, from the statistical and
error analysis of the prediction capability, ANFIS-BBO was the best model for the prediction of the
critical buckling load of Y-section columns under compression when accounting for initial geometric
imperfections.

Table 4. Increase of performance index Inc (in %) using hybrid models.

Technique R RMSE MAE StDerror

SA 5.03 26.68 20.40 27.90
BBO 7.15 40.48 38.45 40.39

4.3. Influence of Initial Geometric Imperfections

The influence of initial geometric imperfections on the prediction of critical buckling load was
studied. The selected model for the investigation was the ANFIS-BBO algorithm, as its prediction
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capability was proven in the previous section. In order to explore the sensitivity of each imperfection
parameter, all inputs (i.e., SLDx, SLDy and I1 to I9, as indicated in Section 3.2) were used to deduce the
intensity of variables, such as min, max, and quantiles Q10, Q25, Q50, Q75, Q90. The values of these
parameters in the normalized space are presented in Table 5.

Table 5. Intensity of input variables for sensitivity analysis in the normalized space.

Variables Min Q10 Q20 Q50 Q75 Q90 Max

SLDx −1.00 −0.86 −0.76 −0.36 0.23 0.63 1.00
SLDy −1.00 −0.78 −0.66 −0.20 0.15 0.64 1.00

I1 −1.00 −0.61 −0.37 0.16 0.37 0.70 1.00
I2 −1.00 −0.75 −0.37 0.19 0.52 0.75 1.00
I3 −1.00 −0.94 −0.71 0.35 0.59 0.74 1.00
I4 −1.00 −0.20 −0.07 0.07 0.31 0.59 1.00
I5 −1.00 −0.64 −0.17 0.05 0.42 0.70 1.00
I6 −1.00 −0.64 −0.22 0.25 0.40 0.79 1.00
I7 −1.00 −0.85 −0.75 −0.34 0.36 0.69 1.00
I8 −1.00 −0.89 −0.39 −0.09 0.44 0.79 1.00
I9 −1.00 −0.55 −0.22 0.26 0.52 0.79 1.00

In the sensitivity analysis, each input was varied from its lowest to highest intensity values,
while the median Q50 values were applied to all other variables. Thereby, the degree of sensitivity,
denoted as DoS (in %), of the considered input variable could be calculated as follows:

DoS j
i =

N j
i −Nall

Q50

Nall
Q50

× 100, (15)

where Nall
Q50 was the output critical buckling load when all input variables remained at their median

values. N j
i was the output critical buckling load when applying input number j at its intensity i,

and DoS j
i was the associated degree of sensitivity of the input j (I = 1, . . . , 7 and j = 1, . . . , 9). Figure 8

presents the calculated degrees of sensitivity of all imperfection parameters. It can be clearly seen that
the initial in-plane loading eccentricity at the bottom end (I9) had the highest impact on the prediction
of critical buckling load. The degree of sensitivity of I9 ranged from 4 to 6.5%, when varying I9 from
the highest to lowest level of values. The second input that exhibited a significant effect on the critical
buckling load prediction was the initial in-plane loading eccentricity at the top end (I8). Its degree
of sensitivity varied from −1.5 to 1%, when ranging I8 from its highest to lowest values. All other
imperfections had a similar effect and varied in ranges so small that the influences could be neglected.
A summary of sensitivity analysis is indicated in Table 6. From the original data, it was observed
that the critical buckling load factor (ϕ) ranged from 0.58 to 1.02, exhibited an average value of 0.86,
and a standard deviation of 0.09 (Table 1). This indicated that the instability was almost predicted
when applying compression loading to columns. The actual buckling capacity of columns was reduced
with an average value of 14%. It was also noticed that, when the slenderness of columns increases,
the values of the critical buckling load factor decrease (e.g., for specimens from N◦55 to 57). This meant
that initial imperfections, by largely changing the capacity of columns under compression, played
an important role. They needed to be taken into account in the modeling as their influence became
relevant. The next section is dedicated to an analysis of the influence of slenderness ratios on the
predicted results.
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Figure 8. Degree of sensitivity (in %) of nine initial geometric imperfections on the prediction of critical
buckling load through the ANFIS-BBO model.

Table 6. Summary of the degree of sensitivity (in %) of input variables at different intensity values.

Variables Min Q10 Q25 Q50 Q75 Q90 Max

I1 −0.219 −0.145 −0.100 0 0.041 0.102 0.159
I2 −0.416 −0.329 −0.195 0 0.116 0.195 0.284
I3 0.185 0.177 0.146 0 −0.032 −0.053 1.054
I4 −0.194 −0.049 −0.025 0 0.043 0.093 0.168
I5 0.103 0.067 0.021 0 −0.036 −0.064 −0.133
I6 −0.401 −0.285 −0.151 0 0.048 0.172 0.240
I7 0.029 0.022 0.018 0 −0.031 −0.046 −0.059
I8 1.118 0.976 0.368 0 −0.655 −1.093 −1.348
I9 6.467 4.160 2.468 0 −1.329 −2.706 −3.798

SLDx 32.501 25.259 20.112 0 −25.692 −50.995 −69.868
SLDy −32.845 −23.565 −18.997 0 −8.743 34.658 49.667

4.4. Influence of Slenderness

Similar sensitivity analysis was performed for slenderness ratios SLDx and SLDy. Figure 9
presents the degree of sensitivity of SLDx and SLDy, whereas summary information is indicated in
Table 6. The degree of sensitivity of SLDx varied from −70 to 32% when applying the highest to lowest
values. As regards SLDy, the degree of sensitivity varied from −32 to 49% when applying the lowest
to highest values. It can be deduced that both slenderness ratios exhibited important effects on the
prediction of the critical buckling load, and the effects were more important than those of the initial
imperfections, as calculated in the previous section. This fact is relevant, as shown in Euler’s formula
for estimating the critical buckling load [85–87] under zero imperfections.

As a conclusion, the developed ANFIS-BBO model in this study exhibited a strong capability
for the prediction of the critical buckling load of Y-section columns under compression. Quantitative
influence of initial geometric imperfections in both out-of-plane and in-plane directions was also
deduced using such an ANFIS-BBO model. The ANFIS-BBO model could thus be a robust and useful
numerical tool for analyzing the problem of column instability.
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Figure 9. Degree of sensitivity (in %) of SLDx and SLDy on the prediction of critical buckling load
through the ANFIS-BBO model.

5. Conclusions

In this work, a methodology modeling for numerically quantifying the influence of initial
geometric imperfections on the critical buckling load of structural compression members based on
the use of hybrid AI models was proposed. The methodology was based on the improvement of the
ANFIS by different metaheuristic optimization techniques such as SA and BBO, for the prediction
problem of column instability. The developed hybrid AI models were trained and validated based on
experimental tests available in the literature. Results showed that the BBO optimization algorithm
yielded the best results with respect to all commonly used statistical criteria, such as R, RMSE, and MAE,
respectively. After sensitivity analysis, geometric imperfections that exhibited a major impact on
column compression capacity were deduced, such as the initial in-plane loading eccentricity at both top
and bottom ends. However, in further investigations, other initial imperfections, such as fluctuations in
mechanical properties of materials as well as residual stresses, should be taken into account in order to
quantify the influence of these parameters. The methodology could also be applied to investigate other
structural elements of different cross sections in order to generalize the influence of initial in-plane
and out-of-plane geometric imperfections. An empirical equation accounting for initial imperfections
should also be derived based on the developed numerical prediction model in order to facilitate the
use in engineering applications. Finally, AI approaches coupled with finite element analysis could be a
potential candidate for studying a nonlinear post-buckling regime of columns in further researches.

Author Contributions: Conceptualization, H.-B.L. and T.-T.L.; Methodology, H.-B.L., L.-N.N. and T.-T.L.; Software,
H.-B.L. and T.-T.L.; Validation, H.-B.L., L.-N.N. and B.T.P.; Formal Analysis, L.M.L. and T.-T.L.; Investigation,
H.-B.L. and L.-N.N and B.T.P.; Resources, H.T.D., T.C.N., T.A.P.; Data Curation, V.M.L., H.T.D., T.C.N., T.A.P.
and B.T.P.; Writing-Original Draft Preparation, H.-B.L., V.M.L., T.-T.L., and B.T.P.; Writing-Review & Editing,
H.-B.L., L.M.L., T.-T.L. and B.T.P.; Visualization, H.-B.L. and B.T.P.; Supervision, H.-B.L., L.M.L. and B.T.P.; Project
Administration, L.M.L., T.-T.L. and B.T.P.; Funding Acquisition, B.T.P.

Funding: This research received no external funding.

Acknowledgments: The authors thank to the University of Transport Technology to provide the facilities for
carrying out this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Abramovich, H. Stability and Vibrations of Thin-Walled Composite Structures, 1st ed.; Woodhead Publishing:
Cambridge, UK, 2017.

2. Quach, W.M.; Teng, J.G.; Chung, K.F. Effect of the manufacturing process on the behaviour of press-braked
thin-walled steel columns. Eng. Struct. 2010, 32, 3501–3515. [CrossRef]

http://dx.doi.org/10.1016/j.engstruct.2010.07.019


Appl. Sci. 2019, 9, 2258 17 of 20

3. Shi, G.; Zhou, W.J.; Bai, Y.; Lin, C.C. Local buckling of 460 MPa high strength steel welded section stub
columns under axial compression. J. Constr. Steel Res. 2014, 100, 60–70. [CrossRef]

4. Šmak, M.; Straka, B. Geometrical and Structural Imperfections of Steel Member Systems. Procedia Eng. 2012,
40, 434–439. [CrossRef]

5. Pastor, M.M.; Bonada, J.; Roure, F.; Casafont, M. Residual stresses and initial imperfections in non-linear
analysis. Eng. Struct. 2013, 46, 493–507. [CrossRef]

6. Ma, T.-Y.; Liu, X.; Hu, Y.-F.; Chung, K.-F.; Li, G.-Q. Structural behaviour of slender columns of high strength
S690 steel welded H-sections under compression. Eng. Struct. 2018, 157, 75–85. [CrossRef]

7. Shi, G.; Jiang, X.; Zhou, W.J.; Chan, T.M.; Zhang, Y. Experimental study on column buckling of 420 MPa high
strength steel welded circular tubes. J. Constr. Steel Res. 2014, 100, 71–81. [CrossRef]

8. Ban, H.; Shi, G.; Shi, Y.; Wang, Y. Overall buckling behavior of 460MPa high strength steel columns:
Experimental investigation and design method. J. Constr. Steel Res. 2012, 74, 140–150. [CrossRef]

9. Kim, D.-K.; Lee, C.-H.; Han, K.-H.; Kim, J.-H.; Lee, S.-E.; Sim, H.-B. Strength and residual stress evaluation of
stub columns fabricated from 800MPa high-strength steel. J. Constr. Steel Res. 2014, 102, 111–120. [CrossRef]

10. Shi, G.; Xu, K.; Ban, H.; Lin, C. Local buckling behavior of welded stub columns with normal and high
strength steels. J. Constr. Steel Res. 2016, 119, 144–153. [CrossRef]

11. Ban, H.; Shi, G.; Shi, Y.; Wang, Y. Residual Stress Tests of High-Strength Steel Equal Angles. J. Struct. Eng.
2012, 138, 1446–1454. [CrossRef]

12. Ban, H.Y.; Shi, G.; Shi, Y.J.; Wang, Y.Q. Column buckling tests of 420 MPa high strength steel single equal
angles. Int. J. Str. Stab. Dyn. 2013, 13, 1250069. [CrossRef]

13. Cao, K.; Guo, Y.-J.; Zeng, D.-W. Buckling behavior of large-section and 420 MPa high-strength angle steel
columns. J. Constr. Steel Res. 2015, 111, 11–20. [CrossRef]

14. Cao, X.; Xu, Y.; Kong, Z.; Shen, H.; Zhong, W. Residual stress of 800 MPa high strength steel welded T section:
Experimental study. J. Constr. Steel Res. 2017, 131, 30–37. [CrossRef]

15. Khot, N.S. On the Influence of Initial Geometric Imperfections on the Buckling and Postbuckling Behavior
of Fiber-Reinforced Cylindrical Shells under Uniform Axial Compression; Air Force Flight Dynamics Lab:
Wright-Patterson AFB, OH, USA, 1968.

16. Zhao, C.; Niu, J.; Zhang, Q.; Zhao, C.; Xie, J. Buckling behavior of a thin-walled cylinder shell with the cutout
imperfections. Mech. Adv. Mater. Struct. 2018, 1–7. [CrossRef]
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