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Abstract: In this study, we propose a new simple degree-of-freedom fluctuation model that accurately
reproduces the probability density functions (PDFs) of human–bicycle balance motions as simply
as possible. First, we measure the time series of the roll angular displacement and velocity of
human–bicycle balance motions and construct their PDFs. Next, using these PDFs as training
data, we identify the model parameters by means of particle swarm optimization; in particular,
we minimize the Kolmogorov–Smirnov distance between the human PDFs from the participants and
the PDFs simulated by our model. The resulting PDF fitnesses were over 98.7% for all participants,
indicating that our simulated PDFs were in close agreement with human PDFs. Furthermore,
the Kolmogorov–Smirnov statistical hypothesis testing was applied to the resulting human–bicycle
fluctuation model, showing that the measured time responses were much better supported by our
model than the Gaussian distribution.

Keywords: human–bicycle balance; stochastic model; identification; probability density function;
particle swarm optimization

1. Introduction

Bicycles provide a useful means of short-distance transportation, and their utilization is expected
to contribute to building a healthy and environmentally friendly society [1]. However, at least on
Japanese roads, bicycle transportation is not always necessarily safe due to collisions with automobiles.
The Japan National Police Agency reported that over 83% of bicycle accidents in Japan in the last
ten years have involved automobiles [2]. To avoid such accidents, autonomous vehicle technology
will play an important role; if it can predict bicycle motions, the resulting self-driving cars may
reduce such accidents. For this purpose, accurate simulation models of bicycle motions are required,
and they should be provided as simply as possible for the potential use of electronic control units in
self-driving cars.

Bicycle motions with human riders in traffic seem to be broadly classified into two types: voluntary
and involuntary. The former comprises purposeful motions such as right and left turning at a street
intersection. Google [3] reported that their sensors can detect a cyclists’ hand signals as an indication
of an intention to make a turn or shift over. The latter comprises unconscious motions such as human
fluctuated balance motions, which have already been found universally in human quiet standing [4–6],
human stick balancing [7,8], human visuomotor tracking [9–11], and so on.

In this study, we propose a simple stochastic model that allows us to simulate the latter type
of bicycle motion, i.e., involuntary fluctuated human–bicycle balance motions. To this end, we have
conducted an experiment in which each human participant rides a bicycle on bicycle-trainer rollers,
allowing it to move without rolling or yawing constraints. During this experiment, we measured
the bicycle’s rolling motion using a three-dimensional motion sensor attached to it. The measured
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time-series of the rolling motion are characterized by their probability density functions (PDFs). Next,
we designed our proposed human–bicycle model as a simple pendulum mechanism controlled by our
human controller model, which was successfully used in our previous study [11] to simulate random
human fluctuations during a visuomotor tracking task. We then identified the model parameters
based on the measured PDFs as training data, using particle swarm optimization (PSO) to minimize
the Kolmogorov–Smirnov (KS) distance between the measured PDFs and those simulated by our
proposed human–bicycle model. The results show that our proposed model successfully reproduces
the measured PDFs with fitnesses of over 98.7%. Furthermore, we conducted a statistical hypothesis
test called the KS test [12,13] on our results to check their stochastic reliability, showing that the
measured time series were much better supported by our model than the Gaussian distribution.

Our stochastic human-modeling approach sharply contrasts with other studies in the fields
of autonomous or unmanned bicycle-control systems [14–22] because their models have been
deterministic and not designed to have randomly fluctuating terms. Our approach also differs from
Google’s study on voluntary bicycle motions, as mentioned above [3]. Although there has been another
study on the stochastic modeling of bicycle fluctuated motion [23], it addressed large-scale bicycle
running paths, unlike our study, which deal with small fluctuations.

The rest of the paper is structured as follows: Section 2 describes the experimental test of
human–bicycle balance motions. In Section 3, our proposed stochastic model of these motions is
presented. In Sections 4 and 5, we describe the method of parameter identification and the identification
results are presented with the KS testing results. Section 6 concludes our study.

2. Human–Bicycle Balance Experiment

2.1. Experimental Setup and Procedure

Figure 1 shows a photograph of our experimental device, a participant, and an experimenter.
The experimental device consists of four units: a bicycle (BE-ELL03, Panasonic, Osaka, Japan), a set
of bicycle-trainer rollers (E-MOTION, Elite, Italy), a three-dimensional motion sensor (CSM-MG100,
Tokyo Aircraft Instrument, Tokyo, Japan), and a computer.

Figure 1. Photograph of our experimental device, a human participant, and an experimenter.

The experimental participants were eight healthy males in their early twenties. They were first
instructed on the operation of the experimental device, the number of trials, and the duration of
each trial. The experiment was performed according to the principles of the Declaration of Helsinki,
and informed consent was obtained.

In each trial, the participant rode a bicycle on trainer rollers for significantly more than 180 s
at a speed of about 15 km/h. Several practice trials were performed prior to measurement. The air
pressure of the tires was set to 300 kPa.
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Note that, in our setup, the bicycle is constrained on the stationary trainer. This may cause
our measured motion to differ from free motions on the road. Such potential discrepancy, however,
did permit a three-minute safety trial without external disturbances and was minimized by using a
roller-type trainer known to have fewer constraints than other types of trainers.

2.2. Experimental Data

During each trial, the time series of the measurement vector,

x(t) = (x1(t), x2(t))T := (θ(t), θ̇(t))T (1)

(hereafter, (·)T denotes a transpose), was obtained by the motion sensor. Here, θ [rad] is the roll angle
from the vertical line to the bicycle’s vertical axis, and θ̇ := dθ/dt [rad/s] is the corresponding angular
velocity. Figure 2 schematically shows the definition of the roll angle in the front view of the bicycle.
The bicycle’s vertical axis was nominally determined based on the direction of the bicycle frame.
The motion sensor was initially calibrated to output θ = 0 when the bicycle’s vertical axis was parallel
to the vertical line. Therefore, θ = 0 does not indicate the upright equilibrium of the unmanned bicycle.
Nevertheless, since the resulting calibration setting was commonly maintained for all participants and
trials, the obtained datasets can be compared with each other.

Figure 2. Schematic front view of the bicycle during the experiment.

Throughout the experiment, x(t) were stored in the computer in the following form:

{x(s,n)
hum (t0), · · · , x(s,n)

hum (ti), · · · , x(s,n)
hum (tI−1)}, i = 0, · · · , I − 1, s = 1, · · · , S, n = 1, · · · , N, (2)

where ti := i∆t [s] is a discrete time with a sampling period of ∆t [s], I is the length of the time series, s
and S are an index and the number of participants, respectively, and n and N are an index and the
number of trials, respectively.

For this study, we chose ∆t = 10−2 s and I = 18,001 to obtain the physical data length
(I − 1)∆t = 180 s. The number of participants was S = 8, and the number of trials undertaken
by each participant was N = 5.

Figure 3 shows the measured time series for (s, n) = (1, 1), i.e., for the first participant’s first trial.
The result clearly exhibits fluctuations specific to human balancing motions in which large-amplitude
spikes intermittently arise among the moderate-amplitude fluctuation process, which has already been
recognized as temporal intermittency in the field of nonlinear physics [6–8]. Thus, we obtained the
time series for all s = 1, · · · , S and n = 1, · · · , N.
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Figure 3. The measured time series of the human–bicycle balance for (s, n) = (1, 1).

As shown in the upper graph of Figure 3, the vibrational center of θ(t) is shifted from the origin,
θ = 0. This is mainly because the calibrated θ = 0 does not indicate the vertical equilibrium of the
bicycle, as mentioned above. We statistically evaluate these shifts by identifying them as the mean roll
angles given by

E(s)[θ] :=
1

N × I

N

∑
n=1

I−1

∑
i=0

x(s,n)
1 (ti), s = 1, · · · , S, (3)

which is the temporal average of the sth participant’s θ(t), further averaged over all of his trials.
The resulting values are listed in Table 1 with standard deviations given by

SD(s)[θ] =
√

V(s)[θ], V(s)[θ] :=
1

N × I + 1

N

∑
n=1

I−1

∑
i=0

(
x(s,n)

1 (ti)− E(s)[θ]
)2

, s = 1, · · · , S. (4)

Viewing the average over all participants’ values, E(s)[θ] takes about 1.75× 10−2, indicating that
the actual equilibrium angle of the bicycle was approximately at θ ≈ 1.75× 10−2 rad (or 1.01◦) in
our setup. In addition, each E(s)[θ] value is slightly different due to the respective riding forms of
the participants.

Table 1. The mean roll angle of the sth participant.

s 1 2 3 4

E(s)[θ] 1.71× 10−2 1.55× 10−2 1.71× 10−2 1.69× 10−2

SD(s)[θ] 1.46× 10−2 1.33× 10−2 1.63× 10−2 1.07× 10−2

s 5 6 7 8

E(s)[θ] 1.59× 10−2 1.65× 10−2 1.83× 10−2 2.31× 10−2

SD(s)[θ] 1.40× 10−2 1.37× 10−2 1.30× 10−2 1.42× 10−2

2.3. Construction of Measured PDFs

First, we obtain P(s,n)
hum (x1, x2), the joint PDF with respect to the components of the time series in

(2) for the sth participant’s nth trial, by normalizing the two-dimensional histogram of {x(s,n)(ti)}I−1
i=0

with bin width (xk − xk)/Nbin (k = 1, 2). Here, Nbin is the number of histogram bins and xk and xk are
the upper and lower limits of xk, respectively.
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Next, the resulting P(s,n)
hum (x1, x2) is averaged over all trials n = 1, · · · , N to obtain the sth

participant’s joint PDF as

P(s)
hum(x1, x2) =

1
N

N

∑
n=1

P(s,n)
hum (x1, x2). (5)

We call (5) the measured PDF of the sth participant.
Figure 4 shows the measured PDF of all participants (s = 1, · · · , 8). In this study, we commonly

set Nbin = 40, (x1, x1) = (−0.04, 0.08), and (x2, x2) = (−0.3, 0.3) for all PDFs , as was done in Figure 4.
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Figure 4. The measured joint probability density functions (PDFs) from all participants (s = 1, · · · , 8).

3. Fluctuation Model of the Human–Bicycle Balance

In this section, we propose a new fluctuation model that allows us to reproduce the measured
PDFs obtained above as simply as possible.

3.1. A Human–Bicycle Fluctuation Model

In view of our setup in Figure 2, we model the human–bicycle mechanics by a simple inverted
pendulum about the contact point of the bicycle wheel. Based on the time series statistics in Table 1,
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we also assume that the roll angle θ about the equilibrium is sufficiently small; the maximal three
standard deviation indicates 3×maxs SD(s)[θ] ≈ 4.88× 10−2 rad (or 2.80◦ deg). Therefore, we model
the bicycle’s rolling motion by a linearized inverted pendulum of the form:

mr2θ̈ −mgr(θ − θ̂) = T, (6)

where m [kg] and r [m] are the mass and length of the pendulum, respectively, g := 9.81 m/s2 is the
gravitational acceleration, T [Nm] is a torque input, and θ̂ [rad] is the equilibrium angle. The equation
of motion (6) is nondimensionalized and represented in the following state-space form:

ẋ1 = x2, ẋ2 = k(x1 − θ̂) + u, (7)

where x = (x1, x2)
T := (θ, θ̇)T , k := g/r, and u := T/mr2.

Next, we specify u to simulate the human fluctuation during human–bicycle motion.
As successfully demonstrated in our previous study [11], some human fluctuations can be accurately
simulated by the following state-feedback mechanism:

u = F1{1 + σ1ξ1(t)}(x1 − θ̂) + F2x2 + σ2ξ2(t), (8)

where ξ1(t) and ξ2(t) are independent white Gaussian noises with zero mean and unit variance.
The first coefficient F1{1 + σ1ξ1(t)} represents a random proportional gain with mean F1 and variance
(F1σ1)

2. The second coefficient F2 is a deterministic derivative gain. The third term σ2ξ2(t) represents
an additive random perturbation.

Finally, we substitute (8) into (7), rewrite it to reduce the dependency between parameters,
and propose a human–bicycle fluctuation model of the form

ẋ1 = x2, ẋ2 = {p1 + p2ξ1(t)}(x1 − θ̂) + p3x2 + p4ξ2(t), (9)

with the generalized parameter vector

p = (p1, p2, p3, p4) := (g/r + F1, F1σ1, F2, σ2) ∈ R4, (10)

which parameterizes the equivalent properties of human–bicycle motion. Here, p1 and p2 are a
mean and a standard deviation of the randomly fluctuating stiffness of the human–bicycle motion,
respectively, p3 is a deterministic viscous damping, and p4 is an additive random fluctuation strength.

3.2. Calculation of Simulated PDFs

Using given θ̂ and p, we obtain N′ samples of the stationary numerical solution of (9) as

{x(n
′)

A (ti; θ̂, p)}I−1
i=0 , n′ = 1, · · · , N′, (11)

by means of a fourth-order Runge–Kutta–Gill method with time step ∆t = 10−2 s, the same as
the experimental sampling period. To generate these samples, N′ different sequences of normal
pseudo-random numbers [24],

{ν(n
′)

i }I−1
i=0 , n′ = 1, · · · , N′, (12)

are used to simulate the independent white Gaussian noises ξ1(t) and ξ2(t) by

ξl(ti) ≈ ν
(n′)
i (∆t)−1/2, l = 1, 2, (13)

where (∆t)−1/2 is the numerical factor required for integrating stochastic differential equations [25].
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From the simulated time series in (11), we construct the n′th sample’s joint PDF P(n′)
sim (x1, x2; θ̂, p)

using the same procedure and conditions as applied for deriving the measured PDF in Section 2.3.

We also take the average P(n′)
sim (x1, x2; θ̂, p) over all samples by

Psim(x1, x2; θ̂, p) =
1

N′
N′

∑
n′=1

P(n′)
sim (x1, x2; θ̂, p). (14)

We call (14) the simulated PDFs for θ̂ and p, which are to be compared with the measured
P(s)

hum(x1, x2).

4. Method of Parameter Identification

In this section, we formulate the identification problem of an unknown parameter vector p that
allows the simulated Psim(x1, x2; θ̂, p) to reproduce the measured P(s)

hum(x1, x2).

4.1. Parameter Identification Problem

We solve the optimization problem

Minimize
p

E(p) (15)

with the cost function

E(p) := max
(x1,x2,i)

{
|Fi

sim(x1, x2; θ̂, p)− Fi(s)
hum(x1, x2)|

}
. (16)

Equation (16) is known as a two-dimensional Kolmogorov–Smirnov (KS) distance [12] and is
used for two-dimensional goodness-of-fit testing between the empirical distribution of data and a
hypothetical density law or between two distributions of separate data [12,13]. Here, Fi

sim(x1, x2) and

Fi(s)
hum(x1, x2) (i = 1, · · · , 4) are the cumulative distribution functions (CDFs) with respect to the four

quadrants about (x1, x2) on the (x1, x2)-plane, i.e.,

Fi
sim(x1, x2; θ̂, p) :=

∫∫
Ri

Psim(x1, x2; θ̂, p)dx1dx2, Fi(s)
hum(x1, x2; θ̂, p) :=

∫∫
Ri

P(s)
hum(x1, x2)dx1dx2, (17)

with their domains R1 := [x1, x1] × [x2, x2], R2 := [x1, x1] × [x2, x2], R3 := [x1, x1] × [x2, x2],
and R4 := [x1, x1]× [x2, x2], respectively. The cost function (16) evaluates the CDFs’ reproduction
error and satisfies E(p) = 0 if Psim(x1, x2; θ̂, p) = P(s)

hum(x1, x2). Hence, it also indicates the PDFs’
reproduction error.

4.2. Particle Swarm Optimization (PSO)

We employ PSO [26] to solve (15). Consider a swarm of M candidate solutions,

{p1, p2, · · · , pi, · · · , pM}, pi ∈ R4, (18)

which are called particles. Each component of pi is recursively updated by{
vi

j(k + 1) = ωvi
j(k) + c1ηi

1j(k)
(

pbi
j(k)− pi

j(k)
)
+ c2ηi

2j(k)
(

gbj(k)− pi
j(k)

)
,

pi
j(k + 1) = pi

j(k) + vi
j(k + 1), (k = 0, 1, · · · , K),

(19)

where pi
j(k) denotes the jth component of pi at iteration k; vi

j(k) is the corresponding velocity; ω, c1 and

c2 are system parameters of PSO; ηi
1j(k) and ηi

2j(k) are random numbers independently generated
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by [24] for each i, j, and k with a uniform distribution in [0, 1]; and pbi
j(k) and gbj(k) are the jth

components of the vectors pbi(k) and gb(k) ∈ R4, respectively.
pbi(k) is the position of the particle taking the lowest cost among those at pi(0), · · · , pi(k); this is

called the personal best. gb(k) is the position of the particle with the lowest cost among all particles
for all iterations up to k; this is called the global best. For sufficiently large K, gb(K) is expected to be
close to the optimal solution p∗.

5. Identification Results

5.1. Identification Condition

In our PSO application, the number of particles was set to M = 32, and the initial
particles pi(0), i = 1, · · · , M were given by random points uniformly distributed within the
four-dimensional hyperrectangle

D0 := {(p1, p2, p3, p4) | − 30 ≤ p1 ≤ 0, 0 ≤ p2 ≤ 3, −10 ≤ p3 ≤ 0, 0 ≤ p4 ≤ 3}. (20)

The number of iterations is K = 500. We set the number of the simulated samples in (14) to
N′ = 5, the same as the number of experimental trials par participant.

We hereafter denote by p(s) the optimized solution gb(K) obtained from the sth participant’s data:
P(s)

hum(x1, x2) and θ̂ = θ̂(s) := E(s)[θ]. We also use the notation P(s)
sim(x1, x2) := Psim(x1, x2; θ̂(s), p(s)) for

the simulated PDFs derived from the sth participant’s data.

5.2. Identification Results

Table 2 lists the identified vector components of p(s) by PSO for all participants s = 1, · · · , 8 and
the corresponding KS cost value E(p(s)). The seventh column indicates the cost value as a PDF fitness
value of the form

Fitness := (1− E)× 100 %, (21)

which indicates the accuracy of our human–bicycle fluctuation model (9) in terms of the reproducibility
of PDFs. The best and worst results are indicated by “ ** ” and “ * ”, respectively. The second-last and
the last columns show the cost value and the corresponding fitness value, respectively, between the
measured P(s)

hum(x1, x2) and the mathematical two-dimensional Gaussian PDF P(s)
Gauss(x1, x2) with the

same mean vector and covariance matrix as those of the measured P(s)
hum(x1, x2).

Table 2. Identified p(s) = (p1, p2, p3, p4) and its cost value for the sth participant. “ ** ” denotes the
best result and “ * ”, the worst. The last two columns show the corresponding Gaussian results.

Our Proposed Fitting Gaussian Fitting

s p1 p2 p3 p4 E(p(s)) Fitness E Fitness

1 −32.6272 3.35867 −5.84823 2.74614 9.611× 10−3 99.04% 1.134× 10−1 88.66%
2 −39.6902 1.21198 −1.72440 1.53507 7.189× 10−3 99.28% 1.684× 10−1 83.16%
3 −44.5088 1.08744 −5.97971 3.70913 7.056× 10−3 99.29% 1.234× 10−1 87.66%
4 −46.6330 1.17335 −6.31916 2.58083 7.478× 10−3 99.25% 1.652× 10−1 83.48%
5 −37.5965 1.61197 −1.77080 1.54042 1.228× 10−2 98.77% * 1.640× 10−1 83.60%
6 −34.6138 0.993204 −7.01156 2.96107 5.689× 10−3 99.43% ** 1.351× 10−1 86.49%
7 −38.5872 1.21683 −7.31069 3.07624 6.011× 10−3 99.40% 9.134× 10−2 90.87%
8 −32.5560 2.55268 −2.15329 1.63554 8.500× 10−3 99.15% 1.225× 10−1 87.75%

The results clearly show that our proposed model (9) successfully achieved over 98.7% PDF fitness,
even in the worst case (s = 5). This implies that it provides much better fitness than conventional
Gaussian models.
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Next, the left column of Figure 5 shows the difference of our simulated P(s)
sim(x1, x2) from the

measured P(s)
hum(x1, x2), and the right column shows that for the Gaussian PDF P(s)

Gauss(x1, x2), for all s.
The plot ranges are the same as those of all plots.
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Figure 5. Difference of our simulated P(s)
sim(x1, x2) from the measured P(s)

hum(x1, x2) (left column) and

that of the equivalent Gaussian PDF P(s)
Gauss(x1, x2) (right column), for all s.

As already indicated by the fitness values in Table 2, our simulated PDFs agree well with the
measured PDFs, compared to the Gaussian PDFs. As the shapes of Gaussian PDFs are symmetric
by definition, the right column’s results imply that our measured PDFs have asymmetric shapes,
as indicated by the deep-colored peaks and troughs.

Therefore, our proposed model properly reproduced such asymmetric shapes, which were barely
reproduced by the Gaussian distribution.

5.3. KS Test

Up to this point, we have found that our simple model (9) provides high reproducibility of the
PDF shapes of the human–bicycle fluctuation. However, this does not directly support the stochastic
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reliability of our model. Therefore, in this section, we conduct a statistical-hypothesis test called the KS
test [12,13] on our results to check their stochastic reliability.

As described in [12], the statistic of the one-sample KS test is provided by

Z(n, E) = n1/2E, (22)

where E is the KS distance already given in (16), and n is the number of samples. On the other hand,
the two-sample KS test employs the following statistic:

Z(n1, n2, E) =
(

n1n2

n1 + n2

)1/2
E, (23)

where n1 and n2 are the numbers of two independent samples. Under the null hypothesis (the sample
follows a given distribution or the two samples follow the same distribution) and for large n (or n1

and n2), the random variable Z follows the following CDF [12,13]:

F(z) := Prob(Z > z) = 2
∞

∑
i=1

(−1)i−1 exp(−2i2z2), (24)

where the lowercase z denotes a value of Z. The value of F(z) is called the p-value of the observed z. If
this p-value is smaller than a pre-defined α called a significance level, the null hypothesis is rejected.

In Figure 6, the solid curve shows F(z). The small circles plot the p-values between P(s)
hum and

P(s)
sim at z = Z(n1, n2, E) using E = E(p(s)) listed in Table 2, the measured data length n1 = I × N =

18,001× 5, and the simulated n2 = I × N′ = n1. Under the significance level α = 0.01, the null
hypothesis is rejected for s = 1, 5, and 8; that is to say that three of the eight measurements cannot
be said to follow our simulated distributions. On the other hand, the cross marks show the results
between P(s)

hum and P(s)
Gauss at z = Z(n, E) using the E values listed in Table 2 and n = n1. In this

Gaussian case, the null hypothesis is rejected for all s; i.e., no measurements can be said to follow these
Gaussian distributions.

Given the above, we conclude in terms of statistical hypothesis testing that our simple model (9)
can simulate the time series of human–bicycle fluctuations much better than the Gaussian distribution.

0 10 20 30 40 50 60
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Figure 6. Kolmogorov–Smirnov (KS) testing results. The solid curve plots F(z), the KS statistic

cumulative distribution function (CDF). The small circles indicate the p-values between measured P(s)
hum

and our proposed P(s)
sim, and the cross marks indicate those between P(s)

hum and Gaussian P(s)
Gauss.
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Note that our proposed model can separately fit the measurements of individual participants;
it does not provide a general description of human–bicycle fluctuation. Conversely, it provides a
means of mechanical parameterization of individual difference. The obtained parameter vector p is
useful for comparing individuals and seeing how they differ, in a mechanical manner.

6. Conclusions

In this study, we have constructed a simple degree-of-freedom human–bicycle fluctuation model
that accurately reproduces the PDFs of experimentally measured human–bicycle balance motions.

First, we measured the time series of the roll angular displacement and the velocity of the
human–bicycle balance motions and constructed their PDFs. Using these PDFs as the training data,
we identified the model parameters by PSO, minimizing the KS distance between the measured PDF
from the participant and the simulated PDF from our model. The resulting PDF fitnesses were over
98.7%, indicating that the simulated PDFs were in close agreement with the measured ones.

Next, we applied the KS statistical hypothesis test to our results, showing that our model simulated
the time series of human–bicycle fluctuation much better than the Gaussian distribution.

The above result leads to the conclusion that our proposed model can provide an accurate
single-degree-of-freedom model of human–bicycle fluctuations.

In future work, using our model parameters, we plan to compare various cyclists of different ages
and genders who ride different types of bicycles in different environments. We also plan to develop a
multi-degree-of-freedom fluctuation model of human–bicycle balance motions, making it possible to
simulate fluctuating bicycle running paths based on physically identified human–bicycle parameters.
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