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Abstract: The performance of seven different correlation functions applied in Digital Image
Correlation has been investigated using simulated and experimentally acquired laser speckle patterns.
The correlation functions were constructed as combinations of the pure intensity correlation function,
the gradient correlation function and the Hessian correlation function, respectively. It was found that
the correlation function that was constructed as the product of all three pure correlation functions
performed best for the small speckle sizes and large correlation values, respectively. The difference
between the different functions disappeared as the speckle size increased and the correlation value
dropped. On average, the random error of the combined correlation function was half that of the
traditional intensity correlation function within the optimum region.
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1. Introduction

Digital image correlation (DIC), or Particle Image Velocimetry (PIV), has since its introduction
in the 1980s evolved into one of the most versatile and widespread techniques in experimental
mechanics [1–6]. Recent examples are found in diverse scientific fields such as biomechanics [7],
infrastructure [8], material science [9], composite structures [10], and microfluidistics [11], but the
technique is not restricted to these scientific fields. A quick search on a popular search engine lists
over 50,000 contributions out of which 16,000 are published throughout the last four years. The great
versatility of the technique comes from its simplicity and flexibility, scalability in both space and time,
the fact that it is non-intrusive and that it produces deformation fields. Furthermore, the deformation
fields can be generated as Lagrangian fields (typically used in DIC) or Eulerian fields (common in
PIV), depending on which images that are compared. In general, the technique requires a unique
feature to be present in the plane considered. In the absence of natural features, a pattern needs to be
added, usually using spray (DIC) or by adding small particles to a flow (PIV). The general approach
is then to follow the features in between successive frames using a model of the deformation field,
which most often is performed locally involving a limited number of pixels, but global approaches
have been demonstrated [6]. At the core of this calculation is a numerical optimization routine whose
underlying function most often is defined as an intensity cross-covariance or as a sum of squared
intensity differences. The performance of the two approaches differs only in details. It has been
shown that the random error in the deformation calculation roughly scales with average feature size,
subimage width and correlation value [12]. The quotient between subimage width and feature size
defines in principle the number of independent contributions to the correlation and relates also to
the reliability of the calculation. In addition, the feature size defines the curvature of the correlation
peak and hence its susceptibility to random noise. The amount of random noise is specified by the
correlation value. For a laser speckle pattern, the decay of the correlation value is almost completely
dominated by speckle decorrelation, while for a white-light pattern algorithm dependent features such
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as precision in interpolation becomes important. This is the reason feature sizes slightly larger than the
sampling limit often are preferred with these patterns.

Calculated image gradients are used frequently in DIC algorithms as a means of interpolation
and as an aid to improve the performance of the optimization routine. Neggers et al. has recently
published an extensive review of current algorithms using image gradients for DIC calculations [13].
The conclusions were that image gradients speed up search algorithms considerably and the most
effective gradient vector is formulated from a weighted blend of image gradients from both images.
However, these image gradients are used to speed up the search for the most probable set of correlation
parameters. The underlying function is still an intensity correlation. On the other hand, feature
detection based on image gradients are frequently used in computer-vision applications. For example
O’Callaghan and Haga has published a paper on the use of a normalized gradient correlation function
for detection of changes in a video stream [14]. The motivation for the use of gradient correlation in their
application was mainly that the detection becomes more robust against varying background intensity.
Such correlation functions have to my knowledge not yet been explored in connection with DIC.

The purpose of this paper is to investigate the performance of correlation functions based on
derivatives of intensity images as a function of feature size and image degradation. Three fundamental
normalized correlation functions are formulated based on intensity, intensity gradients, and intensity
Hessian, respectively. From these an additional four correlation functions can be constructed as a
combination of the three fundamental ones. These functions are then evaluated using simulations and
experiments using laser speckles. The different correlation functions are introduced and discussed
in Section 2. The set of evaluations are introduced and presented in Section 3 where the simulations
are detailed in Section 3.1 and the experiments in Section 3.2, respectively. The paper ends with a
discussion and some concluding remarks.

2. Theory

Consider two images I1(x1) and I2(x2) registered at the two time instances t1 and t2, respectively,
containing approximately the same features. The images are assumed sampled on an [M, N] sized
grid with pixel pitch [py, px] in row and column directions, respectively. It is assumed that the
motions of the features between the two images are small wherefore local information can be used
to estimate local motion. Apart from the intensities it is assumed that the gradient vector Gi(xi)

and the Hessian matrix Hi(xi) may be generated in each pixel, where i = 1, 2 for each of the images
respectively. These additional fields are generated from application of the in-plane gradient column
vector ∇⊥ = (∂/∂x, ∂/∂y)t as Gi(xi) = ∇⊥ I(xi) and Hi(xi) = ∇⊥ I(xi)∇t

⊥, respectively. Associated
with each pixel are therefore an intensity value, an intensity gradient vector, and an intensity Hessian
matrix, respectively.

Figure 1 shows as a cropped example the intensity, the magnitude of the gradient vector and
the determinant of the Hessian, respectively, of a laser speckle image. It is obvious that these three
images contain different information and that they will perform differently in a correlation calculation.
While the intensity image presents the distribution in intensity, the gradient image shows where
the intensity changes most rapid. In regions with zero image gradient, the intensity correlation
is essentially insensitive. The gradient image therefore dictates with what precision the intensity
correlation function can be positioned. In addition, the Hessian matrix shows regions with a large
intensity curvature. As the determinant can take on negative values, the background appears grayish,
but regions close to speckle peaks light up. It is obvious that these peaks appear at the same positions
as speckle maxima, but that they are locally more confined. Given these images, two continuous
approximations of the intensity distributions can be formed using a nine-node quadratic Hermitian
Finite Element. The intensity information in each node is taken from the intensity images and the
gradient information required along the edges of the element is taken from the gradient and Hessian
matrices, respectively. This approximation allows for a continuous description of image values, image
gradients, and image curvatures, respectively, that is used throughout the remaining part of this paper.
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Figure 1. Images generated from the acquired set of intensity values. The upper left image shows the
intensity distribution, the upper right image shows the magnitude of the calculated gradient vector,
and the lower left image shows the determinant of the calculated Hessian matrix.

An intensity correlation is usually expressed as,

CI(∆x) = ∑ i1(x1 + ∆x)i2(x2)√
∑ i21(x1 + ∆x)∑ i22(x2)

, (1)

where i = I− < I > is the zero-mean intensity image, x1 and x2 are coordinates associated with the
first and second image, respectively, and the summation is taken over all image points considered.
The correlation variable, ∆x, contains all translations and translation gradients considered in the
correlation. The general procedure in image correlation is to pick out a subimage of size m × n
pixels from I1 and search in I2 for the set ∆xmax of ∆x that maximizes the correlation value CI(∆x) in
Equation (1). The two translation components [u, v] of ∆xmax are then taken as an estimate of the local
displacement vector in the region of the chosen subimage. A displacement field is generated from
repetition of the procedure for a multitude of different subimages. The random error, e, with which
[u, v] can be determined has been shown to vary as [12],

e = k
S2

M

√
1− γ

γ
, (2)

where k is an algorithm dependent constant of order unity, S is the average feature size, M = [m, n] is
the correlation window width and γ is the intensity correlation value. The quotient M/S defines in
principle the number of independent contributions to the correlation and relates also to the reliability
of the calculation while the additional S defines the curvature of the correlation peak and hence its
susceptibility to random noise. The amount of random noise is specified by the correlation value γ.

As with Equation (1), a gradient correlation may be expressed as,

CG(∆x) = ∑ G1(x1 + ∆x) ·G2(x2)√
∑ |G1(x1 + ∆x)|2 ∑ |G2(x2)|2

, (3)
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where G = ∂I/∂xx̂ + ∂I/∂yŷ is the local image gradient vector, and x̂ and ŷ are orthogonal coordinate
axes, respectively. Finally, a Hessian correlation function may be formulated as,

CH(∆x) = ∑ [v11(x1 + ∆x) · v21(x2) + v12(x1 + ∆x) · v22(x2)]√
∑ [|v11|2 + |v12|2]∑ [|v21|2 + |v22|2]

, (4)

where in the denominator special reference to x1 + ∆x and x2 are omitted for ease of reading.
In Equation (4), v11 and v12 are the two orthogonal principal vectors associated with the local intensity
Hessian of image I1. The corresponding vectors for I2 are expressed as v21 and v22, respectively.

The three correlation functions in Equations (1), (3) and (4) are all normalized between
[−1, 1]; however, their correlation features differ significantly. For example, as both the gradient
correlation and the Hessian correlation involves vectors they are expected to drop off more quickly
to a change in feature structure. Because of the normalization, the three correlation functions in
Equations (1), (3) and (4) can be combined to produce the additional four correlation functions:

CIG(∆x) = CI(∆x)CG(∆x), (5)

CIH(∆x) = CI(∆x)CH(∆x), (6)

CGH(∆x) = CG(∆x)CH(∆x), (7)

CIGH(∆x) = CI(∆x)CG(∆x)CH(∆x). (8)

Hence, in total seven different correlation functions can be used to estimate the local deformation
between the two set of images. Under what conditions either of them is preferable is investigated in
the coming sections.

Figure 2 shows a comparison of the correlation properties between the seven correlation functions.
The left image shows the width of the auto-correlation functions produced by setting I2 = I1 in
Equations (1) and (3)–(8), respectively, as a function of displacement ∆x = u. It is seen that all
additional correlation functions are narrower and more well-defined than the intensity correlation.
In particular all correlation functions that include the Hessian matrix have a significantly sharper
peak. One may also notice that all mixed correlation functions are essentially free from ringing,
which indicates that the background fluctuations generated from the three images are uncorrelated.
The right image shows the drop-off in correlation as a response to an intensity decorrelation between
the two images considered. These results were produced from simulated images with speckle diameter
of five pixels and a 64× 64 pixels correlation window was used. Details are found in Section 3.1.
It is seen in the right image of Figure 2 that the drop-off for the additional correlation functions are
significantly quicker as compared to the intensity correlation. In particular, the functions that includes
the Hessian correlation drops off fast. Whether this is a positive feature will be investigated in coming
sections. In one respect, it is this feature that provides the sharp correlation peaks in the left image.
However, a high sensitivity to small changes may also make the function unreliable.



Appl. Sci. 2019, 9, 2127 5 of 10

Figure 2. Sensitivity of the different correlation functions. The left image shows the width of the
different auto-correlation functions as a function of displacement. The right image shows the decrease
in maximum correlation value as a function of intensity correlation value. These results are generated
according to the theory in Sections 2 and 3.1, respectively.

3. Evaluation of Correlation Bases

The different correlation functions described in Section 2 are evaluated using simulations and are
demonstrated on real images using laser speckles. In the simulations, the average speckle size is varied
between three and seven pixels, and the speckle motion can vary randomly between −5 and 5 in both
orthogonal directions, respectively. Simultaneously, the speckle correlation is varied between unity
and 0.7. In all simulations the correlation window was chosen to be 32× 32 pixels and 225 independent
windows are evaluated for each set of parameters. The reason for ignoring the effect of the correlation
window size on the performance of the different correlation functions is that according to Equation (2)
the important parameter to consider is the quotient M/S. Hence, it is sufficient to vary only the
speckle size to capture the general behavior of the different correlation functions. The experiments
were performed using laser speckles whose sizes were controlled by the objective aperture. In contrast
to painted speckles, laser speckles are generated from random interference on the detector and do not
exist on the object surface. Their extension thus depends on the numerical aperture of the imaging
and on the wavelength of the laser [15]. In addition, for a well-focused system they will appear to
follow the movement of the surface [16]. A set of ten rigid body translations were performed for each
setting and the motion between the acquired images were analyzed in 225 independent regions with a
correlation window size of 32× 32 pixels using each of the described correlation functions, respectively.
Details are provided in the subsections below.

3.1. Simulations

The simulations are performed on computer generated laser speckle image pairs in accordance
with the procedure described by Sjödahl and Benckert [17]. Consider an N × N matrix A filled with
random complex numbers were the real and imaginary parts are independently picked from a normal
distribution. In all simulations N = 1024. The matrix A is taken to represent the exit pupil plane of a
general imaging system. A quadratic aperture W of width w = bN/Sc pixels is placed centrally in the
matrix, were S is the speckle size in pixels on the detector and b·c rounds down to the nearest integer.
The reference speckle pattern I1 is then generated as,

u1(sx, sy) = W(sx, sy)A(sx, sy) −→ I1(x, y) = |FT[u1(sx, sy)]|2, (9)

where FT performs a 2D Fourier transform and (sx, sy) are spatial frequency components spanning
the domain [−1/2, 1/2− 1/N] in both orthogonal directions, respectively. The deformed pattern I2 is
generated as,

u2(sx, sy) = W(sx, sy)A(sx − d, sy) exp[2πi(usx + vsy)] −→ I2(x, y) = |FT[u2(sx, sy)]|2, (10)
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where d = bw(1−√γ)c represents a shift of the exit pupil coherence cells between the two recordings,
γ is the intensity correlation value generated and u = [u, v] is the image plane speckle movement.
In this way, speckle pattern pairs with a defined speckle size, S, relative motion, u, and a defined
intensity correlation, γ, can be generated. Mean deformation, standard deviation of the deformation
magnitude, mean correlation value, and reliability are calculated for each of the speckle image pairs
generated and for each of the seven correlation base functions. A single deformation estimate is in this
case considered reliable if the estimate is within ±1 pixel from the correct value. The results from the
simulations are shown in Figure 3.

Figure 3. Results from the simulation. The plots show, row-wise, random errors from the different
types of correlation functions defined by Equations (1) and (3)–(8) as a function of intensity correlation
value for speckle sizes S = 3, 4, 5, 6, and 7 pixels, respectively. The lower right plot shows the reliability
of the evaluations as a function of intensity correlation.

3.2. Experiments

The experimental set-up is sketched in Figure 4. The set-up consists of a 10 mW continuous
wave He-Ne laser (632.8 nm wavelength) as illumination source, a white-painted aluminum plate,
an f = 55 mm Mikro-Nikkor objective and a monochrome Dalsa nano camera (3.5 µm pixel size,
resolution 2056× 2464 pixels). The magnification was m = 0.9 which translates into 3.9 µm/pixel
in object coordinates. One acquired speckle image with aperture setting f /32 is seen to the
right in Figure 4. The experiments were performed with aperture settings [ f /22, f /16, f /11, f /8],
which resulted in average speckle sizes [7.6, 5.5, 3.8, 2.7] pixels, respectively. Ten consecutive
in-plane translations are performed using a fine-pitch micrometer. Each incremental translation
was approximately 2.5 µm, which translates into approximately 0.65 pixels on the detector. The total
translation between the first and last image is therefore approximately 25 µm, which translates
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into 6.5 pixels in detector coordinates. The result from the experiment is summarized in Figure 5.
The reliability was unity for each of the analyzed image pairs, and is not presented separately.

He-Ne laser
Fine-pitch
micrometer

Camera
Objective

Aluminium
plate

Figure 4. Sketch of the experimental set-up. The set-up consists of a 10 mW He-Ne laser, a monochrome
camera from Dalsa equipped with a mikro-Nikkor camera objective with focal length f = 55 mm, and
a white aluminum plate that can be translated in-plane using a fine-pitch micrometer. The right part of
the figure displays one of the acquired speckle images. This image is acquired with an aperture setting
of f /32.

Figure 5. Random error in displacement as a function of speckle motion using different aperture
numbers and analyzed using the seven different correlation functions. All results for the same aperture
setting are lumped together.

4. Discussion and Conclusions

The structure highlighted in the three images in Figure 1 shows the different features that
contributes to the different types of correlation functions defined by Equations (1), (3) and (4),
respectively. These features are also responsible for the different shapes and drop-offs of the correlation
functions shown in Figure 2. It is seen that out of the fundamental correlation functions, both the
gradient correlation and to a greater extent the Hessian correlation produces a narrower and more
well-defined peak and drops off more rapidly in response to feature degradations. With reference to
the general behavior of correlation functions, these two effects should have contradictory effects on the
accuracy of the deformation calculation [12]. The sharper peak should make the peak position more
well-defined. The decrease in correlation value will on the other hand increase noise. The combined
correlation functions show up a similar behavior with the most well-defined correlation peak produced
by the multiplication of all three fundamental correlation functions. This is also the correlation function
that drops off most rapid. One can also notice that this combined correlation function is basically free
from higher order ringing, which indicates that the three fundamental correlation functions basically
are uncorrelated.
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A few interesting observations emerge from the results shown in Figure 3. For the high correlation
values, the random errors always show up in the same order with the mixed correlation values the
lowest. The difference between the best performing correlation function, which is the combination
of all three fundamental functions, and the pure intensity correlation function is roughly a factor of
two. The fundamental Hessian correlation performs constantly the worst, which is not surprising as
the intensity Hessian is most susceptible to image noise. This disadvantage seems to be cancelled by
multiplication with the other, more noise tolerant, correlation functions enhancing its advantage of
being sharp. In fact, all mixed correlations involving the Hessian correlation performs well. One can
also notice that the intensity correlation follows the general behavior

√
(1− γ)/γ, where γ is the

intensity correlation value for all speckle sizes, while the other correlation functions do not. In fact,
for the smallest speckle sizes the mixed correlation functions involving the Hessian correlation seem
to be more robust to decorrelation and show up an opposite curvature as compared with the pure
intensity correlation. This effect seems to be valid up to a correlation of roughly 0.85 where these
functions turns up and approach the other functions. At this point the combined correlation function
is approximately three times more accurate as compared to the pure intensity correlation. This effect is
not as pronounced for larger speckle sizes and for speckle sizes in the range 5–7 pixels all correlation
functions perform approximately the same. By this one can notice two things. Firstly, for small speckle
sizes both the gradient image and the Hessian image becomes more pronounced and will dominate in
areas where they generate large numbers. Hence, their positive feature of being sharp is pronounced.
As the features grow larger their relative weight decrease. An additional positive effect of this is
for images that contain sharp edges. Such images are notoriously tricky to analyze using traditional
intensity correlation, but with the combined correlations the gradient and Hessian correlations will act
as filters, which actually is the motivation for the gradient correlation introduced by O’Callaghan and
Haga [14]. Secondly, as the relative weight of the gradient and Hessian correlations decrease all three
correlation functions behave approximately Gaussian and their combined effect will follow the same
general trend. In addition, as they are uncorrelated their combined effect will also be Gaussian, and
one gains very little to combine them. In conclusions therefore, combinations that include gradient
and Hessian correlations contribute positively for sharp and dense patterns, but their positive effect
decrease rapidly for larger features.

The reliability presented in the lower right corner of Figure 3 shows a dramatic behavior on
speckle size and correlation value. It is seen that the reliability is always unity for highly correlated
patterns for all speckle sizes and for all correlation functions. As the correlation drops the reliability
starts to drop, in particular for the larger speckle sizes. As a matter of fact, the reliability drops to
as low as 0.6 for a speckle size of 7 pixels and a correlation value of 0.7. The significant drop-off in
reliability for the larger speckle sizes shown in Figure 3 is to a large extent associated with the pure
Hessian correlation and to some extent the combined gradient and Hessian correlation. All other
correlation functions are unaffected. The susceptibility of these two correlation functions comes from
the magnification of noise caused by numerical differentiation in combination with a small sample
size characterized by the quotient N/S, where in this case N = 32 and S is the speckle size. A larger
correlation window would significantly improve the reliability. As a matter of fact, it is recommended
to keep the quotient N/S above ten for reliable results in low-correlation images [12]. The reliability is
therefore considered manageable for all relevant correlation functions considered.

The speckle image shown in Figure 4 shows a typical feature often encountered in practice, that
of an uneven illumination. Uneven illumination is often difficult to circumvent as the intensity profile
of most illumination sources is uneven. A TEM00 laser, for example, has a Gaussian beam profile.
Unless compensated for, uneven illumination will bias the displacement estimate towards the brighter
regions [12]. However not explicitly tested, one can speculate that the gradient and Hessian correlation
functions would help to prevent this unwanted effect. In this investigation, however, no significant
bias was noted.
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The pattern shown in Figure 4 is a laser speckle pattern. A laser speckle pattern has the unique
quality of providing a random pattern defined by the full spatial bandwidth of the field with unit
contrast. Hence, the feature size of the pattern can be controlled by choosing an aperture size optimum
for the resolution of the detector. The great disadvantage with laser speckles is that they decorrelate
in response to any change in the optical set-up [16], an effect that has prevented widespread use
of laser speckles in experimental mechanics. This effect is even more pronounced for the small
numerical apertures used with former digital detectors. Modern lines of digital detectors can however
be purchased with as small pixels as 1 µm, which considerably opens up applications with laser
speckles in experimental mechanics because of their ease of use. Figure 5 shows the results from
application of the seven different correlation functions using the lens f−numbers f /22, f /16, f /11,
and f /8, respectively. A dramatic dependence on lens f−number is seen for all correlation functions,
in fact significantly more dramatic than any effect caused by the correlation functions themselves.
For example, comparing the final deformation step for f /22 with the f /8 the random error is 0.73
with an intensity correlation value of 0.72 as compared with 0.02–0.04 and 0.90 for the larger aperture.
This dramatic effect is caused by the double effect of enlarging the speckle size and enlarging the
speckle decorrelation. In comparing the performance of the different algorithms for the same aperture
settings the same trends as shown in Figure 3 are found. The random errors for the smaller speckle
sizes and larger correlation values are about a factor of two smaller for the combined correlation
functions as compared with the pure intensity correlation. The function combining all three pure
correlations performs the best and the pure Hessian correlation the worst. The effect decreases for the
larger speckle sizes and for lower correlation values. Finally, it was noted that the reliability turned out
to be close to unity for all analyzed images with all correlation functions in contrast to the reliability of
the simulated patterns. The reason for this discrepancy is however unknown.

In conclusion, the performance of seven different correlation functions applied in DIC have been
investigated using simulated and experimentally acquired laser speckle patterns. The correlation
functions were constructed as combinations of the pure intensity correlation function, the gradient
correlation function and the Hessian correlation function, respectively. It was found that the correlation
function that was constructed as the product of all three pure correlation functions performed best
for the small speckle sizes and large correlation values, respectively, but that the difference between
the different functions disappeared as the speckle size increase and the correlation value drops. On
average the random error of the combined correlation function was half that of the traditional intensity
correlation function within the optimum region. It was also found that for the small speckle sizes, all
combined correlation functions involving the Hessian correlation function appear to be more robust
against speckle decorrelation down to correlation values of roughly 0.85. The reason for this has not
been investigated in detail but a good guess is that the more well-defined peak provided by the Hessian
correlation makes its position more defined and less susceptible to noise. This effect disappears for
smaller correlation values and for larger speckles. In addition, the monumental dependence of the
imaging f−number on the accuracy of DIC using laser speckles is demonstrated experimentally. This
dependence appears for all seven correlation functions and practically dominates the performance of
the calculations. While the difference between the most optimum correlation function and the worst
is in the order of three, the difference between results using different image apertures may be five
times as large. Modern digital detectors with pixel sizes in the order of µm may therefore open up for
a renaissance of laser speckles in experimental mechanics, in particular in situations where a good
random pattern is difficult to apply.
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