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Abstract: The classification of marine vessels is one of the important problems of maritime traffic.
To fully exploit the complementarity between different features and to more effectively identify marine
vessels, a novel feature structure fusion method based on spectral regression discriminant analysis
(SF-SRDA) was proposed. Firstly, we selected the different convolutional neural network features
that better describe the characteristics of ships, and constructed the features based on graphs by the
similarity metric. Then we weighed the concatenate multi-feature and fused their structures according
to the linear relationship assumption. Finally, we constructed the optimization formula to solve the
fusion features and structure by using spectral regression discriminant analyses. Experiments on the
VAIS dataset show that the proposed SF-SRDA method can reduce the feature dimension from the
original 102,400 dimensions to 5 dimensions, that the classification accuracy of visible images can
reach 87.60%, and that that of the infrared image can reach 74.68% at daytime. The experimental
results demonstrate that the proposed method can not only extract the optimal features from the
original redundant feature space, but also greatly reduce the dimensions of the feature. Furthermore,
the classification performance of SF-SRDA also gets a promising result.

Keywords: marine vessel classification; feature fusion; structure fusion; linear discriminant analysis;
dimensionality reduction

1. Introduction

The classification of marine vessels is an important issue in maritime safety and traffic control. It has
a broad application in both civil and military industries [1]. Compared with other target recognition
problems, the classification of marine vessels is more difficult because of the large changes in viewing
perspectives, illumination conditions, and scale, and the image background is disorganized [2].

According to the image types of marine vessels, there are mainly synthetic aperture radar images
(SAR), spaceborne optical images (SOI), visible images and infrared images (IR). Because SAR images
are characterized by all-day and all-weather imaging, Eldhuset et al. [3] developed an automatic ship
wake detection system for spaceborne SAR images in 1996. However, the number of SAR sensors
is limited, the revisit period is long, and the resolution is low. In 2010, Zhu et al. [4] conducted
experiments on SOI image sets with higher resolution captured by optical sensors from multiple
satellites, which can effectively distinguish between ships and non-ships, and obtain satisfactory
ship detection performance. Similarly, satellite resources were still limited, and it is obviously more
convenient for the camera to collect images. In 2015, Zhang et al. [5] published the world’s first marine
vessel dataset with paired visible and infrared images, which lead to progress in the research field
of marine vessel classification. The visible image has sufficient detail and color information, and the
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infrared image has a strong adaptability to the environment, which meant combining the two images
yielded a higher accuracy of vessel classification.

From the perspective of feature extraction, there are two types of methods for classifying marine
vessels: methods based on traditional features and methods based on a convolutional neural network
(CNN). Methods based on traditional features rely on artificially designed feature vectors for target
recognition and classification [6,7]. Zhang Difei et al. [8] used the Histogram of Oriented Gradient
(HOG) feature combined with the support vector machine (SVM) method to identify and classify
the infrared ship targets on the sea surface, which can overcome the background interference to
a certain extent. However, in the experiment, there are no tests on multiple targets, deformation,
illumination, or other changes. Feineigle et al. [9] used SIFT descriptors to identify ship targets in
the port, and realized the invariance of illumination and angle by describing and matching the local
features of the target. Yet using sliding window to extract features of targets resulted in high dimension
leads to low computational efficiency. Sánchez et al. [10] combined Fisher vector with Gaussian
mixture model to linearly classify large-scale datasets. The target category contained more than one
thousand kinds and the best classification accuracy was obtained by optimizing the loss function.
The literature [11] has proposed that different features have their own advantages and disadvantages
in different aspects, so the idea of using three features was synthetically adopted. The three features
consist of multi-scale completed local binary patterns (MS-CLBP), Bag of visual words (BOVW),
and spatial pyramid matching (SPM). Methods based on CNN mainly refer to select the features
of a certain layer in the convolutional neural network, and then use the support vector machine
(SVM), extreme learning machine (ELM) or logistic regression classifier [12–18]. The literature [5]
has used the 15th layer feature extracted from the pre-trained model vgg-16 based on the ImageNet
dataset. Literature [12] has adopted AlexNet, VGG-16 and Inception-V3 to extract the features of
the image, and then normalizes the different features into the same feature space. Literature [13]
has designed a convolutional neural network extraction feature, and combined the traditional Gabor
feature with MS-CLBP feature to describe the ship’s target. Literature [16] has trained extreme learning
machine for exploiting the correlation of multi-color features. Literature [17] has extracted features
from a pre-trained 16-layer convolutional neural network (vgg-16) and train the logistic regression
classifier for object recognition. Literature [18] has constructed a dual-flow DNN network to extract
the high-frequency and low-frequency features of ship images, and finally ELM aggregates feature and
decision-making. Literature [19] has proposed a classification framework consists of a multi-feature
ensemble based on convolutional neural network (ME-CNN). Literature [20] has introduced a new
approach based on ELM to learn discriminative CNN features. Compared with the method based on
traditional features, the method based on CNN shows powerful capabilities of feature extraction.

Considering the fact that a single feature may not be comprehensive enough for representing
an image, some scholars have made further explorations on feature fusion. Some existing feature
fusion methods mostly have used simple concatenation of different features in series [12,13], which
do not consider the heterogeneous characteristics between different features. Sun et al. [21] have
adopted Canonical Correlation Analysis (CCA) for feature fusion to achieve compression of feature
vector dimensions. Subsequently, KCCA (Kernel CCA) [22] and OCCA (Orthogonal CCA) [23] were
presented for feature fusion. Lin et al. [24–27] proposed a multi-feature structure fusion method, which
achieved good recognition results in many fields. The method first constructs the internal structure of
each feature by the similarity measure, and then performs algebraic operations on the corresponding
structure and features based on locality preserving projection (LPP) [28]. The method projects features
from the combined high-dimensional space to the low-dimensional space. This method not only
retains the internal structure of the features, but also greatly reduces the dimension of the features and
improves the performance of object classification.

Although the method of structural fusion can fuse different features together, this method belongs
to unsupervised learning method. The weakness of this method is that the feature’s category information
is not integrated into the process of feature fusion, so the natural distribution structure of the class from
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multi-feature is usually ignored. The structural information can enhance the discrimination of object
classification. To solve this issue, a novel multi-feature structure fusion based on spectral regression
discriminant analysis (SF-SRDA) is proposed in this paper by combining structural fusion [24] with
linear discriminant analysis (LDA) [29,30]. SF-SRDA is a supervised dimension reduction technology,
so that the method can not only preserve the internal structure of the category information in the
process of feature fusion, but also select the minimal dimension features. The minimal dimension
features can completely describe the target for object recognition and classification. The overall
framework of the method is shown in Figure 1 (In this paper, two-type features indicate multi-feature
for structure fusion), and the focus (which will be detailed in Section 3) of this paper is marked with a
red box. The main contributions of this paper can be summarized as follows: (1) we propose a feature
structure fusion method based on LDA. The method can not only maintain the internal structure of the
feature, but also integrate the category information to improve recognition performance. (2) Due to
the consideration of category information and the intrinsic structure, the feature dimension can be
greatly reduced from 102,400 to 5 dimensions. (3) The experimental results are promising for marine
vessels classification.
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Figure 1. The overall framework of multi-feature Structure Fusion based on Spectral Regression
Discriminant Analysis (SF-SRDA). CNN: convolutional neural network, IR: Infrared images.

The following sections are arranged as follows. Section 2 is the selection of multiple features.
Section 3 describes the construction of the internal structure of features and the structure fusion
mechanism of the feature. Section 4 gives the experimental results and comparison with other
state-of-art methods. Finally, a conclusion is made and the work is summarized in Section 5.

2. Feature Selection

To select features that can better describe the visual characteristic of the vessel, we conducted some
experiments with typical traditional features and CNN features according to the existing literature.
Traditional features include both the HOG [6] and LBP [31] features. CNN features include the
extracted features of different depths and different layers in the pre-trained CNN models, which refer
to VGG [32], GoogLeNet [33], and ResNet [34]. These features can be sent to the SVM classifier for
classification. These experiments involve the visual information that includes the visible and IR vessel
images provided in [5]. Table 1 shows the dimensionality of each feature and the classification accuracy
about visible and IR images. In Table 1, the relu5-4 layer features based on VGG-19 [32] and the pool5
layer features based on ResNet-152 [34] achieve a higher correct recognition accuracy and have the
better complementarity because of the large different network structure, so we selected these two types
of features for subsequent experimental fusion. Figure 2 shows VGG-19 or ResNet-152 of the structure,
in which layer output selected as features marked with a red box.
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Table 1. Classification accuracy of different input features.

Feature Dimension
Accuracy

Visible IR

HOG 31,248 72.40% 57.18%
LBP 256 76.27% 56.67%

VGG-16(relu5-3) 100,352 84.93% 51.64%
VGG-16(relu6) 4096 82.13% 59.03%

VGG-19(relu5-4) 100,352 86.53% 67.71%
VGG-19(fc6) 4096 85.60% 63.16%

VGG-19(relu6) 4096 81.87% 63.16%
GoogLeNet(cls3_pool) 1024 79.73% 54.62%

ResNet-50(pool5) 2048 84.27% 64.30%
ResNet-101(pool5) 2048 86.67% 64.58%
ResNet-152(pool5) 2048 84.93% 69.13%

HOG: Histogram of Oriented Gradient. IR: Infrared Images.
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3. Multi-feature Structure Fusion Based on Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a very popular dimensionality reduction technique, which
is widely used in the field of pattern recognition. However, in the process of dimensionality reduction,
the natural distribution structure of the class from a multi-feature is not considered, resulting
in the complementarity structure information loss with class labels between multi-features after
dimensionality reduction. However, structure information mining is a key question in vessel target
recognition. In existing methods, the structure fusion [24] method applies a multi-structure fusion,
but this does not take into account the category information of the features. Therefore, this method
makes feature discrimination insufficient. Based on both the linear discriminant analysis and structure
fusion, we propose a fusion method of the multi-feature structure that considers the class label in a
supervised way.

3.1. Linear Discriminant Analysis

LDA [29] is a supervised dimensionality reduction technology. The idea of LDA minimizes the
variance within a class and simultaneously maximizes the variance between classes. After projecting
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the data into a low dimensional space, the same category data are as close as possible, and the different
category data are as far as possible. By eigenvalue decomposition of the divergence matrix of the given
training data, the optimal projection function of LDA can be solved. A brief introduction of LDA and
spectral regression discriminant analysis (SRDA) [29] is shown below.

Suppose m samples x1, x2, . . . , xm, the optimization function of LDA is shown in Equation (1):

a∗ = argmax
a

aTSba
aTSwa

(1)

Sb =
c∑

k=1

mk
(
µ(k) − µ

)(
µ(k) − µ

)T
(2)

Sw =
c∑

k=1

 mk∑
i=1

(
xi
(k)
− µ(k)

)
(xi

(k)
− µ(k))

T
 (3)

where c is the number of classes, µ is the mean vector of all samples, mk is the number of samples of the
kth class, µ(k) the mean vector of the kth class, x(k)i the ith sample in the kth class, Sw is the intra-class
divergence matrix, and Sb is the inter-class divergence matrix.

Define St =
∑m

i=1 (xi − µ)(xi − µ)
T as the total divergence matrix (St = Sb + Sw), and the

optimization function of LDA in Equation (1) is equivalent to Equation (4).

a∗ = argmax
a

aTSba
aTSta

(4)

The optimization problem of Equation (4) is equivalent to solving the following generalized
eigenvalue problem:

Sba = λSta (5)

Then, Equation (2) can be converted to Equation (6):

Sb =
c∑

k=1
mk

(
µ(k) − µ

)
(µ(k) − µ)

T

=
c∑

k=1
mk

(
1

mk

mk∑
i=1

(
xi
(k)
− µ

))(
1

mk

mk∑
i=1

(
xi
(k)
− µ

))T

=
c∑

k=1

1
mk

( mk∑
i=1

xi
(k)

mk∑
i=1

(xi
(k))

T
)

=
c∑

k=1
X
(k)

W(k)(X
(k)

)
T

= XWX
T

(6)

where W(k) is a mk ×mk matrix where all elements are 1/mk. W is a m×m matrix as follows:

W =


W(1) 0 · · · 0

0 W(2)
· · · 0

...
...

. . .
...

0 0 · · · W(c)

 (7)

xi = xi − µ stands for the centralized data point, X
(k)

=
[
x(k)1 , . . . , x(k)mk

]
denotes the centralized data

matrix of the kth class, and X =
[
X
(1)

, . . . , X
(c)

]
is the centralized data matrix. Since St = XX

T
, the

generalized eigenvalue problem of Equation (5) can be converted as follows:

XWX
T

a = λXX
T

a (8)
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To solve the eigenvector problem of LDA in Equation (8) more effectively, the literature [29] has

proposed spectral regression discriminant analysis (SRDA). Let X
T

a = y, and then Equation (8) can be
transformed into:

W y = λ y (9)

Since the eigenvalue λ of Equations (8) and (9) are the same, the eigenvector a of X
T

a = y is the

same as the eigenvector a in Equation (8). For the solution of X
T

a = y, a possible solution is to use the
least squares method, as shown in Equation (10):

a = argmin
a

m∑
i=1

(aTxi − yi)
2

(10)

By solving Equations (9) and (10), the mapping matrix can be obtained as A = [a1, a2, . . . , ac−1].
Thus, the features after dimension reduction is obtained by Y = ATX, where Y is a c− 1 dimensional
vector through projection.

3.2. Structure Fusion Mechanism

Structure fusion [24] means that the structures (the similarity measure is used to represent
the internal structure of the feature) of different features are merged by the algebraic optimization.
The combined feature is mapped onto a new structure-fusion feature by the mapping matrix under
consideration with a fusion structure. Therefore, the literature [24] has proposed a structure fusion
method based on a locality-preserving projection (SFLPP).

X1 = [x11, x12, . . . , x1m] and X2 = [x21, x22, . . . , x2m] are the high-dimensional feature sets of the
multi-feature, where x1i ∈ RD1 and x2i ∈ RD2 (i = 1, 2, . . . , m). These feature matrixes are then

combined into X3 = [x31, x32, . . . , x3m] and x3i =

[
x1i
x2i

]
∈ RD1+D2 . The internal structure of the features

Wk =
{
Wki j

}
(k = 1, 2; i = 1, 2, . . . , m; j = 1, 2, . . . , m) is measured by the similarity measure, and they

are calculated by the χ2 metric distance as formula (11); the specific formula of the χ2 metric is described
in the literature [24].

Wki j =

{
e−d(xki,xkj)/σk , xki and xkj is neighbor
0 , xki and xkj is not neighbor

(11)

W1 =
{
W1i j

}
or W2 =

{
W2i j

}
respectively is a single-feature structure. The structure of the combined

feature X3 can be represented as W = W1 + W2. The literature [24] demonstrates that W has the same
characteristics as W1 and W2 due to their linear relationship, so W can indirectly represent the internal
structure of the combined feature X3.

By performing a specific optimization solution on the combined feature X3 and its internal
structure W, the combined feature can be mapped into a new structure fusion feature. More details can
be found in [24] and [25], the former of which refers to the optimized formula of LPP. Since LPP is
an unsupervised method, the category information is not integrated into the feature structure fusion
process. Therefore, the recognition performance of SFLPP needs to be further improved by considering
the category information.

3.3. Multi-feature Structure Fusion Based on Linear Discriminant Analysis

In the LDA, the inter-class matrix Sb in Equation (6) contains a matrix W on class information.
In the final solution of Equation (8), different categories information only show in the weight of matrix
W when solving the equation. The weight matrix W in the original formula is as shown in Equation (7).
The weights of the same class are same, while the weights of different classes are different. Each weight
is marked as 1/mk. The information of the class is only related to the sample number of the class.
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To enhance feature discrimination, we incorporate class information into feature structure
fusion process. For this purpose, SF-SRDA is proposed for combining LDA with structure fusion.
The schematic diagram of the method is shown in Figure 3. The core of the method is how to construct
a weight matrix (it represents the internal structure of feature) as shown in Equation (7). Our weight
matrix contains both the class information and the structural information of the feature, and replaces
the original weight matrix with the internal structure of the combined feature. The proposed method
mainly includes three aspects: one is the construction of the weight matrix of the same kind feature,
which comes from the same extracting method; the other is the weight matrix fusion of the different
kind features, which are extracted by the various methods; and the third is the weight matrix generation
after the feature weighting.
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3.3.1. Weight Matrix Construction of the Same Kind Feature

Firstly, we extract the selected features in training image samples, such as the pool5 layer feature of
ResNet-152 and the relu5-4 layer feature of VGG-19 in Figure 2. Suppose the number of training samples
is m; the class number of samples is c; the feature dimensions of ResNet-152 and VGG-19 are n1 and n2

respectively. We define feature matrix X1 = [x1
1, x1

2, . . . , x1
m] ∈ Rn1 and X2 = [x2

1, x2
2, . . . , x2

m] ∈ Rn2 .
Then, we calculate the respective class feature matrices X1 = [x1

1, x1
2, . . . , x1

c] ∈ Rn1 and X2 =

[x2
1, x2

2, . . . , x2
c] ∈ Rn2 , here xq

p = 1
cp

cp∑
i=1

xq
i , p = {1, 2, · · · c}, q = {1, 2} and cp is the sample of each class.

Finally, construct weight matrix W1 = [w1
i, j]c∗c and W2 = [w2

i, j]c∗c for each kind of feature, where the
element of matrix W1 and W2 are as follows:

w1
i, j =

 e−d(x1
i,x

1
j)/t, x1

i and x1
j are k neighbor

0 , else
(12)

w2
i, j =

 e−d(x2
i,x

2
j)/t, x2

i and x2
j are k neighbor

0 , else
(13)

In the Formulas (12) and (13), d(a, b) represents the Euclidean distance of vectors a and b, and t is
selected to be 0.4. The weight matrix W1 and W2 reflect the relationship between each class center and
others. In other words, these weight matrixes are the description of the relationship between classes.

3.3.2. Weight Matrix Fusion of Different Kind Features

To fuse the weight matrix of different type features, we sum the weighted W1 and W2 matrix
based on ResNet-152 and VGG-19 features in this paper. W3 = α1 ∗W1 + α2 ∗W2, where α1 = 0.6 and
α2 = 0.4 by cross-validation.
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3.3.3. Weight Matrix Generation after Feature Weighting

We combine feature X1 and feature X2 by the proportional weighted stitching, that is X3 =

[X1 ∗ β1X2 ∗ β2]
T, here β1 = 0.6 and β2 = 0.4 is selected by cross-validation.

To match the weighted spliced feature X3, the weight matrix W is produced by assigning each
class weights in W3 to all samples of the corresponding class, as shown in Equation (14).

W =


repmat(W3, 1, m1)

repmat(W3, 2, m2)
...

repmat(W3, c, mc)


m∗c

(14)

where the operator repmat(W3, k, mk) means that the kth row of matrix W3 is copied mk times as mk
rows of matrix W.

The combined feature X3 and its internal structure W are constructed by the above method, and
then Equation (8) is reformulated as Equation (15):

X3WX
T
3 a = λX3X

T
3 a (15)

To solve Equation (15), the mapping matrix A = [a1, a2, . . . , ac−1] can be obtained by using the
SRDA method proposed in [29], followed by the feature after structure fusion is Y = ATX.

For the fusion feature, we calculated the mean of each class samples to get each class feature, and
used the nearest neighbor method to determine the classification of each sample.

4. Experimental Results and Analysis

4.1. Dataset

The experiment used the VAIS dataset, which was the first publicly available dataset presented
at the CVPR conference in 2015 [5], and it contains pairs of both visible and infrared vessel images.
The dataset consists of 1623 visible and 1242 infrared images—a total of 2865 images—in which
there are 1088 pairs (the visible and corresponding infrared image pairs). The dataset includes six
coarse-grained categories, namely merchant ships, medium-other ships, passenger ships, sailing ships,
small boats, and tugboats. It can also be subdivided into 15 fine-grained categories, such as the
sailing ships that can be further subdivided into sailing-large-sails-down, sailing-small-sails-down,
and sailing-small-sails-up. Table 2 gives the distribution of the VAIS dataset in the experiment, where it
can be seen that the distribution of samples in each category is extremely imbalanced, which increases
the difficulty of classification. For example, some categories have 67 images, while others have 499
images in coarse-grained training samples. Figures 4 and 5 show some visible and IR samples from
each class in the dataset. It can be seen that the size of ships is various, the illumination is uneven, and
the background is complex. These issues put forward a very high requirement for the distinguishing
ability of features.

Table 2. Distribution of data sets.

Data Partition Class Number Train Number
(Sample Distribution)

Test Number
(Sample Distribution)

coarse-grained 6 1411(67~499) 1453(89~538)
fine-grained 15 1411(24~218) 1453(26~219)
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4.2. Experiments

To evaluate the proposed SF-SRDA, we compared the related methods with three configurations.
The first configuration is the comparison between SF-SRDA and the base-line methods in the
coarse-grained partition. The second configuration is the comparison between SF-SRDA and the
state-of-arts in the coarse-grained partition. The third configuration is the comparison of the fine-grained
partition between SF-SRDA and the base-line methods.

In Table 3, features involve the VGG-19(relu5-4) feature, the ResNet-152(pool5) feature and the
combination of these two features. We assessed the base-line methods (VGG-19(relu5-4) + SVM,
ResNet-152(pool5) + SVM, SFLPP [24], and SRDA [29]) and the proposed SF-SRDA on the visible and
IR imagery. Since the SFLPP method can customize the feature dimension after fusion, we found that
the fusion feature has the highest accuracy in the 85 dimension after many experiments, so the SFLPP
method in Table 3 gives the result when the feature is reduced to 85 dimension. Table 4 shows the train
time and test time for different methods. In this experiment, the train images are 873 visible images or
539 IR images, while the test images are 750 visible images or 703 IR images.

Table 3. Comparison between SF-SRDA and the base-line methods in the coarse-grained partition.

Method Feature Dimension Visible IR

Single feature+ SVM VGG-19(relu5-4) 100,352 86.53% 67.71%
ResNet-152(pool5) 2048 84.93% 69.13%

SFLPP [24] ResNet-152(pool5) + VGG-19(relu5-4) 85 84.93% 65.43%
SRDA [29] ResNet-152(pool5) + VGG-19(relu5-4) 5 86.93% 70.56%

The proposed SF-SRDA ResNet-152(pool5) + VGG-19(relu5-4) 5 87.60% 70.98%
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Table 4. Time consume among SF-SRDA and the base-line methods in the coarse-grained partition
(second).

Method
Visible IR

Train Time
in 873 Images

Test Time
in 750 Images

Train Time
in 539 Images

Test Time
in 703 Images

VGG-19(relu5-4) + SVM 31.02 0.03 94.74 0.03
ResNet-152(pool5) + SVM 1.74 0.004 1.58 0.005

SFLPP [24] 7.14 0.29 3.01 0.16
SRDA [29] 1.58 0.10 0.82 0.08

The proposed SF-SRDA 2.49 0.10 1.43 0.08

From Tables 3 and 4, it can be observed that: (1) the dimension of single feature is higher, such as
VGG-19(relu5-4) feature, which has 100352 dimension, and the ResNet-152(pool5), which has 2048
dimension. However, the feature has redundancy and single feature recognition ability is insufficient;
(2) Comparing SF-SRDA with SFLPP, the feature dimension of fusion using our method is greatly
reduced, to only 5 dimensions. Moreover, the recognition rate on visible and IR images is higher than
that of the SFLPP method. It shows that SF-SRDA improves the discriminant ability of features; (3)
Comparing SF-SRDA with SRDA, the recognition rate of our method is higher than that of SRDA when
the feature is reduced to the same dimension. It proves that the structure information between features
can be maintained by structure fusion in the process of feature dimension reduction, as is beneficial
to target recognition; (4) In terms of training time, our approach is similar to ResNet-152 (pool5) +

SVM and SRDA, and much lower than VGG-19 (relu5-4) + SVM and SFLPP; (5) Generally speaking,
the proposed SF-SRDA achieves the best results, which can greatly reduce the feature dimension and
improve the recognition ability of features to different targets.

The VAIS dataset has proposed by the literature [5], which gives experimental results of daytime
visible images, daytime IR images, paired visible and IR images, and nighttime IR images. To compare
with the method in reference [5], we carried out the vessel classification experiment under the
coarse-grained condition according to the setting of reference [5]. Apart from the four test sets
mentioned above, we added an all-day IR test set for comparison. In addition, we also compared the
proposed SF-SRDA with traditional methods (HOG + SVM, LBP + SVM), SFLPP [24], SRDA [29], and
other state-of-the-arts in literature [11,19,20]. The experimental results are shown in Table 5. From
the results of Table 5, with the exception of the nighttime IR results, our method achieved the best
recognition results for different weather conditions, different modal images, and multi-modal images,
indicating that the feature fusion method of this paper has a strong robustness.

Table 5. Coarse-grained results among SF-SRDA and the state-of-arts.

Test Feature
Daytime Nighttime

IR
Visible IR Visible + IR IR

Gnostic Field [5] 82.4% 58.7% 82.4% 51.9% -
CNN [5] 81.9% 54.0% 82.1% 59.9% -

Gnostic Field + CNN [5] 81.0% 56.8% 87.4% 61.0% -
Gabor + MS-CLBP [11] 77.73% - - - -

MFL (decision-level) + ELM [11] 85.07% - - - -
MFL (feature-level) + SVM [11] 85.33% - - - -

HOG + SVM [19] 71.87% - - - -
ME-CNN [19] 87.33% - - - -

ELM-CNN [20] - - - - 61.17%
LBP + SVM 76.27% - - - 56.67%

HOG + SVM 72.40% - - - 57.18%
SFLPP [24] 84.93% 70.67% 79.60% 46.75% 65.43%
SRDA [29] 86.93% 74.68% 86.52% 55.84% 70.56%

The proposed SF-SRDA 87.60% 74.68% 87.98% 57.79% 70.98%
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To further validate the effectiveness of SF-SRDA, we conduct experiments in the case of fine-grained
dataset with more categories, and compare with the two base-line methods. As shown in the
experimental results in Table 6, we compared SF-SRDA with SFLPP and achieved better recognition
results and great improvement in various cases. Compared with the SRDA method, SF-SRDA obtains
better recognition results in cases of visible, IR, and paired images during the daytime. Only nighttime
IR results are slightly lower than the SRDA method.

Table 6. Fine-grained results of sub-division test sets.

Test Feature
Daytime Nighttime

Visible IR Visible + IR IR

SFLPP [24] 52.00% 38.43% 52.10% 7.79%
SRDA [29] 58.93% 42.99% 56.65% 13.64%

The proposed SF-SRDA 61.33% 43.35% 58.11% 10.39%

The main discussion about the performance comparisons include the following: (1) The proposed
SF-SRDA under the coarse-grained condition and SFLPP under the fine-grained condition, combining
multi sensors (visible and IR) shows performance enhancement, while in some other cases, it shows
performance degradation. The reason for this is that the IR image has a significantly lower resolution
and a smaller size than the visible image. Figure 6 shows some examples of the IR image, thus IR
information has little effect on enhancing recognition during the day. (2) The focus of this paper is on
feature fusion. It can be seen from our experimental results that feature fusion is better than modal
fusion. (3) In the nighttime IR image classification, the reason our method did not improve may be that
the category information of the nighttime IR image is very blurred, and the image of the fine-grained
classes makes almost no difference. As shown in Figure 6, there are three subcategories under the
sailing category in the fine-grained classification: the first row is the large-sails-down class, the second
row is the small-sails-down class, and the third row is the small-sails-up class. As can be seen from
Figure 6, the images of different class vessels have almost no discrimination, which explains why our
methods aimed at improving category information cannot work well.Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 14 
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5. Conclusions

In this paper, a classification method of SF-SRDA was proposed. Firstly, we selected different
types of features through experiments and constructed the internal structure of features by similarity
measure. Then, the algebraic operation was formed after the feature and its internal structure were
effectively combined. The optimization method refers to linear discriminant analysis and spectral
regression discriminant analysis. Finally, the fusion features after dimension reduction were sent to the
classifier for marine vessels classification. Experiments on the VAIS dataset show that the extremely
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high dimensional feature can be reduced to very low dimension by the proposed method, and the
accuracy is improved. Through our method, during the daytime, the classification accuracy of visible
images can reach 87.60%, which is 5.7% higher than the best result of [5], and the infrared image can
reach 74.68%, which is 15.98% higher than the best result in reference [5]. In general, the proposed
method can not only extract the optimal features from the original redundant feature space, but also
save a large amount of memory space and greatly improve the classification accuracy.
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