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Featured Application: Cooperative task allocation and path planning problems of multi-UAV
are becoming more and more important. The proposed mission planning method can be easily
applied to some civilian scenarios, such as multi-UAV cooperative forest fire fighting and some
military scenarios.

Abstract: A hierarchical mission planning method was proposed to solve a simultaneous attack
mission planning problem for multi-unmanned aerial vehicles (UAVs). The method consisted of
three phases aiming to decouple and solve the mission planning problem. In the first phase, the
Pythagorean hodograph (PH) curve was used in the path estimation process for each UAV, which also
served as the input for the task allocation process. In the second phase, a task allocation algorithm
based on a negotiation mechanism was proposed to assign the targets. Considering the resource
requirement, time-dependent value of targets and resource consumption of UAVs, the proposed
task allocation algorithm can generate a feasible allocation strategy and get the maximum system
utility. In the last phase, a path planning method was proposed to generate a simultaneous arrival PH
path for each UAV considering UAV’s kinematic constraint and collision avoidance with obstacles.
The comparison simulations showed that the path estimation process using the PH curve and the
proposed task allocation algorithm improved the system utility, and the hierarchical mission planning
method has potential in a real mission.
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1. Introduction

Over the last decades, unmanned aerial vehicles (UAVs) have been widely used in a large
range of applications, such as environmental monitoring [1], searching and attacking [2], forest fire
fighting [3] and so on. Due to the capability limitation of a single UAV, multiple UAVs working together
in coordination are expected to perform more complex missions under various types of attack [4].
For example, multiple UAVs can accomplish an attack mission much better than a single UAV when
those UAVs arrive simultaneously to the target.

Two main aspects in multi-UAV attack mission are task allocation and path planning.
The complexity of these problems increases with the number of UAVs and tasks. In addition,
in some specific scenarios, the imposed constraints, such as resource requirement, collision avoidance
and simultaneous arrival constraints further increase the complexity of those problems.
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Many researchers treated the task allocation and path planning as two sub-problems separately in
the in multi-UAV attack mission, they use a centralized or distributed approach to obtain a feasible
task allocation strategy and then use path planning algorithms to generate feasible paths for UAVs.
Sharma et al. [5] proposed a cooperative ad-hoc network framework for multi-UAV using a neural
network, cooperative task allocation and path planning algorithms can be used in the framework
in different applications. Yao et al. [6] developed an iterative mission planning framework for the
task allocation and path planning problems, an improved auction algorithm with an iterative strategy
was proposed in the task allocation process. When multi-UAV is used to perform multi-task, the task
allocation and path planning process are coupled [7], as the performance of task allocation depends on
an accurate path length of UAVs, and the path planning depends on the UAV’s task allocation results.

To solve the coupled task allocation and path planning problems, there are two main ways. In the
first class of methods, Euclidean distance between UAVs and targets is seen as the input in the task
allocation process [8,9]. After obtaining the feasible allocation results, the path planning process is
used to generate flyable and safe paths/trajectories for UAVs considering a variety of constraints.
However, the length of the generated paths/trajectories are quite different from the Euclidean distance,
especially when there are obstacles in the environment. This deviation will result in poor quality of
solutions obtained in the task allocation process. The second method considers the task allocation
and path planning process as an integrated optimization problem, and encoding the solution of the
coupled problem, genetic-based [10,11] and decision tree [12] algorithms are usually used. However,
simultaneously solving task allocation and path planning needs a large amount of computation.

The presented task allocation studies above assume each target can be performed by single UAV
and the resources of UAVs do not deplete. However, in a real situation, some targets may need a
variety of resources and should be performed by multi-UAV simultaneously, such as for a simultaneous
attacking mission, multiple UAVs are required to reach the target simultaneously with a different entry
angle to maximize the mission performance. This problem can be called the single-task, multi-robot
(ST-MR) problem according to the taxonomy criteria proposed by Gerkey et al. [13]. The ST-MR
problem is also known as the coalition formation problem [14], a coalition means a team of UAVs
performing the same target.

To solve the coalition formation problem for multiple UAVs performing multi-target, two
distributed sub-optimal coalition formation algorithms were proposed to form coalition with minimum
time and size to destroy targets simultaneously [15,16]. In a search and destroy mission for multiple
UAVs, a welfare-based coalition formation algorithm for heterogeneous UAVs was presented by
Kim et al. [17], the UAVs use resources in a balanced manner to improve the system’s robustness in
the dynamic and uncertain environment. However, the works cited above assume that only the UAV
performing a search task can send a bid to form a coalition, they do not consider the overlapping
coalitions, which will decrease the mission performance. For the cooperative task allocation and
rendezvous problems, Sharma et al. [18] proposed a global optimization algorithm inspired by the
biological features of the hill Myna and desert Sparrow, the algorithm can be applied to ad-hoc networks
in various applications. For the overlapping coalitions problem, Oh et al. [19] proposed two distributed
coalition formation algorithms for multi-UAV based on the contract net protocol, the sequence of UAVs
and pop-up tasks are considered in the dynamic environment with limited communication range.
The studies cited above do not take into account the obstacles and no-fly-zones in the environment,
which significantly limits the application of the coupled task allocation and path planning algorithm.

To maximize the system performance, the paths for the UAVs in the same coalition should satisfy
simultaneous arrival as well as some other constraints, such as the kinematic constraint of a UAV
and collision avoidance with obstacles. For the simultaneous arrival problem (also called rendezvous
problem), the velocity-based [20,21] method has been used. The simultaneous arrival problem of
multiple UAVs is addressed by a velocity control approach [20], the UAVs communicate with each other
to make a consensus on the estimated time of arrival. A distributed optimization algorithm based on
game theory [21] was proposed for a UAV rendezvous problem, each UAV adjusts its velocity according
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to the states of its neighbors in a predefined time interval. However, this method is easy to cause
velocity saturation [22] and a large amount of communication is required. Some other studies [7,23]
assume all the UAVs fly at the same and constant speed, so the simultaneous arrival for multi-UAV can
be achieved by planning paths of equal length. In our previous work, a cooperative particle swarm
optimization (CPSO) algorithm is proposed to generate Pythagorean hodograph (PH) paths of equal
length for each UAV. However, the task sequence of UAVs is not considered.

In this paper, the focus is on the coupled task allocation and path planning problems for multi-UAV
performing simultaneous arrival tasks. Considering the target’s resource requirement, simultaneous
arrival, time-dependent values of targets, resource consumption of UAVs and collision avoidance with
obstacles. A hierarchical mission planning method is proposed to solve the coupled task allocation
and path planning problem for a multi-UAV performing a multi-task, which is also the contribution
of this paper. The method consists of three phases. In the first phase, the PH curve is calculated as
the estimated path for each UAV, which can provide a more accurate input for the task allocation
process. Then, a task allocation algorithm is proposed to form a coalition for each target considering
the task sequence of UAVs and the resource requirement of targets. Finally, the path planning process
generates the flyable and safe paths for the fixed-wing UAVs in the same coalition to realize the
simultaneous arrival.

The rest of this paper is organized as follows: In Section 2, a description of the multi-UAV
cooperative attacking problem is given. Section 3 describe the task allocation method for multi-UAV.
In Section 4, path planning method to achieve simultaneous arrival is presented. Experimental results
are shown in Section 5. In Section 6, the conclusions are given.

2. Description of the Multi-UAV Cooperative Attack Problem

The problem considered in this study consists of assigning a fleet of heterogeneous UAVs to a set
of targets. At the initial time, there are some targets in the environment, it is assumed the information
of these targets are known at the initial time. The UAVs are required to attack the targets.

In this paper, the UAVs and targets are modeled based on their resources. Each target may need a
coalition of UAVs. According to the information of the targets and UAVs, the appropriate UAVs are
allocated to each target. In order to maximize the system performance, the UAVs performing the same
target are required to arrive to the target simultaneously. Then, the path planning process is used to
generate simultaneous arrival paths for the UAVs in the same coalition. The resource requirement and
simultaneous arrival of targets, the UAV’s kinematic constraints and collision avoidance with obstacles
are taken into account.

In this study, some assumptions were made to simplify the problem:

1. For simplicity, the take-off and landing process of UAVs were not taken into account, the collision
avoidance among UAVs were achieved by altitude layering.

2. In the task allocation process, the communication topology remained unchanged.
3. The aerodynamic and attitude of UAVs were not considered.
4. The obstacles and targets considered in this paper were static.

2.1. Targets and UAVs

Let T = {T1, T2, . . . , TM} be the set of M stationary targets, it is assumed that the information of
targets is known at the initial time. Each target requires m-different types of resources, the resource
requirement of target T j can be expressed as Equation (1), for example, RT j = (3, 3, 2) denotes that there
are three types of resources required to destroy target T j and the required amount of each resource is 3,
3 and 2, respectively.

RT j = (R
T j

1 , R
T j
2 , . . . , R

T j
m ), j = 1, . . . , M (1)
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Let Value = (Value1, . . . , ValueM) be the set of values of the targets at the initial time, the value of
targets decreases with time as follows:

reward j = Value j · e−βt j (2)

where β > 0 is a user-defined coefficient, which denotes the descent rate of the target’s value. t j is the
time of arrival of the UAV coalition assigned to attack the target T j.

Let U = (U1, U2, . . . , UN) be the set of N heterogeneous UAVs. The heterogeneity of UAVs is
reflected in their different dynamic characteristics and the amount of resources as shown below:

RUi = (RUi
1 , RUi

2 , . . . , RUi
m ), i = 1, . . . , N (3)

It is assumed that all UAVs fly in a two-dimensional plane. The motion of UAV Ui is governed by
the following equation: 

.
xi
.
yi.
ϕi

 =


cosϕi 0
sinϕi 0

0 1


[

Vi
ωi

]
(4)

where (xi, yi) andϕi represents the Cartesian coordinates and the heading angle of UAV Ui, respectively.
Vi and ωi denote the velocity and turn rate, respectively. It is assumed that the UAVs fly at a constant
and same velocity.

The control input for each UAV can be described as: ui(t) = ωi(t), which is subject to the
constraints in Equation (5). Ri

min is the minimum turning radius of UAV Ui.

ωi ≤
∣∣∣Vi/Ri

min

∣∣∣ (5)

In this paper, the UAVs were required to perform the attacking mission to the targets. The objective
of the mission planning problem is to obtain the assignment strategy for each UAV to maximize the
objective function and provide flyable and safe paths for these UAVs.

2.2. Objective Function and Constraints

The objective of the task allocation problem is to assign the targets to the UAV team to obtain
the maximum system utility. To satisfy the resource requirement of targets, there may be some UAVs
forming a coalition to attack one target. The reward to destroy targets and the cost of the UAV coalitions
were considered in the objective function, so, two criteria were selected to quantify the objective
function of this mission planning problem: The reward to destroy targets and the cumulative path
length of all the UAV coalitions. Thus, the objective function to be maximized is as follows:

J =
M∑

j=1

(w1 ×Value j × e−βt j −w2 ×

|C j |∑
i=1

Li j) (6)

where w1, w2 respectively denotes the weights of the reward and cost. C j represents the UAV coalition
assigned to attack the target T j,

∣∣∣C j
∣∣∣ denotes the number of UAVs in the coalition C j, Li j denotes the

path length from the initial location of UAV Ui to the target T j. Assuming A(i) is the task sequence of
UAV Ui, tasks before T j should be considered in calculating Li j. t j is the estimated time of arrival (ETA)
of the latest UAV in the coalition assigned to the target T j:

t j = max
i∈C j

(ETA(i, j)) (7)

The constraints considered in this paper can be categorized into UAV-related constraints,
target-related constraints and environment-related constraints.
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(1) UAV-related constraints
First of all, UAVs have limited fuel, so a maximum flying distance constraint should be satisfied:

L(A(i)) ≤ Li
max, i = 1, . . . , N (8)

where L(A(i)) is the total path length of UAV Ui, Li
max denotes the maximum flight distance of UAV Ui.

Each UAV can carry limited resources that deplete with use, so each UAV cannot consume more
resources than it carries.

R(A(i)) ≤ RUi (9)

where R(A(i)) represents the total resource consumption for performing the targets assigned to Ui.
A flyable curve [24] is required to satisfy the UAV’s kinematic constraint. In a two-dimensional

plane, a curve is determined by its curvature. Let κi(q) be the curvature of UAV Ui at point q, the
curvature of the path should be continuous and bounded as follows:

κi(q) ≤ 1/Ri
min (10)

(2) Target-related constraints
Each target is required to be performed by a UAV coalition simultaneously, and the resource

requirement should be satisfied:

(
∑

U∈C j

RU
p ) ≥ R

T j
p , p = 1, . . . , m; j = 1, . . .M (11)

(3) Environment-related constraints
Let Ω be the two-dimensional space in which UAVs fly. Let Θ denote the set of obstacles in the

environment. The collision avoidance between UAVs and obstacles must be satisfied:

(x(t), y(t))∩ int(Θ) = ∅ (12)

(4) Simultaneous arrival constraints
According to the resource model, each target may need a coalition of UAVs. To maximize the

system performance, the UAVs in the same coalition are required to arrive to the target simultaneously
as follows:

tpath
i, j = tpath

l, j , i, l ∈
{
1, . . . ,

∣∣∣C j
∣∣∣}; i , l (13)

where Ui and Ul are two different UAVs in coalition C j, T j is the target assigned to the coalition C j.
Thus, the mission planning problem was provided as the objective function (Equation (6)) with

constraints (Equations (8)–(13))

3. Task Allocation

3.1. Framework of the Mission Planning Method

Inspired by the hierarchical control framework [25–27] of a multi-UAV system. The mission
planning method was divided into three layers in this paper, as shown in Figure 1. The first layer was
the path estimation process, a Particle Swarm Optimization-based method (shown in Section 4.2) was
employed to generate a PH path for each UAV as an estimated path. The length of the estimated path
was seen as the input for the task allocation process, the estimated path was used to decouple the
task allocation and path planning problems. In the second layer, the task allocation process assigned
targets to UAVs that optimized the system performance. A task allocation algorithm was proposed
to assign the targets. In the task allocation process, the resource requirement of targets, resource
consumption and task sequence of UAVs were taken into account. In the last layer, according to the
task allocation strategy, a path planning method was proposed to generate flyable and safe paths for
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the UAVs considering the task sequence of each UAV. In this layer, the simultaneous arrival, UAV’s
kinematic and collision avoidance constraints were considered (detailed explanation can be found in
Section 4.3). Finally, a path following process was used to generate the control signals for the UAV
team. As the path following was not the focus of this paper, a path following method based on the
nonlinear model predictive control [28] (NMPC) was used to track the generated PH paths.
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3.2. Task Allocation Algorithm

The task allocation process defined in Section 2.2 is a Non-deterministic Polynomial hard problem.
With the increasing size of the problem, the computational complexity will be increased sharply. It will
be time-consuming and even impossible to obtain the optimal solution. In order to obtain a feasible
solution within a reasonable time, in this paper, the task allocation algorithm assigns the most profitable
target in each allocation round. In each allocation round, each UAV selects the most beneficial target to
itself. Then, if there is a conflict among different UAVs, a consensus mechanism is used. The resource
requirement of targets and task sequence of UAVs were considered. As mentioned above, the task
allocation and path planning were coupled. In this paper, the path estimation process using the PH
curve was used to decouple these two problems. The proposed task allocation algorithm based on a
negotiation mechanism is presented as Algorithm 1.

Algorithm 1. Task allocation algorithm

Input: T: The set of targets and initial states; RT j , j = 1, . . . , M: Resource requirement of targets; U: The set of
UAVs and initial states; RUi , i = 1, . . . , N: Resources of UAVs;
Output: A: The allocation matrix of the UAV team
1: for k = 1 : M do
2: for Ui, i = 1, . . . , N do
3: for j = 1 to the number of unallocated targets
4: calculate estimated reward for Ui performing target T j
5: end for
6: select the pre-allocated target for Ui
7: end for
8: consensus on pre-allocated target in this allocation round and select the manger UAV
9: C j ← coalition_formation (UP

j , Va j, RT j ) —Algorithm 2
10: the UAVs in the coalition C j add the target T j into their task sequence
11: calculate resource consumption for UAVs in the coalition C j
12: cooperative path planning for simultaneous arrival to target T j —Section 4
13: end for
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There were M targets at the initial time, each allocation round would assign one target (Line 1,
Algorithm 1). Then, the estimated reward to perform all unallocated targets was calculated for each
UAV using Equation (14; Line 4, Algorithm 1). Considering the task sequence of a UAV, the ETA of the
UAV Ui to the target T j can be represented as Equation (15).

Reward(i, j) = Value j × e−β·ETA(i, j) (14)

ETA(i, j) =

 Le
i j/Vi, i f A(i) = ∅

Lbe f ore
im /Vi + Le

mj/Vi, otherwise
(15)

where A(i) is the task sequence of the UAV Ui, if A(i) = ∅, which denotes there is no target assigned to
the UAV Ui, then Le

i j is the estimated path length between the current location of the UAV Ui to target
T j, which can be obtained in the path estimation process (Section 4.2). Otherwise, there has been some
targets assigned to the UAV Ui, these assigned targets should be considered in calculating the ETA(i, j).
Assuming the last target in the task sequence of UAV Ui is the target Tm, the ETA from UAV Ui to the
target T j can be divided into two parts. The first part is the accurate path length of the assigned targets

Lbe f ore
im , which can be obtained by the path planning process (Section 4.3) in the previous allocation

round; the second part Le
i j is the estimated path length from the target Tm to T j, which can be obtained

in the path estimation process.
Then, the UAV Ui selects the most appropriate target j∗ as its pre-allocated target (Line 6

Algorithm 1):
ji∗ = argmax(Reward(i, j))

j∈M′
(16)

where M′ represents the targets, which have not been assigned.
After all the UAVs have computed their pre-allocated targets, there may be conflicts among

UAVs. For example, more than one UAV selects the same target as their pre-allocated target. Here, a
consensus algorithm [19] is employed for conflict resolution (Line 8, Algorithm 1). Each UAV achieves
a consensus on the pre-allocated target by negotiating with others. The UAV with the highest estimated
reward is seen as the manager UAV imanager using Equation (17), the corresponding pre-allocated target
of the manager UAV is regarded as the target to be allocated in this allocation round.

imanager = argmax(Reward(i, j∗i ))
i∈N

(17)

After the consensus process, every UAV knows the manger and the target to be allocated in
this allocation round. Other UAVs, who have the required resource for the target are seen as the
potential coalition members and will send applications to the manager UAV, the applications include
their remaining resources and ETA. Then, the manager UAV uses algorithm 2 to determine the UAV
coalition C j to perform the target to be assigned in this allocation round (for simplicity, expressed as T j
in the following algorithm). Then, the UAVs in the coalition C j will augment the target into their task
sequence (Line 10, Algorithm 1).
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Algorithm 2. Select the coalition C j to perform target T j

Input: Potential coalition members UP
j , number of potential coalition member n, resource requirement RT j of

the target T j, initial value of target Value j.
Output: The coalition C j to perform the target T j
1: for k = 1 : n do
2: calculate all the potential coalitions of size k
3: for m = 1 to the number of potential coalitions do
4: R(m) = total resources of the potential coalition m
5: if R(m) ≥ RT j

6: C f easible ← append the potential coalition
7: end if
8: end for
9: if isempty (C f easible)

10: continue
11: else
12: select the coalition C j which have the highest utility to perform target T j
13: end if
14: end for

The manager UAV and the applicants were regarded as the potential coalition members for the
target T j, they would form a list UP

j . The coalition formation algorithm begins with finding all the
feasible coalitions with sufficient resources and the minimum size (line 1–8, Algorithm 2). Then,
the manager UAV selects the most appropriate coalition C j among all the feasible coalitions using
Equation (18; Line 12, Algorithm 2). The utility for each coalition c ∈ C f easible is calculated using
Equation (6).

C j = argmax(utility(c))
c∈C f easible

(18)

Once the coalition C j is determined to perform the target T j, the coalition members will calculate
the resource consumption that satisfying the target’s resource requirement (Line 11, Algorithm 1).
A greedy resource management method was used in this paper. Assuming the type-p resource

requirement of target T j is R
T j
p . The type-p resource consumption RUk

p (cost) of UAV Uk in the coalition
C j can be represented as:

RUk
p (cost) =


0, i f

∑
i∈Ub_k

RUi
p ≥ R

T j
p

min(R
T j
p −

∑
i∈Ub_k

RUi
p ), otherwise

(19)

where Ub_k represents the UAVs before Uk, when elements in C j are arranged in descending order
of reward.

After the calculation of resource consumption, the UAVs in the coalition C j update their remaining
resources. Then, the simultaneous arrival paths for the UAVs in the coalition C j are generated by the
path planning process (Section 4.3).

3.3. Complexity Analysis of the Task Allocation Algorithm

Given the information of the operating environment and configurations, the proposed task
allocation algorithm can provide solutions at low complexity. Assuming there are N UAVs and M
targets in the environment. In Algorithm 1, each allocation round will assign one target, it requires M
allocation rounds to allocate all the targets. In each allocation round, step 2 in Algorithm 1 requires N
iterations. For step 3–5 in Algorithm 1, they undergo M iterations for the worst case. The complexity
for the consensus process [19] in Algorithm 1, step 8 is (N − 1)2 for the worst case. In Algorithm
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2, at most N elements are sorted, the complexity of the Algorithm 2 is N log(N). Summing up the
numbers analyzed above in each allocation round, the complexity of the proposed task allocation
algorithm in the worst case can be computed as NM + (N − 1)2 + N log(N). For M targets (line 1
in Algorithm 1), the complexity of the proposed task allocation algorithm in the worst case can be
expressed as M2N + M(N − 1)2 + MN log(N).

4. Path Estimation and Simultaneous Arrival Path Planning

4.1. Pythagorean Hodograph Curve

In this paper, the PH curve was used in the path estimation and path planning processes, so a
brief overview of PH curve is stated here.

In the two-dimensional plane, the Pythagorean hodograph (PH) curve r(q) = [x(q), y(q)], q ∈ [0, 1]
is a parameterized polynomial curve whose hodographs x′(q), y′(q) satisfy a Pythagorean condition:

x′2(q) + y′2(q) = σ2(q) (20)

The PH curve can also be expressed in the Bézier form of degree n:

r(q) =
n∑

k=0

Ck
n(1− q)n−kqkPk, q ∈ [0, 1] (21)

where Pk = (xk, yk), k = 1, . . . , n are control points. The length of a PH path parameterized with
parameter q is calculated by:

L(q) =
∫ q2

q1

∥∥∥r(q)
∥∥∥ dq (22)

In order to obtain the PH curve with continuous curvature, the quantic PH curve was used as the
path for each UAV in this paper. The theory and calculation method of the PH curve were not repeated
here, relevant contents can be found in [29,30]. It should be noted that the kinematics constraint of
a UAV is satisfied by bounding the curvature of the PH curve in a two-dimensional plane, so the
maximum curvature on a flyable PH curve should satisfy:

max(κ(q)) =
‖r′(q) × r′′ (q)‖

‖r(q)‖3
≤ κmax , q ∈ [0, 1] (23)

where κmax represents the maximum curvature of the UAV.
When the position and attitude of the starting point and ending point are given, the shape of the

PH curve is determined by the modulus of the direction vectors of the starting and ending points.
Increasing the modulus value can reduce the curvature of the PH curve, but it will increase the
length of the curve. Therefore, it is necessary to select the appropriate modulus values to make the
generated PH curve satisfy the kinematics constraints of the UAV, obstacle avoidance and some other
coordination constraint.

4.2. Path Estimation

In the task allocation process, according to Equation (15), each UAV needs to calculate the ETA
from its current location to the target. For the UAV Ui, if A(i) = ∅, Le

i j needs to be estimated; otherwise,
the ETA from the UAV Ui to the target T j consists of two parts, the first part is the accurate path

length of the assigned targets Lbe f ore
im (can be obtained in Section 4.3), the second part Le

mj requires to be
estimated, where Tm denotes the last target that has been assigned to the UAV Ui. For both Le

i j and Le
mj,

they can be obtained directly by calculating the length of the PH curve from one point to another.
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Assuming the starting and ending points are Ps and P f , the flyable and safe path from Ps to P f
can be obtained by a constraint optimization problem as follows:

min J(x)
s.t. Path < obstacles

κ(Path) ≤ κmax

(24)

where x denotes the decision variable, the collision avoidance and curvature constraints are shown
in the first and second constraint, respectively. J(x) means the cost function to be minimized. In this
paper, two criteria are selected to quantify the cost function, which are the length and the smoothness
of the path as follows:

J = w× Jlength + (1−w) × Jsmooth (25)

where w ∈ [0, 1] means the weight coefficient; Jlength represents the cost function of the path length.
The length of the path is very important in the path planning process, the shorter path will save time
and fuel. The length of the PH curve was used in this paper. Jsmooth denotes the cost function of the
smoothness of the generated path, which can be expressed by the elastic energy of the generated PH
curve [29].

To the constraint optimization problem, the penalty function for violating the constraints can be
represented as:

J′(x) = PJ × J (26)

where PJ is the penalty parameter for violating the collision avoidance or curvature constraint, in this
paper, P j = 100.

As mentioned above, a PH curve can be determined by the modulus values of the direction vectors
of the starting and ending points, which are represented as h0 and h1, respectively. In this paper, A
PSO-based algorithm was designed to solve the constraint optimization problem.

First, the initial position and velocity of each particle is initialized as zi = (hi,0, hi,1) and vi =

(vi,0, vi,1), respectively. i = 1, . . . , Mp, where Mp denotes the population size of the PSO algorithm.
If the particle satisfies the collision avoidance and curvature constraint, its fitness can be calculated by
Equation (25); otherwise, Equation (26) is used to calculate the particle’s fitness. The best position of
each particle is represented as Pbest = (pi,0, pi,1), the global best position of all particles is represented
as gbest = (g0, g1). Then, each particle updates its position and velocity as follows:

vk+1
i,d = $vk

i,d + c1r1(pk
i,d − hk

i,d) + c2r2(gk
d − hk

i,d)

hk+1
i,d = hk

i,d + vk+1
i,d

(27)

where i = 1, . . . , Mp; d = 0, 1; k = 1, . . . , T; T is the iteration number. c1 and c2 are positive constants, r1

and r2 are random numbers between [0, 1].
After T number of iterations, the global extremum is obtained. The estimated path length between

the starting and ending point can be calculated by Equation (22).

4.3. Path Planning for Simultaneous Arrival

When the coalition C j, T j ∈ T is determined to attack the target T j, the UAVs in the coalition C j
should arrive at the target simultaneously to maximize the system performance. The simultaneous
arrival problem for the UAVs in the coalition C j can be regarded as a constrained optimization problem:

min J(xi) i = 1, . . . ,
∣∣∣C j

∣∣∣
s.t. Path_i < obstacles

κ(Path_i) ≤ κmax,i

tpath
i, j = tpath

l, j , i, l ∈
{
1, . . . ,

∣∣∣C j
∣∣∣}; i , l; j = 1, . . . , M

(28)
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The cost function and the first two constraints are the same as Equation (24). For the simultaneous
arrival problem, the third constraint requires the UAVs in the same coalition to realize the simultaneous
arrival. It should be noted that, in this paper, the UAVs and targets are modeled by their resources.
Each target may require a UAV coalition, and each UAV can attack a set of targets. So, the task sequence
of UAVs should be considered in the third constraint, which means that the target assigned before
T j should be considered in the simultaneous arrival paths. The following two cases illustrate how to
obtain the simultaneous arrival paths for the UAVs in the coalition C j.

(1) If the target T j is the first assigned target.
If the target T j is the first assigned target, which means the target T j is the first target in the

task sequence for the UAVs in the coalition C j. A cooperative particle swarm optimization (CPSO)
algorithm in our previous study [31] can be used to solve the simultaneous arrival problem. Here
is a brief explanation: A sub-swarm is generated for each UAV, the positions and velocities of the
particles in each sub-swarm are initialized. Each particle’s fitness was calculated using Equation (25)
or Equation (26; if the particle violates the first two constraints). Then, each sub-swarm selects its best
global position as its representative particle. The particles in each sub-swarm modifies their fitness by
communicating with other sub-swarms’ representative particles. After several rounds of iteration, the
UAVs in the coalition C j can obtain the paths of equal length.

(2) If the target T j is not the first assigned target.
If the target T j is not the first assigned target, the UAVs in the coalition C j may have tasks before

the target T j. For the simultaneous arrival problem, the UAVs in the coalition C j should consider the
targets performed before the target T j, a modified CPSO algorithm is presented here.

In the modified CPSO algorithm, a sub-swarm is initialized for each UAV in the coalition C j.
The positions and velocities of the particles in sub-swarm i can be represented as zik = (hik,0, hik,1) and
vik = (vik,0, vik,1), respectively. Where i = 1, . . . ,

∣∣∣C j
∣∣∣, k = 1, . . . , Mp, Mp denotes the population size of

each sub-swarm. It should be noted that each particle in sub-swarm i determines a PH path from the
location of target Tm to T j, where Tm denotes the target performed by the UAV Ui just before the target
T j. The fitness of the particles in each sub-swarm were calculated using Equation (25) or Equation (26).
However, as the target T j was not the first assigned target, the target assigned before T j should be
considered in the cost function. For example, for the particles in sub-swarm i, the cost function for
path length is modified as:

Jlength = Li j = Lbe f ore
im + Lmj (29)

where Lbe f ore
im denotes the accurate path length from the current location of UAV Ui to the target Tm,

which can be obtained in the previous allocation round. Lmj denotes the path length from the location
of the target Tm to T j.

Then, a representative particle was selected in each sub-swarm, the representative particle with
the maximum path length was selected as the reference particle pre f . The particles in each sub-swarm
modifies their fitness according to the reference particle. For example, the particle k in sub-swarm i
modifies its fitness as follows:

J′i,k = Ji,k + Jpenalty,k (30)

where Jpenalty,k is the penalty function for the particle k in sub-swarm i:

Jpenalty,k =

 100×
∣∣∣Li j − Lre f

∣∣∣2, i f pre f < sub− swarm i
0 otherwise

(31)

It should be noted that, when calculating Li j and Lre f , the target before T j should be considered
using Equation (29).
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5. Simulation Results

In this section, numerical simulations were conducted to demonstrate the performance of the
mission planning method for multiple UAVs. All the algorithms were compiled in MATLAB 2016b
and ran on a personal computer with an Intel Core i5-4590 @ 3.3 GHz with 8GB of RAM. In the first
experiment, a general scenario was used to demonstrate the effectiveness of the mission planning
method. In the second experiment, a sample run and the Monte Carlo simulations were presented to
show the effect of path estimation to task allocation. The difference of a straight line and PH curve used
in path estimation process were compared. Finally, the performance of the proposed task allocation
algorithm was compared with the other two algorithms by the Monte Carlo simulation.

5.1. General Scenario

A general scenario is presented to show the whole process of the multi-UAV mission planning,
where six UAVs needed to attack two targets. A square region with the size of 3200 m× 3200 m was
used. At the initial time, the information of the targets is known as shown in Table 1. The UAVs were
required to form two coalitions that satisfy the resource requirement of the targets. The UAVs in the
same coalition were required to arrive to their target simultaneously. The initial information of the six
UAVs are shown in Table 2. The parameters used in the mission planning method are shown in Table 3.

Table 1. The initial information of the targets.

Targets Initial Location (m) Resource Requirement Initial Value

Target 1 (1500, 1600) (4, 2) 100
Target 2 (2000, 1000) (5, 4) 90

Table 2. The initial information of the unmanned aerial vehicles (UAVs).

UAVs Initial Location (m) Heading Angle (rad) Initial Resource

UAV 1 (0, 0) pi/6 (2, 1)
UAV 2 (1500, 0) pi/6 (1, 0)
UAV 3 (3000, 0) 3 · 4/pi (3, 2)
UAV 4 (500, 2200) pi/6 (2, 2)
UAV 5 (2000, 2000) pi/6 (1, 1)
UAV 6 (3000, 3000) −3 · 4/pi (2, 1)

Table 3. Control parameters in the proposed mission planning method.

Parameters Notation Value

Descent rate of target’s reward β 0.05
The minimum turning radius of the UAV Rmin 50 m

Weight value of the target reward in Equation (6) w1 0.8
Weight value of the cost in Equation (6) w2 0.2

Weight value in Equation (25) w 0.8
Velocity of the UAVs V 50 m/s

Population size of the PSO algorithm Mp 50
Acceleration coefficient of the PSO algorithm c1 2
Acceleration coefficient of the PSO algorithm c2 2

At the initial time, the task allocation algorithm was used to form coalitions for the two targets.
In the first allocation round, the UAV U5 was selected as the manager UAV, the target T1 was first to be
assigned. The coalition C1 = [U5, U4, U2] was formed to attack the target T1 simultaneously. As the
target T1 was the first assigned target, the CPSO algorithm was used to generate simultaneous arrival
paths for these UAVs as shown in Figure 2a. The path lengths of the three UAVs in the coalition C1

from their initial location to the target T1 were 1862.5 m, 1863.8 m and 1862.7 m, respectively. Then, the
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UAVs in the coalition C1 updated their resources according to Equation (19). The ETAs for the three
UAVs are shown in Figure 3a. It can be seen that, the three UAVs could arrive simultaneously to the
target T1.
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In the second allocation round, the UAV U3 was selected as the manager UAV to assign the target
T2. The coalition C2 = [U3, U4, U1] was formed to attack the target T2. As the target T2 was not the
first assigned target. The modified CPSO algorithm was used to generate simultaneous arrival paths
for the UAVs in the coalition C2. The generated paths for these UAVs are shown in Figure 2a. The path
lengths of the UAVs from their initial locations to the target T2 were 3008.03 m, 3008.7 m and 3008.31 m,
respectively. It can be seen that the UAV U4 had to perform the target T1 before T2, this was considered
in the modified CPSO algorithm. The ETAs for the UAVs in the coalition C2 are shown in Figure 3b.
These UAVs could arrive simultaneously to the target T2. Using the proposed algorithms, the formed
coalitions could obtain the maximum system utility in Equation (6). The UAV U4 was selected to be
the part of the two coalitions C1 and C2. The UAV U6 had not been assigned any target, which denotes
that the UAV U6 was always at its base.

It can be seen from Figure 2a that the paths for these UAVs could avoid collision with the obstacles.
The curvature of each UAV’s path is shown in Figure 2b, which demonstrated that these paths had
continuous curvature and satisfied the maximum curvature constraint.
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5.2. Effects of Different Path Estimation Methods on Task Allocation

Consider a scenario that involves four UAVs and two targets. The performance of the path
estimation process using the PH curve was compared to that using a straight line. Four obstacles are in
the region size 3200 m× 3200 m. The initial information of UAVs and targets are shown in Tables 4
and 5. Other control parameters are the same with Section 5.1.

Table 4. Initial information of UAVs.

UAVs Initial Location (m) Heading Angle (rad) Initial Resource

UAV 1 (700, 900) pi/6 (2, 2)
UAV 2 (700, 600) 0 (2, 2)
UAV 3 (2100, 2100) pi/2 (2, 2)
UAV 4 (2300, 2200) pi/2 (2, 2)

Table 5. Targets location and resource requirement.

Targets Initial Location (m) Resource Requirement Initial Value

Target 1 (700, 2100) (4, 4) 100
Target 2 (2300, 900) (4, 4) 90

The UAVs used the proposed mission planning method to obtain the allocation strategy and
feasible paths. When the straight line and PH curve were used in the path estimation process, the
mission planning (task allocation and path planning) results are shown in Figures 4a and 5a, respectively.
The curvature of each UAV’s path of these two path estimation methods are shown in Figures 4b and
5b, respectively, the curvature of each UAV’s path satisfied the maximum curvature constraint.
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Figure 4. (a) Mission planning results (straight line is used in the path estimation process); (b) curvature
of each UAVs’ path.
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It can be seen from Figures 4 and 5 that when the straight line and PH curve were used in
the path estimation process, respectively, the task allocation methods generated different allocation
strategies. When the straight line was used in the path estimation process, the generated coalitions
were C1 = [U1, U3] and C2 = [U2, U4] for the target T1 and T2, respectively. That was because the
UAV U1 was closer to target T1 than target T2 when the straight line was used in the path estimation.
However, when there are obstacles in the environment, the path planning process should generate
paths avoiding collision with obstacles, which will have a large deviation from the path estimation
process using straight line. When path estimation using the PH curve was used in the mission planning
method, it produced a more reasonable allocation strategy, the generated coalitions were C1 = [U3, U4]

and C2 = [U1, U2] for the target T1 and T2, respectively. Table 6 summarizes the results of these two
path estimation methods for this study case. In Table 6, the mission time denotes the total time to
perform all the targets, the system utility was calculated by Equation (6). It can be seen that, the
mission time using the straight line in the path estimation was longer than that using the PH curve,
which also led to a lower system utility.

Table 6. Performance of different path estimation methods.

Figure # Path Estimation Mission Time (s) System Utility

4a Straight line 51.7 1.3
5a PH curve 35.6 26.5

In order for a deeper comparison of performance differences of the two path estimation methods,
the performance of the two path estimation methods with increasement in the number of targets was
compared by Monte Carlo simulation. In the set of simulation, there were six UAVs in the team, and the
number of targets varied from 10 to 30. For each simulation, obstacles were taken into consideration.
The location of UAVs and targets were randomly generated in a bounded region. Each target needed
three different types of resources, each required resource was a random integer between three and five.
Each UAV also carried three types of resources, and each type of resource was randomly generated
between 20 and 30. Using two different path estimation methods, the comparison results of average
mission completion time and system utility are shown in Figure 6.
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Figure 6. Comparison of the two path estimation methods. (a) Average mission completion time; (b)
average system utility.

Figure 6a shows the average mission time using the two path estimation methods when the
number of targets increased. The vertical axis denotes the average mission completion time of 100 runs.
The horizontal axis indicates the number of targets. When the PH curve was used in the path estimation
process, it could obtain a smaller mission completion time compared to the path estimation using the
straight line. That was because the deviation between the estimated path and the actual path was
smaller, when the PH curve was used in the path estimation process. When the number of targets
increased, the difference between the mission completion time of path estimation using the PH curve
and straight-line increased.

Figure 6b shows the average system utility when using different path estimation methods. While
the number of targets increasing, the system utility of the two path estimation methods increased.
However, when the straight line was used in the path estimation process, the system utility increased
slightly when the number of targets increased. It can be seen in Figure 6, the path estimation process
using the PH curve had a much better performance than that using the straight line, especially when
the number of targets increased.

5.3. Comparison of Three Task Allocation Algorithms

The performance of the proposed task allocation algorithm was demonstrated in comparison with
a PSO task allocation algorithm and a modified resource welfare-based [18] task allocation algorithm
via Monte Carlo simulation. The system utility and mission computation time using different task
allocation algorithms were compared.

For a comparative study, the resource welfare-based task allocation algorithm was modified
to adapt to the problem in this paper. For a target to be assigned, the UAVs consumed resources
in a balanced way, the coalition with the highest resource welfare was selected to attack the target
simultaneously. Algorithm 1 was also used in the modified resource welfare-based task allocation
algorithm, the Line 9 and 11 of algorithm 1 were replaced by the resource welfare method.

For the PSO-based task allocation algorithm, assuming there were N UAVs and M targets in the
environment. The lth particle at the kth iteration in PSO task allocation algorithm is represented as:

Xk
l = (xl,k

11, . . . , xl,k
1M, xl,k

21, . . . , xl,k
2M, . . . , xl,k

N1, xl,k
N2, . . . , xl,k

NM) (32)

where xl,k
i j ∈ {0, 1, . . . , M} denotes that the UAV Ui will attack target xl,k

i j in jth sequence. The dimension
of each particle is N ×M. Each particle represents a solution to the task allocation problem. The fitness
of each particle can be calculated using Equation (6). If the task allocation solution represented by a
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particle violates the task allocation constraints in Equations (8)–(13), the fitness of this particle is set to
−100.

To compare the performance of the three task allocation algorithms, a set of simulation with
different number of targets were designed. The parameter setting of these simulations is the same
with the Monte Carlo simulation shown in Section 5.1. The PH curve was used in the path estimation
process for all these task allocation algorithms. All these simulations used the proposed path planning
method. The comparison results of the average mission completion time and system utility are shown
in Figure 7. It should be noted that, as the dimension of the PSO-based algorithm was too large, we
only recorded the feasible solutions obtained within 24 h of the PSO-based task allocation algorithm.
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(b) average system utility.

Figure 7a shows the comparison of the average mission completion time of these task allocation
(TA) algorithms. Obviously, with the increase in the number of targets, the average mission completion
time increased. When the number of targets was 10, the PSO-based task allocation algorithm could
obtain the shortest mission completion time. However, the mission completion time using the
PSO-based TA algorithm significantly increased with the number of targets. That was because when
using the PSO-based TA algorithm, the dimension of particle was too high and increased with the
number of targets, it was difficult for the PSO algorithm to obtain the optimal solution in a short
time. From Figure 7a, the proposed TA algorithm performed better than the PSO-based and resource
welfare-based TA algorithms.

Figure 7b presents the average system utility obtained by these TA algorithms. When the number
of targets was 10, the PSO-based TA algorithm could obtain a higher system utility than the other two
TA algorithms. However, with the increasing number of targets, the proposed algorithm outperformed
the PSO-based TA algorithm as well as the resource welfare-based TA algorithm. That was because the
PSO-based TA algorithm could not obtain the optimal solution when the dimension of the particle was
high. This also led to a slight decline in the system utility when the number of targets increased further
(the number of targets was 30) using the PSO-based TA algorithm.

6. Conclusions

In this paper, a hierarchical mission planning was proposed to decouple and solve the coupled
task allocation and path planning problem for a multi-UAV attacking a multi-target. Three phases were
involved in the method. In the path estimation process, each UAV utilized the PSO-based method to
estimate the path length to targets. Then, a task allocation algorithm based on a negotiation mechanism
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was proposed to assign the targets. Finally, a path planning method was proposed to generate flyable
and safe paths for the UAVs. Through the corresponding simulation, some key points were illustrated.

• Considering the resource requirement of targets, UAV’s resource consumption and task sequence,
the proposed task allocation algorithm could obtain feasible solutions for the UAVs.

• The proposed path planning method could generate flyable and safe paths for the UAVs considering
several constraints, such as simultaneous arrival, UAV’s kinematic and collision avoidance
with obstacles.

• The Monte Carlo results showed that path estimation using the PH curve performed better than
that using the straight line. The proposed task allocation algorithm could obtain a lower mission
completion time and higher system utility compared with the PSO algorithm and the modified
resource welfare-based task allocation algorithm.

Although this paper focused on the problem of cooperative attacking using multiple UAVs, the
proposed mission planning method can be applied to some civilian scenarios, such as multi-UAV
cooperative fire fighting, where each UAV can carry different fire fighting resources. There are also
some limitations in the proposed mission planning approach. The proposed task allocation algorithm
assumes that all the UAVs can communicate with each other. Some practical issues that may appear in
real environment, such as communication delay or even interruption will be considered in future work.
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