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Abstract: Perceiving its environment in 3D is an important ability for a modern robot. Today, this
is often done using LiDARs which come with a strongly limited field of view (FOV), however.
To extend their FOV, the sensors are mounted on driving vehicles in several different ways. This
allows 3D perception even with 2D LiDARs if a corresponding localization system or technique is
available. Another popular way to gain most information of the scanners is to mount them on a
rotating carrier platform. In this way, their measurements in different directions can be collected and
transformed into a common frame, in order to achieve a nearly full spherical perception. However,
this is only possible if the kinetic chains of the platforms are known exactly, that is, if the LiDAR
pose w.r.t. to its rotation center is well known. The manual measurement of these chains is often
very cumbersome or sometimes even impossible to do with the necessary precision. Our paper
proposes a method to calibrate the extrinsic LiDAR parameters by decoupling the rotation from the
full six degrees of freedom transform and optimizing both separately. Thus, one error measure for
the orientation and one for the translation with known orientation are minimized subsequently with
a combination of a consecutive grid search and a gradient descent. Both error measures are inferred
from spherical calibration targets. Our experiments with the method suggest that the main influences
on the calibration results come from the the distance to the calibration targets, the accuracy of their
center point estimation and the search grid resolution. However, our proposed calibration method
improves the extrinsic parameters even with unfavourable configurations and from inaccurate initial
pose guesses.
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1. Introduction

In robotics, the perception of 3D information about the agent’s surroundings is important for many
tasks, like planning robot arm movements, object and obstacle detection or 3D model reconstruction.
Therefore, the increasing amount of available laser detection and ranging sensors (LiDAR), sometimes
also referred to as laser range finder (LRF), together with falling device prices, caused an increasing
usage of those for 3D perception. Although various sensor types and specifications [1–3] exist, all
devices come with a strongly limited field of view and often with a low sampling resolution compared
to other vision sensors. To compensate these disadvantages, many developments engaging different
strategies of mounting them on various kinds of vehicles and robots are done. All of them try to gain
as much information from the installed sensors as possible, by extending their field of view. This is
solved through a specific mounting pose [4,5] or rotating the LiDARs on a sensor carrier [6,7]. Thus,
there exists a variety of such sensor platforms.

A feature that all sensor platforms have in common is that the data perceived by the mounted
sensors have to be combined during the continuous motion of the platform itself or of the whole
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vehicle. In order to achieve this, the data measured in each sensor’s frame has to be transformed into a
common reference frame in real time. This requires accurate motion sensing of the platform and exact
knowledge of each sensor’s pose with respect to the robot’s or sensor platform’s base link. The pose
information, also referred as extrinsic parameters, can be used to build a kinematic chain modeling the
necessary transformations. Erroneous transformations would result in artifacts, like duplicate sensing
and lower accuracy, as illustrated in Figure 1. This can make the sensor data noisy, misleading or
even useless.

a) b)

Figure 1. Top-down view on a LiDAR scan of a building. (a) shows erroneous and (b) the correct
transformed point cloud data.

Manually measuring the sensor pose is often not possible with appropriate precision. In particular,
rotations are difficult to measure by hand and inaccuracies result in significant measurement
errors when they are not known precisely. Therefore, calibration procedures for the extrinsic sensor
parameters, suitable to the specific sensor arrangements, are required. They should identify or optimize
the sensor pose information to reduce transformation errors of the sensor perceptions.

This work describes and evaluates a novel calibration method for the extrinsic parameters of
rotating or revolving multi-beam LiDARs. Revolving sensors are shifted away from the actual rotation
center, i.e., the sensor’s trajectory describes an orbit, while rotating ones turn around their own center.
This is important because revolving sensors can be more challenging to calibrate. However, our method
isolates the sensor’s orientation from its full pose information. This is a major step, since inaccurate
knowledge of the sensor orientation leads to an error in the transformed data which is not just constant,
but increases with the distance of the sampled data points to the sensing LiDAR. Furthermore, the
orientation errors can not be measured or calculated directly, since they manifest in translational errors
of the perceived data. Therefore, the orientation is optimized separately from the translation to avoid
ambiguities between orientation and translation, and also to reduce the dimensionality of the original
problem. Subsequently, the translation is also optimized using the previously determined rotation.

In Section 2, other relevant works about extrinsic parameter calibration for LiDARs are briefly
described with short statements on how they are related to our proposal. Section 3 then outlines our
method and its theoretical deduction in detail. To test the performance of our method during an
actual calibration, Section 4 defines different settings for a calibration process of a specific exemplary
sensor platform. In addition, a quality measure for 3D point clouds is defined, to get an idea of the
improvements after the calibration. After a short discussion of the results, conclusions and possible
further work on or around our proposal are illustrated in Section 5.

2. Related Work

There are many works on the extrinsic calibration between different sensors. Especially calibrating
the pose of a LiDAR relative to a camera is a very popular topic. However, this and other works
concern the extrinsic calibration of single sensors with respect to the construction they are mounted on.
In general, these can be distinguished into two types of calibration methods. Both methods have their
particular benefits and drawbacks. The first type requires previously known calibration targets, such
as poles, spheres or planes inside the field of view of the used sensors. Moreover, it is often undesirable
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to use such objects, as this increases the required configuration effort. Therefore, a second, target-less
type of calibration methods was developed. They use static environments and properties of their
surroundings like big planar surfaces, which, however, are not always available.

2.1. Calibration Target Required

A representative of the first method type is described by Gao et al. [5]. It estimates the extrinsic
parameters of a LiDAR scanner with respect to another LiDAR’s frame. Both are mounted on the top
of the same car. Highly reflective patches are attached to pillars at the edge of a street track. While
driving along this calibration track, the patches are detected by the reflection intensity of their LiDAR
measurements and then reduced to a single feature point in both sensor frames. Using the known
vehicle pose in a global reference frame, the error between patches from both sensors in a common
frame is minimised. This is done by solving a second-order cone program which reformulates a more
cost effective least-square problem. While the problem formulation is interesting, due to the reduction
of computational costs, the proposed method requires a positioning system, and driving along a
previously manipulated track. Both is not always feasible and may be error prone. Furthermore, the
calibration results in knowing a sensor’s pose with respect to another sensor’s frame and not with
respect to a part of the platform construction. This makes knowledge of the exact pose of the other
LiDAR relative to the car necessary.

In contrast to more common numerical minimisation algorithms like in [5], a simple analytical
method is proposed by Lin et al. [8]. The platform’s architecture obtains 3D point clouds from a 2D
laser range finder by tilting it to different angles. Since the rotation center differs from the sensor center,
it is important to know the radius exactly. Lin et al. [8] propose to measure points on a planar target,
e.g., a wall, in different known tilt angles of the sensor. Using the vertical distances of those points,
the radius can be inferred using angle and distance information in a triangle spanned by the rotation
center and two of the LiDAR measurements. This method ignores all other dimensions of the sensor
pose except the radius of the revolving LiDAR. However, these are important for many platforms and
thus the proposed method is strongly bound to this specific architecture.

The method by Kang et al. [7] uses a target plane to estimate the pose of a 2D laser range finder
orbiting a rotation center. The 3D scanline direction on the target is inferred to construct a cost function
scoring the scanner’s orientation separately from its translation, which is optimised by a second cost
function. These are used as objectives to minimize the distance between points on neighbouring
scanlines of different platform orientations. The decoupling removes some ambiguities between
translation and rotation of the scanner’s frame. Thus, rotations which compensate translations are
removed from the search space of the objective functions. The decoupling is a clever approach not only
to remove the ambiguities, but also to split up the optimisation problem into two functions with lower
dimensionality. Some of our main ideas are based on this work. However, it is expected to depend on
the device architecture of the LRF used on this platform.

2.2. Targetless Calibration

The method proposed by Levinson et al. [9] calibrates two sensor properties without any
calibration targets: intrinsic LiDAR parameters, i.e., the internal laser arrangement, external LiDAR
parameters specifying its pose relative to the robots’ base frame. To determine the internal and external
parameters, a single energy function is formulated. This function rewards points of neighbouring
laser beams if they lie on the same surface, i.e., having the same normal, while applying a penalty, if
they do not. During a movement of the vehicle with tracked trajectory, the measured points can be
transformed into a common frame. The external parameters minimising the energy function should be
the true scanner pose. To avoid ambiguities and local minima, Levinson et al. [9] use a grid search
instead of a Newton-based method, though the energy function would be contentious. They state that
the search space is tractable. They also state not to make strong assumptions about their environment.
However, the error formulation of their objective function implies planar surfaces. This is a relatively
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strong assumption, e.g., when thinking about urban rescue, forest, or underground environments.
In addition, the requirement of a local positioning system is not always practical.

Sheehan et al. [10] constructed a sensor platform assembled from three independent 2D laser
range finders mounted on a rotating plate. To calibrate the extrinsic parameters of all three scanners,
they formulated a crispness function representing the sharpness of the resulting 3D point cloud, i.e.,
the neighbourhood distribution of the measured points. This measure consists of a Gaussian mixture
model (GMM) of each individual point’s neighbourhood. The GMM gets more peaky as the deviation
of nearby points in the neighbourhood of a point decreases, which happens if the transformation
to the scanners approximate towards the true ones. To quantify this measure in a score that then
can be maximised, the model is put into the Rényi Quadratic Entropy function [11]. The scanner
transformations maximising the model’s entropy should be the ones sought.

Sheehan’s calibration method is tailored to their platform and only calibrates the relative position
of the sensors to each other.

Maddern et al. [12] extend Sheehan’s method by the calibration of several other LiDAR or
LRF sensors mounted on a vehicle. They require to drive a path, so that all sensors cover as much
of the environment as possible. Utilising a positioning system with known covariance matrix, i.e.,
known measurement uncertainty, the sensor data can be transformed into a common coordinate
system. This allows a comparison between the sensor data of the different sensors, especially between
Sheehan’s platform and the other sensor data. To do so, Maddern et al. introduced another entropy
based cross-sensor similarity measure. It integrates the Jensen–Rényi Divergence [13] in the crispness
function of Sheehan et al. [10]. The new measure will reach its maximum with a transformation that
results in the most similar sensor measures in the common frame. The requirement of driving and
a working positioning system makes this method inapplicable in many situations. The necessary
conditions prevail over the improvements made compared to Sheehan’s method.

While driving along a V-shaped track, the point clouds recorded by the LiDARs mounted on a
vehicle should be aligned when they are transformed using the correct transformation ML between
LiDARs and vehicle frame. To measure the alignment, He et al. [14] use the definition of a fitted
plane and the pairwise distance between those planes, introduced in in He’s previous publication [15].
This allows He et al. [14] to formulate an error function depending on trajectory and LiDAR pose to
transform the plane representations into a common frame and minimize its distance. Once a reference
LiDAR is calibrated, other mounted LiDARs can be calibrated to minimize the distance between their
fitted planes and the reference planes of the already calibrated sensor. Again, driving is required and
the use of 2D-SLAM could cause additional transformation errors. It also requires extra hardware.
Furthermore, the error based on the distance between the fitted planes is a good error measure, but
assumes relatively large planar surfaces in the environment.

In [16], Oberländer et al. utilize the crispness introduced by Sheehan [10], and also the redundancy
in the observation of a rotating or swivelling 2D laser range finder, mounted on their sensor platform,
after a full rotation of the LRF. Given the case that the surrounding environment is static, the scanner
has seen everything twice after a full revolution. Based on this fact, an objective function that represents
the crispness of point clouds with this redundancy feature is formulated. To exploit this redundancy,
the point cloud is separated into the two similar parts after a whole rotation. The objective function
transforms the sample points into a common frame. Different to [10], the GMM of each point’s
neighbourhood inside the other redundant point set, respectively, is calculated. The quantification
is the same as in [10]. A high crispness, depending on the 6-DOF pose parameters of the scanner
encodes a low deviation of points in their respective neighbourhood, which, in return, means, that
point pairs in the redundant data are close together, or, in other words, represent the same surface
patch. In both methods, Sheehan’s [10] and Oberländer’s [16], the crispness is optimised using iterative,
numerical Newton-like algorithms. However, ambiguities emerge between translation and rotation
when the sensors are rotated eccentrically on the platform, i.e., rotated around the center with a radius
r > 0. Furthermore, there are problems caused by different view angles of the redundant LiDAR
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measures. Nevertheless, the exploitation of redundancies in general is an elegant way to determine
the scanner’s pose.

Nouira et al. [17] make use of the precise knowledge of the vehicle’s pose. They state that sample
points on a planar surface of the same or a neighbouring scanline should be close together, if the
transformations from navigation frame to the vehicle’s baselink and finally to the scanner’s frame
are known and correct. Due to the fact that the pose is known by several sensors, Nouira et al. [17]
were able to formulate an objective function which minimizes the Euclidean distance of neighbouring
points on planar surfaces. This, however, requires several additional sensors and driving during the
calibration process. Moreover, some of the required sensors, such as GPS are not always available.
Besides the sensor requirements, there are difficulties exploiting the environments structure to avoid
calibration targets. Planar surfaces are mostly found in artificial environments.

Some of the proposed methods require driving. This makes them inapplicable in many situations,
for example, in stand-alone operation of sensing platforms. Others require additional localization
information which are also often not available. Avoiding the use of calibration targets comes with
strong assumptions about the agent’s environment. This will make recalibration sometimes difficult.
Our novel calibration method does not require any additional localization nor does it make any
assumptions about the scanner’s surroundings during the calibration process. Moreover, the majority
of methods either optimize the sensor pose information with respect to other sensors, while our
approach optimizes the extrinsic parameters with respect to static construction parts of the platform.

3. Calibration Method

On many sensing platforms, LiDARs are mounted on a rotating carrier, to enable the sensors to
extend the field of view. Thus, it changes its direction while continuously scanning the environment in
operation mode. The steady change of view direction makes a correct transformation of the drawn
sample points more important because errors do not only result in a static rotated or shifted perception,
but in many accumulated errors of this kind. The necessary transformation corresponds directly with
the sensor’s pose with respect to the sensor carrier’s rotation center. This static transform is defined by
the LiDAR’s extrinsic parameters.

The LiDAR is mounted in a way that its frustum is either tangential to the trajectory of the
scanner rotation, as indicated by the coloured triangles in Figure 2 or the frustum is intersecting this
trajectory, for example, when the scanner in Figure 2 is rotated by 90◦. However, in both cases, there is
a redundancy in the measurements done by the LiDAR after a full carrier rotation. The reason for this
is that, at each carrier orientation, Ri ∈ R3×3, the LiDAR scans in opposite directions, simultaneously.
These scans are depicted as blue and red lines in Figure 2. It also shows that a full perception of the
platform’s surroundings is already completed after a 180◦ carrier rotation. Thus, there are two full,
separable scans recorded after a 360◦ turn. However, if the transformation of the measured surface
samples from the sensor’s frame into a common one is not configured with the true LiDAR pose, i.e.,
extrinsic parameters, the two resulting, redundant point clouds will differ. The magnitude of this
divergence directly corresponds to the difference between the configured extrinsic parameters of the
LiDAR and its real-world pose.

Inspired by Oberländer’s approach [16], this is a key observation for the proposed method. The
objective is to equalize the redundant measurements carried out by the sensor. This can, in principle,
be achieved independently from any further tools, only by scanning the environment. However,
some experiments with our sensing platform suggested that there are problems with different view
points when inferring the LiDAR’s pose only from its bare measurements. This results from the
fact that rotations with a positive radius, i.e., revolving or orbiting a rotation center, may measure
the surroundings twice, like explained above. However, the two scans will differ slightly, since the
same object scanned from different positions result in different occlusions, i.e., the shadows casted
by the object on itself and other objects diverging. The different view points arise from the scanner’s
translation relative to the rotation center. For example, the carrier orientations R0 and R2 in Figure 2
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have overlap in the measurements, potentially observing the same surface, but from different positions.
These problems are avoided by detecting spherical targets and using only their center points as artificial
features to be aligned instead of the entire scanned environment. The estimation of the sphere center
points is independent from the view angle onto, and the excerpt of the sphere seen by the LiDAR.

R0

R1 R2

R3

Figure 2. Perception redundancy after a full carrier rotation. The triangles in blue and red show
the LiDAR’s frustums in a simplified manner. The lines, also in blue and red, are the measurement
in the respective view direction. The figure shows four representative carrier orientations Ri ∈
R3×3, i = 0, 1, 2, 3 with the revolving LiDAR and how its perceptions construct a full scan after a
180◦ carrier rotation.

The targets are placed in pairs on opposite sides of the platform, thus two spheres of a pair are,
and have to be, visible at the same time without any further platform rotation (Figure 3, top-left).
As mentioned above, after a full carrier rotation, each pair of spherical targets has been seen twice.
The redundant target pairs are depicted in Figure 3. This redundancy can be used to formulate error
measures, which can then be minimised. Obviously, the sphere centers corresponding to the same
sphere need to be congruent in the common rigid frame, even if they were seen from different carrier
orientations, since they represent the same object. Thus, their divergence indicates how strong the
error of a specific sensor pose is. However, since the sensor has six degrees of freedom, minimising the
error can get computationally expensive, especially because all of them need to be optimised together,
as long as they are hard coupled. In addition, there potentially arise combinations of orientations and
translations compensating others, i.e., different extrinsic parameters could align the target center points.
Inspired by Kang et.al. [7], this problem is approached by separating the sensor orientation from the
translational part resulting in two error functions depending on the LiDAR’s extrinsic parameters.

The actual decoupling is deduced in Section 3.1. Finally, Section 3.2 derives a three-dimensional
error measure for the orientation and another one for the translation, given that the orientation is
already known. Minimising both with respect to the LiDAR’s extrinsic parameters aligns the sphere
center points.

p′0

q′0

a)

p′0 p′1

q′0

q′1 b)

Figure 3. Cont.
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p′0 p′1

p′2

q′2

q′0

q′1 c)

p′0 p′1

p′2

p′3

q′2 q′3

q′0

q′1 d)

Figure 3. Sphere center points around the revolving LiDAR in the middle of the images. As in
Figure 2, the spheres are coloured and denoted with pi, qi, i = 0, 1, 2, 3 according to their respective
frustum-direction and the carrier’s i-th orientation Ri. From top-left to bottom-right, the sphere centers
are estimated by the LiDAR measurements. (a) most clearly reveals the fact that two spheres can be
seen by the LiDAR without further movement. (b) shows the scanner observing the second pair of
spheres, after the carrier has turned by 90◦. In the third image (c), the first target pair is detected a
second time after another 90◦ rotation. Note that the different colors indicate that it is seen from a
different carrier orientation. Furthermore, note that the center points are not aligned. This results from
the actual transformation error between the sensor frame and the platforms base frame. Moreover, it
clarifies that a redundant measurement of the surroundings begins after a 180◦ carrier rotation. Like
(c), the last picture (d) shows the other redundant sphere detection after the carrier turns further 90◦.
In each picture’s center area, the revolving LiDAR is depicted in the coordinate system of the rotating
sensor carrier. As can be seen, the LiDAR’s pose with respect to the carrier is static, i.e., it does not
change over time.

3.1. Decoupling

Minimising a function with six free parameters can be computationally expensive. Furthermore,
in the case of transformation arguments, there are ambiguities between translation and orientation, i.e.,
some combinations of translations and rotations can compensate others. To tackle these challenges
and especially to reduce the problem’s dimensionality, we decouple the rotational part from the full
six degrees of freedom transformation. Inspired by [7], we formulate individual error functions for
the rotational and translational part of the LiDAR’s extrinsic parameters. To do so, it is assumed
that the LiDAR is able to see two spheres Spi and Sqi in a single carrier position Ri ∈ R3×3 and that
their respective center points pi and qi are estimated. We denote the scanner’s extrinsic parameters as
translation~t ∈ R3 and orientation R ∈ R3×3. It will be the final objective to optimize the respective
error functions with respect to~t and R, separately.

The center points of Spi and Sqi can be represented in the common, rigid frame of the sensing
platform’s base, by transforming them with the sought sensor transformation TR′S ∈ R4×4, defined by
the extrinsic parameters, into the carrier’s rotation center and subsequently applying the measured
transformation of the sensor carrier TRR′ ∈ R4×4. Since the translational component of TRR′ is always
zero, its orientation is changing over time, it can be reduced to Ri ∈ R3×3. The index i denotes that the
carrier orientation at of the i-th target pair can be detected:

p′ i = Ri ∗ R ∗ (pi +~t), (1)

q′ i = Ri ∗ R ∗ (qi +~t). (2)

Figure 4 depicts the transformed, estimated center points of a target pair p′ i and q′ i can be used to
construct a vector ~di pointing from p′ i to q′ i:

~di = p′ i − q′ i. (3)
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Inserting Equations (1) and (2) in Equation (3) results in

~di = Ri ∗ R ∗ (pi +~t)− (Ri ∗ R ∗ (qi +~t))

= Ri ∗ R ∗ pi + Ri ∗ R ∗~t− (Ri ∗ R ∗ qi + Ri ∗ R ∗~t)
= Ri ∗ R ∗ pi − Ri ∗ R ∗ qi

= Ri ∗ R ∗ (pi − qi).

(4)

p′0 p′1

p′2

p′3

q′2 q′3

q′0

q′1

~d0

~d1
~d2

~d3

Figure 4. Direction-vectors between (e.g., ~d1 and ~d3) become anti-parallel if the rotation is well known.
The picture shows an exemplary target arrangement using M = 4 spheres. The depicted vectors
indicate that the platform is not yet calibrated.

Thus, the vectors ~di between the center points of a pair of spheres, seen at a carrier orientation Ri
do not depend on the LiDAR’s translation relative to the carrier’s rotation center.

This leads to another observation of two such vectors ~di and ~dj between the same pair of spheres,
but seen with different carrier orientations Ri and Rj, respectively, resulting in ~d0 and ~d2 as illustrated
in Figure 4. Due to the redundancy in the LiDAR’s measurements, both vectors have to point in
exactly opposite directions, when they are transformed into a common frame. This is because both
measurements include the same spheres: Spi on the left of the sensor and and Sqi from the other
orientation. This means that

~di = −~dj (5)

with j = i + (M/2) has to hold, where M is the number of spheres. This insight is used in Section 3.2
to formulate a rotational error of the sensor’s pose.

3.2. Optimisation

As mentioned before, the LiDAR’s orientation is optimised separately from its translation.
The vectors ~di and ~dj, between a pair of sphere centers estimated from two different carrier orientations
Ri and Rj, need to be anti-parallel when the configured extrinsic parameters of the sensor are close or
equal to the true pose. This is exploited by formulating the error for a single pair of spheres as the
magnitude of the cross-product of ~di and ~dj. Thus, the norm directly depends on the angle φ between
the two vectors ~di and ~dj, which should be anti-parallel, i.e., φ = π. This observation leads to an error
function for a single pair of spheres:

Eij(R) = ||~di × (~dj)|| = ||Ri ∗ R ∗ (pi − qi)× Rj ∗ R ∗ (pj − qj)||. (6)
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As can be seen in Equation (6) Ri, pi, qi, Rj, pj and qj are all measured quantities. Therefore, the
error of the vector pair ~di and ~dj only depends on the LiDAR orientation R. In addition, the cross
product’s norm of two anti-parallel vectors becomes zero, so it works well as a minimisation objective
in the first step. Thus, an overall error for the rotational part R of TR′S can be formulated as

E(R) =
M/2

∑
i=0

Eij(R), (7)

where, again, j = i + M
2 and M is the number of spheres. The orientation R∗ that minimizes E(R)

approximates the LiDAR’s actual orientation:

R∗ = argmin
R

[E(R)] . (8)

Afterwards, the translation is optimised separately. The sphere centers representing the same
target can be used to formulate the error of a given sensor translation~t. As the orientation R∗ has been
estimated previously, the translation error can be formulated as

Eij(~t) = p′i − q′j = Ri ∗ R∗ ∗ (pi +~t)− Rj ∗ R∗ ∗ (qj +~t). (9)

Again, Ri, pi, Ri, and qj are measured. Furthermore, note that R∗ is assumed to be already
estimated accurately. Therefore,~t is the only independent variable. As already done for the LiDAR’s
orientation, Equation (9) can be used to formulate a sum. This time as a least squares problem:

E(~t) =

M
2

∑
i=0

Eij(~t)2, j = i +
M
2

. (10)

The actual translation with respect to the carrier’s rotation center~t ∗ is estimated as:

~t ∗ = argmin
~t

[
E(~t)

]
. (11)

Both error functions have to be minimised with respect to their respective argument. In our
experiments, attempts to do this via classic gradient descent or trust region methods often converged
to one of many local minima for the orientation, and thus did not result in the desired global minimum.
A global minimisation approach seems to be better suited. A simple grid search to determine global
minima gets tractable due to the reduction of the dimensionality of the original problem, achieved by
decoupling the orientation and translation of the six degrees of freedom pose. However, this still leads
to cubic complexity of both objective functions, if no further optimisations are performed.

A further dimension reduction is possible for the translation optimisation, since the z component of
~t can not be found. Changes in z will just lift or lower all measurements equally and therefore will have
no effect on the error function. Ignoring tz will reduce the translation search to quadratic complexity.

However, the complexity of the optimisation of the sensor orientation remains cubic. It can get
tractable, in practice, by reducing the range of the search space or the parameter grid’s resolution.
The latter, however, is also a problem because the exact global minimum will probably be missed with
a low grid resolution. Therefore, this is tackled with a subsequent local optimisation using a gradient
descent solver using promising candidates resulting from the grid search as starting points.

4. Evaluation

The optimisation quality probably depends on the arrangement of the calibration targets. There
are two quantities that could affect the calibration result: (1) is the distance between the targets and the
LiDAR and (2) the angle between the direct lines corresponding to the pairs of spheres.
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The distances ||L02||, ||L13||, ||L′02|| and ||L′13|| in Figure 5 have a direct influence on the sensitivity
of the objective function for the orientation optimisation. The sensitivity of a function is the magnitude
of the change of its response when its arguments are changed, that is, how steep the gradient is, relative
to the change in a certain argument. Thus, the sensitivity has an influence on the optimisation behavior
and should be high. For the distance, this means that the sensitivity with respect to φ is of interest:

Eij(R) = ||~di × (−~dj)|| = ||~di|| ∗ || − ~dj|| ∗ sin(φ), φ = ^(~di, (−~dj)),

dEij(R)
dφ

= ||~di|| ∗ || − ~dj|| ∗ cos(φ). (12)

The derivative of Eij(R), with respect to the angle φ, in Equation (12) is scaled by the squared
distance between the spheres of a pair. Therefore, we would expect that a larger distance between the
platform and the targets is beneficial for the optimisation results.

L02 L13

S0 S1

S2S3

ω

L′
02 L′

13

S0′ S1′

S2′S3′

ω′

Figure 5. Two possible target arrangements. The left depicts an optimal placement with high target
distances L02 and L13 as well as an angle between them of ω = 90◦. For the arrangement on the right,
however, the targets are close to the LiDAR and an there is an angle ω′ 6= 90◦ between L′02 and L′13.
The latter is expected to lead to suboptimal calibration results.

The influence of the angles ω and ω′, however, does not directly affect the objective function.
However, it affects the sensitivity of the coupling between two target pairs. If a change of the extrinsic
parameters of the LiDAR results in a rotation of angle α around the direct line Lij between a certain
pair of spheres, this does not change the residual contributed by this particular pair. Moreover, this
rotation would increase the residual contributed by the other pairs. How strong this contribution gets
is defined by the orthogonal portion rkl = ||Lkl || sin(ω), from one direct line Lij to another Lkl . Rotating
around Lij would displace the spheres centers defining Lkl . The magnitude of the displacement can be
described as an chord of length l:

l = 2rkl sin(α) = 2(||Lkl || sin(ω)) sin(α),

dl
dα

= 2(||Lkl || sin(ω)) cos(α). (13)

The derivative, with respect to α in Equation (13), suggests that the coupling of two target pairs is
more sensitive if ω ≈ π. Therefore, better optimisation results are expected if the direct lines between
the pairs of spheres are orthogonal.

Further investigations about these expectations will be done in the following sections. To evaluate
the calibration quality, a measure to rate recorded point clouds will be introduced in Section 4.1.
The experiments in Section 4.2 will assess the calibration qualities of different target arrangements and
calibration configurations followed by a discussion of the results in Section 4.3.

4.1. Quality Measures

The lack of knowledge about a ground truth real-world pose of the LiDAR makes it necessary to
evaluate the quality of the optimised extrinsic parameters in an indirect way. In our experiments, this
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is done by rating the quality of recorded point clouds utilising the optimisation results from several
calibration runs. Therefore, we introduce a quality measure to rate the recorded point clouds in an
offline phase.

There would be an obvious quality measure of the resulting point cloud by comparing the points
of the redundant measurements, e.g., by averaging the distance to their nearest redundant neighbour.
However, since there is no correspondence between the single points of the different clouds defined, it
is not possible to measure their distance or something like that. As the experiments are done in an
artificial environment, there are many planar surfaces in the scene. How crisp or sharp a point cloud
is can therefore be measured in a more semantic way. The effect on planar surfaces, like walls, were
already shown in Figure 1 and thus the point cloud quality corresponds with how noisily those planar
regions have been sampled.

To get this information, the largest planes are subsequently detected by fitting planes to the point
cloud via a Random Sample Consensus (RANSAC) [18] method followed by a region growing taking
only the Euclidean point distance into account. This separates planar unconnected patches lying in
the same plane, such as several tables of the same height. This results in a set of smaller point clouds
Pk = {~p0,~p1, ...~pNk−1}, k = 0, 1, 2, . . . , M − 1, each containing the samples of the respective planar
surface patch. Afterwards, the centroid ~µk of each patch is calculated as

~µk =
1

Nk

Nk−1

∑
i=0

~pi, ~pi ∈ R3×1, i = 0, 1, 2, . . . , Nk − 1 (14)

and used to compute the covariance matrix Ck of this point set Pk as

Ck =
1

Nk

Nk−1

∑
i=0

(~µk − ~pi)
T ∗ (~µk − ~pi), ~µk,~pi ∈ R3×1, i = 0, 1, 2, . . . , Nk − 1. (15)

The covariance matrix Ck encodes the squared deviations in the dataset with respect to ~µk. Since,
the data points have three dimensions, Ck also has three eigenvectors ~vk0,~vk1,~vk2 ∈ C3×1, with

Ck ∗ ~vki = λki ∗ ~vki, i = 0, 1, 2, (16)

where the eigenvalues λk0, λk1, λk2 ∈ C with λk0 ≥ λk1 ≥ λk2 are associated with the eigenvectors
~vk0,~vk1,~vk2, and represent how strong the deviation in the respective direction is. Because a plane
only expands in two dimensions, the eigenvector ~vk2, associated with the smallest eigenvalue λk2,
is perpendicular to the plane, if the sampled data contains no additional systematic noise in other
directions. In fact, the magnitude of change in this direction has to be the sensor noise or systematic
deviations like they appear when points are erroneously transformed from sensor- to common frame
(Figure 1). Summing up this error for every plane Pk found in the scene and normalising it with the
number of planes performs as a measure E(P) for the cloud sharpness:

E(P) =
1
M

M−1

∑
k=0

λk2. (17)

4.2. Experiments

The error caused by mistransformation in a point cloud is difficult to isolate, since there are
different possible sources for errors. For example, there are errors caused by LiDAR noise or caused by
the discrete measurement of the rotation encoder, resulting from angles which are actually between two
encoder steps. Neither the source nor the respective portion of the sensory error can be distinguished
from the residual error remaining after calibration. Furthermore, another problem prevents the direct
analysis of the actual remaining transformation error. The data used during the calibration process
are estimated sphere centers. These estimations are themselves erroneous and prevent the calculating
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the exact pose. Therefore, the quality measure described in Section 4.1 is applied to the uncalibrated
LiDAR measurements and to all calibration results with the different target arrangements, parameter
grid resolutions, and initial pose guesses. Rating the outcomes of the calibration in different conditions
allows a reasoning about the method’s behavior.

During all experiments, the Velodyne VLP-16 of the SWAP platform [6] was calibrated. This is a
suitable sensing platform since the mounted Velodyne is a revolving multi-beam LiDAR. The platform
was placed in the hall of a building on our campus, i.e., in an environment with many planar surfaces
that are not too close to the platform (ca. 5 m away). This is important, since errors caused by the
orientation of the LiDAR increase with the distance of the sampled surface data. Moreover, the walls and
floor, contained in the excerpt of the hall used to rate the calibration quality, have different orientations
to ensure all dimensions of the sensor orientation are reflected by the orientation of the planar surfaces.
The excerpt is depicted in Figure 6. Additionally, two objects, a cube (ca. 0.4 m side length) and a
cylinder (ca. 0.4 m diameter and height), were placed in the scene to provide additional surface data
and show concurrence of the redundant LiDAR measurements. The experiments can be split into two
phases. The first phase records the calibration targets within the different arrangements discussed
earlier and calibrates the extrinsic parameters using different configuration sets. The second phase takes
the resulting LiDAR poses from the first phase and applies them to the platform configuration to record
the environment, i.e., the building on our campus, in operation-mode. Finally, the proposed quality
measure is applied to the record, in order to compare several calibration results.

Figure 6. Point cloud of the scene, recorded to compare calibration qualities with different configurations.
The scene contains different oriented planar regions, about 3–5 m away. They cover the test of all
orientation dimensions of the LiDAR. Moreover, a cube with about 0.4 m side length and a cylinder with
ca. 0.4 m diameter and height are placed in the scene. They should be congruent after calibration.

In the first phase, the spherical calibration targets were placed around the LiDAR platform and
were recorded in calibration mode. This means that the platform drives to several previously configured
angles in sequence, from which the spheres can be scanned by the mounted Velodyne VLP-16 LiDAR
to estimate their center points. These scans were recorded and passed to the calibration software,
which optimizes the kinematic chain as explained earlier. We performed several calibration runs under
different circumstances. First, the target arrangements were changed, i.e., the targets were placed
at different distances of 2.0 m, 3.0 m, 3.5 m and 4.0 m from the sensor platform. This allows us to
estimate how the sensitivity changes with the distance, as mentioned in Section 3.2. Furthermore, we,
in addition, expected, that it is more beneficial to have a 90◦ angle between the~d-pairs. Therefore, the
target pairs were additionally placed in a ω ≈ 90◦ and a ω′ ≈ 45◦ angle from each other (see Figure 5).
In addition to the physical variations during the experiments, calibration parameters were also changed.
The resolution of the search grid, used to find the global optimal orientation parameters, was configured
to a 0.005 step size in each dimension, to test a low resolution grid. To study a significantly higher
resolution, the step size was also set to 0.00025 in yaw, pitch and roll. Second, to investigate how the
method behaves if the initial pose guess is far from the true pose, the actually measured pose was tested
in comparison to one with an additional error of +0.03, added to all five dimensions.
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The calibration runs result in different transformations that were used to record the surroundings
in a second phase. While running the platform in operation mode, it was configured to rotate
continuously with 0.0175 Hz (i.e., one full rotation in about a minute) to sample the environment.
The records of the continuous runs were cropped to an excerpt of the room to avoid negative influence
of clutter or salient structures of the building. The plane deviation measure was applied to each of
these records to rate the quality of the respective point cloud. We set the parameters of the measure as
followed. The RANSAC of the plane deviation has a parameter to set the allowed distance between the
plane model and the data points to distinct plane inlier from other points. This was set to 2σ = 0.06,
i.e., the doubled sensor noise, to prevent the potential over-segmentation of calibration results with
low quality, i.e., high noise and thus also high point deviations. The same applies for the allowed point
distance during the region growing. The qualities of the recorded point clouds are plotted against the
different target distances in Figure 7.

Additionally, to study the calibration runtime with different configurations, several calibration
runs with static range limiting the search space and from a single initial pose guess were done.
The runtime depends on the grid resolution, runtime of the local optimiser and the number of detected
promising starting points for the gradient descent. All calibration runs to log the optimisation durations
were performed on a Lenovo Thinkpad T460p laptop with an Intel(R) Core(TM) i7-6700HQ CPU. The CPU
has four physical cores and another four logical ones. Each core is working at 2.60 GHz. Furthermore,
the system has 16 GB of RAM and a 128 GB SSD storage. The logged runtimes are displayed in Table 1.

Table 1. Logged durations of the single optimisation steps with grid resolution in the first column.
The second column shows the total durations composed from the time taken by the grid search (third
column) and the subsequent local optimiser for the orientation and translation (last column). The
resolutions used in experiments are bold.

Resolution [rad] Total [s] Grid [s] Local [s]

0.005 7.588 0.618 0.018 + 6.951

0.0025 13.116 6.678 0.029 + 6.408

0.001 54.782 49.543 0.024 + 5.215

0.00075 106.638 101.075 0.008 + 5.554

0.0005 343.847 338.135 0.012 + 5.699

0.00025 2611.7 2606.2 0.024 + 5.462

0.000125 19359.7 19354.3 0.017 + 5.396

0.0001 38592.8 38586.3 0.013 + 6.488

4.3. Discussion

The plots in Figure 7 indicate an improvement of the extrinsic parameters compared to the
respective initial guess, as measured with the plane deviation. The tendency to the optimal configuration
goes to a sweet spot at a distance between sensor and targets of 3.5 m and a high resolution for the grid
search (blue and red bars). This is indicated by a very low plane deviation for these configurations.
Other configurations with close targets or a low resolution of the search grid also improve the initial
pose, but scored less, compared to the sweet spot.
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Figure 7. Results of experiments calibrating the LiDARs extrinsic parameters under different
circumstances and with different quality measures. The graphs in the left diagram show the quality of
recorded point clouds after calibration from a pose we actually measured at the platform construction,
rated with the plane deviation (above) and the crispness measure (below). The graphs in the right diagram
depict the same ratings but applied to results from an initial pose guess with an artificially upscaled
error. All graphs contain ratings of calibration results produced from different target arrangements,
each calibrated with a high (0.00025) and a relatively low (0.005) resolution of the pose parameter grid.

It is significant that targets placed at great distances lead to better results, at least for the promising
grid configurations. The score gets better up to 3.5 m. Calibration runs with targets placed in 4.0 m
range come up with worse scores. We believe that this is caused by the increasing error from sphere
center estimation, dominating the benefit of targets placed farther away. In general, calibration runs
with targets placed close to the platform result in less sharp point clouds. As predicted by our
expectations, this can possibly be explained via the sensitivity of the objective function to optimize (see
Section 3.2) and with the fact that a divergent angle has less effect at close range. This could possibly
shift or widen minima to saddles to which the optimiser converges. This makes it necessary to place
the targets as far as possible from the platform as long as an accurate sphere center estimation can
be expected.

It was also expected to get better results using the higher resolution for the parameter grid used
for the search of promising extrinsic parameter sets to start a gradient decent optimisation at. In fact,
the results contain no evidence for a good result on low resolved search grids. Thus, a high resolution
search seems to be not only beneficial, but also necessary.

Surprisingly, the angle between the target pairs (see Figure 5) had no strong or even any effect
on the results. The fact that the 45◦ arrangement even scores best can arguably be explained by an
inferior estimation of sphere centers when the data for the 90◦ arrangement were recorded. There is no
theoretical reason for the acute-angle to be an advantage, known to us.

The plane deviation measure gives evidence that the initially guessed sensor pose does not need
to be very accurate. The deteriorated initial pose parameters, shown in the right plot of Figure 7, result
in similar qualities as the parameters estimated from the originally measured initial pose (left plot).
Furthermore, Figure 8 supports this observation. The figure shows the point clouds recorded with
the initial pose guesses in the first row—on the left side with the measured and on the right side with
the deteriorated pose. The results with the best quality scores are shown below their respective initial
guess. Both present fairly sharp point clouds. In addition, the objects, cube and cylinder placed in the
scene got congruent. This is especially noticeable in the right column starting from the deteriorated
initial pose.
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1.a) 1.b)

2.a) 2.b)

3.a) 3.b)

Figure 8. Point clouds sampling the excerpt of the test scene, the quality measure was applied to.
The images (1.a,1.b) in the first row show the records done with the initial extrinsic parameter sets,
used to study the influence of the initial pose the optimiser starts with. The cloud in (1.a) results
from using the sensor pose parameters measured on the SWAP platform by hand. The one in (1.b)
results from applying the transformation resulting from a deterioration of the measured transformation.
Images (2.a,2.b) in the second row depict the resulting clouds after the parameter optimisation from the
respective initial poses. The red and blue point colouring in the first two rows result from separating
the two redundant measurements. The images (3.a,3.b) in the last row show the distances between
the two clouds above. The intensity encodes the magnitude of changes with blue representing strong
changes and reddish colors representing small changes.

As the data in the table on the left side in Table 1 suggest, most parts of the optimisation process
have more or less constant runtime. Only the time taken by the grid search follows a cubic curve
(shown in Figure 9), as the search space has three dimensions yaw, pitch and roll. However, working
parallel reduced the duration by a factor of 1

c , where c is the number of available hardware threads the
used CPU can provide. The experimental runs discussed above resulting in the best extrinsic parameter
configuration had a resolution of 0.00025 and took about 43 minutes for the full configuration run
excluding the time to perceive the target center points. This is a long time, but is still tractable, as the
calibration is an offline process. However, runs with a doubled grid resolution will take 7.41 times as
long and thus will be hard compromise for a higher calibration accuracy.
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Figure 9. The plot shows the runtime behavior of the grid search with respect to the grid resolution.
The curve in the graph is an approximation to the grid search durations in Table 1.

5. Conclusions and Future Work

In this work, we introduced a novel calibration method to optimize the extrinsic parameters
of rotating or revolving multi-beam LiDARs. It is inspired by the work of Oberländer et al. [16] to
exploit redundancies in the LiDAR measurements, and on the decoupling of pose components by
Kang et al. [7]. This enabled us to deduce a theoretical method which allows the separate optimization
of orientation and translation. The method was also tested with an exemplary sensor platform by
Neuman et al. [6]. Revolving LiDARs theoretically come up with problems like the different view
points of the redundant surface information. Therefore, the SWAP platform [6] with its revolving
Velodyne VLP-16 was used in our experiments.

Our experiments indicated that the proposed method works, with restriction under the expected
circumstances. Decoupling the LiDAR’s orientation from its translational shift relative to the carrier
center allows a precise optimization of the five degrees of freedom pose in two steps, as long as a target
pair can be detected by the LiDAR at a time and the sensor carrier orientation can be measured e.g., by
a rotation encoder.

The calibration quality unfortunately strongly depends on the accuracy of the target detection,
which correlates with the target distance. However, the experiments showed that the targets have to
be as far away as possible and the resolution of the search grid needs to be relatively high, in order
to achieve the optimal results. In particular, the latter can get inconvenient because it leads to longer
calibration runtimes. This, however, could still be tractable, since the calibration process usually is not
a time-critical application.

Nevertheless, the decoupling and separate optimization was the focus of this work and performed
well, and thus the proposed method is a promising approach with potential for further improvements.

For future improvements, the target center issues probably can be addressed by using bigger
spheres. Maybe the estimation accuracy for the sphere centers could also be increased if a better
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reflecting material is used for the calibration targets. This has to be tested in further experiments.
Another approach to tackle center estimation errors could be to decrease the individual influence of
each inaccuracy. It is possible that using more spheres could reduce the influence of each single one and
thus also the influence of the error each one contributes to the sum of residuals. This possibility makes
it worthwhile to test the calibration with additional target pairs placed around the platform—especially
because the angle between the target pairs was shown to have less effect on the calibration quality.
Moreover, for future applications, the sphere fitting method should be generalized. At the moment,
our implementation is restricted to multi-beam LiDARs because a single scanline on a sphere has
two equivalent fitting solutions. This can not actually be fixed, but maybe the right solution can be
parameterized, e.g., by configuring if a certain scanline to be left or right of the sphere’s center point
w.r.t. the LiDAR. This has to be implemented and tested.

Unfortunately, it is out of the scope of this work to decide if there are optimization algorithms that
are better suited to the proposed problems i.e., more sophisticated global optimizers able to handle
saddle regions. This also remains a topic for further research.

Furthermore, the restriction to LiDARs perceiving two calibration targets at a time could be
slightly weakened by enabling a calibration, using another already calibrated sensor on the same
platform. The alignment of the sphere centers detected by the calibrated LiDAR with the center points
estimated by the uncalibrated sensor could also converge to optimized extrinsic parameters. However,
this has to be implemented and tested. Although our method originally was developed to calibrate
LiDARs mounted on a rotating sensor carrier, the theoretical background of our proposal allows for
moving the LiDAR in six degrees of freedom e.g., by mounting it on a driving car to perceive the
same target pairs from two different poses to achieve the redundant target measurements. Despite the
requirement of an accurate localization system, this also could be a worthwhile application to extend
the application of the proposed calibration method.
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