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Featured Application: Simulation of fuel cell systems.

Abstract: Because of their fuel flexibility, Solid Oxide Fuel Cells (SOFCs) are promising candidates
to coach the energy transition. Yet, SOFC performance are markedly affected by fuel composition
and operative parameters. In order to optimize SOFC operation and to provide a prompt regulation,
reliable performance simulation tools are required. Given the high variability ascribed to the fuel
in the wide range of SOFC applications and the high non-linearity of electrochemical systems, the
implementation of artificial intelligence techniques, like Artificial Neural Networks (ANNs), is sound.
In this paper, several network architectures based on a feedforward-backpropagation algorithm are
proposed and trained on experimental data-set issued from tests on commercial NiYSZ/8YSZ/LSCF
anode supported planar button cells. The best simulator obtained is a 3-hidden layer ANN (25/22/18
neurons per layer, hyperbolic tangent sigmoid as transfer function, obtained with a gradient descent
with adaptive learning rate backpropagation). This shows high accuracy (RMS = 0.67% in the
testing phase) and successful application in the forecast of SOFC polarization behaviour in two
additional experiments (RMS in the order of 3% is scored, yet it is reduced to about 2% if only the
typical operating current density range of real application is considered, from 300 to 500 mA·cm−2).
Therefore, the neural tool is suitable for system simulation codes/software whether SOFC operating
parameters agree with the input ranges (anode feeding composition 0–48%vol H2, 0–38%vol CO,
0–45%vol CH4, 9–32%vol CO2, 0–54%vol N2, specific equivalent hydrogen flow-rate per unit cell active
area 10.8–23.6 mL·min−1·cm−2, current density 0–1300 mA·cm−2 and temperature 700–800 ◦C).

Keywords: fuel cells; SOFC; syngas; low-carbon fuels; modelling; controllers; artificial intelligence;
neural networks; energy systems; electric

1. Introduction

Nowadays, artificial intelligence are widely used for the dynamic management of complex
systems. Spanning the last two decades, among the most successful artificial intelligence techniques,
artificial neural networks (ANNs) certainly deserve attention, for their simplicity of implementation
and wide possibility of application [1,2]. ANNs’ strong point is the ability to predict the evolution of a
system when non-linear phenomena are occurring [3]: for that reason, they are claimed particularly
interesting for control engineering and fault diagnosis matters. Hence, in the field of energy systems,
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scientific literature shows a plethora of recent advancements, addressing forecast and simulation of
system based on unpredictable power sources such as sun and wind [4], along with algorithms for load
management in sub-grids [5–7], where dynamic and self-learning codes are useful to customize the
system management (i.e., demand-side response programs). Beside management issues, with regard
to energy conversion systems, ANNs exhibit a great relevance to the matters of performance mapping
and fault diagnosis (e.g., related to gas-turbines [8–10] heat exchangers [11], internal combustion
engines [12–14], cogeneration units [15]). With regard to the present energy roadmap, electrochemical
energy systems—like batteries and fuel cells—are increasingly attracting attention, because of their high
efficiency and eco-friendliness [16,17]. Whilst electrochemistry and catalysis are complex non-linear
processes, ANNs can easily handle performance variation and faults prediction of such systems. For
this reason, they are a particularly suitable technique to foster the integration of electrochemical devices
in energy systems and facilitate their management, coping with the variability of operating conditions.
To this end, other researchers already investigated the topic of artificial intelligence applications in
electrochemical energy systems. For example, the authors of [18] applied ANNs to fault diagnosis
of batteries for electric vehicles, while in Reference [19] the topic was addressed in the outlook of
energy management in hybrid configuration. Yet, ANNs significantly lower computational times
and their application specific to fuel cells have been studied in several papers [20,21]. In many of
them, this method is applied to go through the integration of the fuel cell in a complex system, as
in Reference [22] regarding the development and control of a Polymer Electrolyte Fuel Cell-based
(PEFC) electric power train for bicycles. Also Reference [23] shows a study to improve the integration
of fuel cells in grid-connected power plants. Finally, in others, artificial intelligence is used to gain
insight within the fuel cell itself, being a sophisticated component and subcomponent-level modelling
approach. For instance, the authors of Reference [24] applied ANNs to improve the power density
of low temperature PEFCs. Similarly, high temperature fuel cells like Solid Oxide Fuel Cells (SOFCs)
are particularly interesting, since the implementation of ANN in the system modelling and control
allows by-passing a detailed characterization required because of complex chemistry on the fuel cell
surface. SOFCs show high flexibility with regard to the fuel, yet their performances might be sensitive
to the variation of fuel composition and operative conditions. For example, a change in temperature
impacts on the electrolyte conductivity, as well as it affects chemical kinetics of internal reforming and
gas shift reactions. Then, as the anode feeding total flow rate decreases, the gas residence time at the
active sites of the cells increases, driving equilibrium-driven internal processes. Detailed modelling
approaches take into account non-linear phenomena (viz. gas diffusivity, kinetics), which require the
knowledge of many parameters that are hard to collect experimentally. Moreover, any model stands
upon the superimposition of some hypothesis, introducing a loss of knowledge due to a certain level
of simplification. Minimizing this source of error implies high computational times to get reliable
results. Conversely, the implementation of artificial intelligence techniques [20,21] such as ANNs,
overlooks them.

SOFCs fast and reliable simulation is of interest of a bunch of different applications. First,
at component level, they are called in 3D-CFD models, to improve significantly computational times
and to approach the problem of transient simulation [25]. Second, at system level, a consistent
simulation tool is necessary to forecast the SOFC performance when the system asks for operating
conditions modification, to further optimize its working point and to provide a prompt regulation.
In this framework, in the scientific literature there are a few examples of ANNs applications to
SOFC simulation. In References [26,27] the problem of internal multiple reforming is studied, in
References [28,29] the complex composition of the fuel is taken up, while in Reference [30] fault
diagnosis in SOFC is deeply investigated. In detail, in Reference [28], the effect of anode and cathode
feeding composition on the polarization curve of a SOFC is addressed. In that paper, the ANN
algorithm is developed on the experimental evidence from test benches described in References [31,32]
and shows both good simulation performances and a lean architecture (after the first hidden layer,
a linear transfer function is applied). Yet, its applicability is valid for SOFC operation at 800 ◦C
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(common parameter among all the tests used for the training/validation procedure) and to a rather
limited fuel composition range. In addition, the problem of internal reforming of methane is not
considered. Moreover, the original input parameters come from two different works and there is no
mention about the anode materials used for the experiments. The material and the cell geometry
determine electric and catalytic properties of the SOFC, hence they are one fundamental to assess
the applicability of an ANN simulator. An improved ANN model for SOFC performance simulation
is presented in Reference [26], where three levels of operative temperature (700–750–800 ◦C) are
accounted for. However, since the paper aims at investigating multiple reforming mechanisms
occurring in direct-biogas fuel cells, only the operation on humidified CH4/CO2 gas mixtures is taken
into account. Whilst that study provides thorough insight on complex competitive reactions (steam
and dry reforming), its applicability is limited to a narrow range of fuels and does not consider other
gas species. Regarding some promising SOFC applications, the fuel gas (hydrocarbon reformate,
coal and biomass syngas) has non-negligible amounts of H2 and CO. This substantially modifies the
reaction rates associated to methane decomposition. A slightly more complex fuel mixture (28.1%
CH4, 56.7% H2O, 0.5% CO, 12% H2 and 2.7% CO2) is considered in Reference [27]. Nonetheless, in
that paper, gas components fractions do not vary in the data-set used to develop the ANN. Again, the
results obtained do not show a high generalization capability with regard to any operative conditions.

For the sake of generalization and the reduction of computational time, an ANN simulator based
on a broader application framework and state-of-the-art SOFC materials is the topic addressed in this
work. Hence, this simulator is able to handle variable temperature conditions and a wider range of
anode feeding compositions, considering the co-occurrence of CH4, H2, CO and CO2 and it predicts
voltage losses from a few input parameters (temperature, fuel main components partial flow rates,
electric load). Such algorithm is suitable to calculate quickly the SOFC electric power output in a wide
range of applications, resulting flexible for many system integration designs, which show promising
potentialities (e.g., biogas-fed small-scale SOFC units [33], integrated-gasifier fuel cell systems [34] etc.).
The data-set for the network training are collected experimentally on SOFC materials representing the
current state-of-the-art, regarding thickness and material composition.

2. Materials and Methods

Section 2 aims at providing details concerning the network architecture and training methodology
(Section 2.1), as well as material and methods used in the experiments performed to retrieve data-set
for the network development (Section 2.2).

2.1. Artificial Neural Network Development

2.1.1. Architecture Definition

A number of different feedforward-backpropagation network configurations (as depicted in the
scheme at Figure 1) are trained and tested.
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Figure 1. Feedforward-backpropagation ANN structure: in each HL a number #nk of artificial neurons
are connected and correlated through the weight matrix (Wk) and the bias matrix (Bk).
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As detailed in Table 1, each one features a few distinctive parameters: number hidden layers
(HL), number of neurons in each hidden layer, training algorithm and transfer function. During the
training phase, all of them are processed, in order to define the most performing ones. For all tested
architectures, the number of neurons in the input and output layers are equal to the number of input
(#nin) and output parameters (#nout) respectively. As Table 1 reports, two transfer functions are
implemented: the log-sigmoid (Logsig) and the hyperbolic tangent sigmoid (Tansig). At the beginning,
the learning rate (LR) is initialized to 0.01, then it is varied dynamically to find the best value, since
great values favour convergence speed, yet they can also lead to instabilities in the convergence itself
(Rumelhart relation [35]).

Table 1. Network configurations: architecture, number of neurons per hidden layers and functions.

ID Architecture Number
of HL

Neurons
in HL 1

Neurons
in HL 2

Neurons
in HL 3

Neurons
in HL 4

Training
Function

Transfer
Function

ANN1
L1

2 10 10 - - TrainGDA
LogSIGANN2 2 16 12 - -

TrainGDMANN3 2 20 16 - -

ANN4

L2

3 20 18 14 -

TrainGDA

TanSIGANN5 3 25 22 18 -
ANN6 3 15 10 10 -

ANN7 3 25 20 22 - LogSIG
ANN8 3 30 28 26 -

ANN9 L3 4 12 10 8 6
TanSIG

ANN10 L2 3 30 28 26 -

2.1.2. Training

Once the architecture is defined, the neural network is trained, validated and tested upon the
experimental data-set made of the primary input signals from the system. In detail, for each network
configuration, the training process is carried out dividing the experimental results into three subsets of
samples, randomly assorted:

• The first subset (70% of samples) is used for the training itself and it is fed to the network algorithm
in order to calculate the values associated to the weight and bias matrix elements;

• The second subset (15% of samples) is used as validation basis. This is employed to measure the
generalization capability of the network and to abort the training process early if the network
performance on this subset does not improve. (i.e., before the target value for the error function is
reached). The validation subset does not influence the network generalization capabilities.

• The third subset (15% of samples) is used for the test, that is to say for a further generalization
capability check having no effect on the training phase.

As reported in Table 1, two kinds of algorithms are considered to train the networks. First, the
Gradient descent with momentum backpropagation (TrainGDM). It updates weights and bias values
according to gradient descent with momentum (momentum acts like a low-pass filter and allows
ignoring small errors in the error surface). Second, the Gradient descent with adaptive learning rate
backpropagation (TrainGDA). It uses a gradient descent with adaptive learning rate. Specifically, for
each training iteration (either referred to as epoch), whether performances decrease, the learning rate is
updated based on learning rate increasing ratio, LRinc. During training, if the nth-step error is less than
(n − 1)th-step error, the learning rate is increased. Otherwise, in the event of abnormal performance
enhancement, the learning rate is decreased by the learning rate decreasing ratio, LRdec. If the nth-step
error exceeds the error calculated at the preceding iteration, the learning rate is decreased accordingly.
With regard to the network training, Table 2 shows the value assigned to the main parameters of the
process, managing learning speed and aborting the process when needed. The other parameters in
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Table 2 are: “minimum performance gradient” represents the minimum accepted value of performance
improvement; “maximum validation failures” is the maximum number of failures allowed along the
network improvement and “performance goal” is the target of the performance function. During the
training phase, simulation performances are checked on the Mean Squared normalized Error (MSE,
Equation (1)) and Root Mean squared Error (RMS, Equation (2)), both based on the sum of squared
errors (the difference between the ANN output θann,i and the corresponding experimental results θexp,i).

MSE (θ) =
∑n

i
(
θann,i − θexp,i

)2

n
(1)

RMS (θ) =
√

MSE (θ) (2)

Table 2. Training settings.

Description Symbol Value

Minimum performance Gradient - 0.00001
Maximum validation failures - 600

Performance Goal - 0
Learning rate LR 0.01

Learning rate increasing ratio LRinc 1.05
Learning rate decreasing ratio LRdec 0.7

The training phase ends when any of these conditions occurs: (i) either maximum epochs or
maximum calculation time is reached; (ii) the performance goal (i.e., MSE) scores target value; (iii) the
performance gradient falls below the minimum allowed, or, (iv) the network performances upon the
validation set increase more than maximum validation failures.

2.2. Experimental Data Collection

2.2.1. Materials and Experimental Set-Up

Commercial anode-supported NiYSZ/8YSZ/LSCF button cells are used (outer diameter: 30 mm,
active area: 3.14 cm2, thickness anode/electrolyte/cathode: 240/8/50 µm). The sealing used is Aremco
Ceramabond® 552. The test rig and related equipment are fully described in Reference [36]. The cell is
connected to an electronic load, simulating the user. Raw data are sampled at 1 Hz and processed with
an average filter to remove measurement noise (on a 120-sample basis).

2.2.2. Design of Experiments

The experimental data-set used as physical input is based on 45 tests, resulting from all the
possible different combinations of the main process variables. Namely, process variables considered
are: temperature, current density, anode gas composition and flow rate, like Table 3 summarizes.
In detail, temperature is varied according to three levels: 700, 750 and 800 ◦C. The anode feeding
is changed simulating five syngas mixtures resulting from different processes (“synA” from wood
air-gasification, “synB” from sewage sludge air-gasification, “synC” from wood oxy-gasification,
“synD” from steam methane reforming and “synE” from the anaerobic digestion of organic waste).
Since syngas are heterogeneous gas mixtures made of H2, CO2, CH4, CO and N2, the total flow rate is
expressed with an auxiliary variable, defined as “equivalent hydrogen” (definition given at Equation
(3). Equivalent hydrogen flowrate is set to three levels and expressed per unit cell active area (10.8,
14.7, 23.2 mL·min−1·cm−2) to vary the fuel utilization (see the relation between the fuel utilization
coefficient Uf and the flowrate of equivalent hydrogen at Equation (4).

.
nH2 eq =

.
nH2 +

.
nCO + 4

.
nCH4 (3)
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U f =
i

2F
.
nH2 eq

(4)

Table 3. Design of experiments set-points for process decision variables.

Temperature Gas Mixture
Volume Fraction on Dry Basis

ṅH2eq j

◦C MIX Ref. H2 CO CH4 CO2 N2 mL·min−1·cm−2 mA·cm−2

700
750
800

synA [37] 10% 13% 4% 19% 54%
10.8
14.7
23.6

0 A→ I (0.6 V)
(∆j = 50 mA·cm−2)

synB [38] 48% 0% 14% 9% 29%
synC [39] 22% 26% 30% 22% 0%
synD [40] 32% 38% 0% 30% 0%
synE [41] 0% 0% 45% 32% 45%

As unique feature for each single test, the fuel total indicator ϕ is assumed and it will be shown
while presenting experimental results. ϕ is calculated according to Equation (5), as the ratio between
Uf and the fuel mixture dilution fraction (DF, see Equation (6).

ϕ =
U f

DF
(5)

DF = xCO2 + xN2 (6)

2.2.3. Tests Execution: Methods

The button cell is started up with a standard procedure, until the desired operative temperature is
reached. Hence, it undergoes reduction and it is firstly validated with a polarization test under pure
hydrogen. Then, SOFC anode feeding is varied, according to the specification discussed in Section 2.2.2.
All of the tests are performed on the same SOFC specimen in order to eliminate any other source of
error. In each test condition, a polarization curve is measured, performing tests at variable current.
In the polarization test, starting operative load is 0 A (open circuit voltage, OCV), then current is
increased by constant-amplitude steps, so that the SOFC performances are mapped with a current
density (j) resolution of 50 mA·cm−2. The waiting time between two consecutive tests is reduced
to the minimum duration (average 2 h), to lower the likelihood of cumulative damage and to sort a
consistent data-set, suitable for the ANN training.

3. Results

3.1. Experimental

Time-average experimental results are summarized in a 1260-row matrix, used as input for the
ANN development. Hence, from each test, on the input section, the test matrix includes: current load,
temperature, H2, CO2, CH4, CO and N2 volume flowrates. As output section, the matrix shows voltage
outputs related to each combination of the previous parameters. Hereinafter, Figure 2 presents a couple
of examples regarding SOFC performance maps obtained experimentally. In detail, performances maps
are represented for two load conditions, 100 mA·cm−2 and 250 mA·cm−2. On the y-axis, measured
voltage is shown, while on the primary and secondary x-axis the fuel total indicator (Equation (5))
and the temperature are shown. As explained above, the fuel total indicator is a useful dimensionless
parameter to sum up the information relative to the kind of fuel mixture and the way it is employed
(that is to say the current load and the anode feeding flow rate).
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3.2. Neural Network Development

For all the network configurations discussed hereinabove, performance indexes are summarized
in Table 4. L1 architecture yields poor results. ANN1, ANN2 and ANN3 show a high RMS over a
1000-sample population. On the contrary, for all the other networks configurations featuring either L2
(3 HLs) or L3 architecture (4 HLs), RMS is in the neighbourhood of 1%. The increase up to 4 HLs does
not produce any further performance enhancement. Among the investigated ANN configurations
with 3 HLs, the sensitivity analysis performed on neurons number ends in the identification of ANN5
as most performing network (0.67% RMS in the test). For this reason, ANN5 is chosen to build the
final simulation tool for SOFC performance. On the other hand, ANN4 scores the worst performance
(1.21% RMS in the test) among the 3-HL configurations. ANN4 and ANN5 error dispersion during the
last epoch training phase is shown in Figures 3b and 3c, respectively).
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Table 4. Artificial neural networks performances.

ANN Training Validation Test Number of Learning
EpochsID RMS % MSE RMS % RMS %

ANN1 10.75% 0.0117 10.8% 10.97% 42
ANN2 12.92% 0.0169 13.0% 12.86% 31,000
ANN3 13.02% 0.0171 13.1% 13.01% 100,000
ANN4 1.36% 0.0002 1.4% 1.21% 10,600
ANN5 0.80% <0.0001 0.7% 0.67% 120,000
ANN6 0.99% <0.0001 1.0% 1.05% 100,000
ANN7 1.01% 0.0001 1.0% 1.12% 100,000
ANN8 0.98% <0.0001 1.0% 1.07% 100,000
ANN9 1.10% 0.0001 1.1% 1.05% 100,000

ANN 10 0.75% <0.0001 0.8% 0.78% 112,000
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With regard the validation data-set of the algorithm, more interesting comments can be made. The
error dispersion obtained throughout the validation phase is plotted in Figure 4a for ANN2, Figure 4b
for ANN4 and Figure 4c for ANN5.With regard to the simulated and experimental voltage data, it is
clear as ANN2 is not able to reproduce the SOFC performance varying all the operating conditions
input of the developed model. Moreover, observing the error dispersion trend the better generalization
capability of ANN5 with respect to ANN4 is evident.
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Figure 4. Validation of ANN2 (a), ANN4 (b) and ANN5 (c): error dispersion.

Finally, on the basis of an independent data-subset excluded from the training and validation
phase, the simulation performances of the neural network under investigation are test. Once again,
simple configuration with just 2 HLs produced output results affected with high error, ANN5 shows the
lowest RMS (0.67%). Figure 5 depicts the error dispersion for ANN2, ANN4 and ANN5 highlighting
the best performance of ANN5 in reproducing the SOFC behaviour.
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3.3. Neural Network Application

The best network sorted from the previous section, namely ANN5, is finally applied to simulate
the performance of SOFCs based on state-of-art materials. Hence, a couple of additional experimental
data-set are used to check the generalization capability of ANN5. The first data-set regards a
polarization test performed on a different SOFC specimen with the same features of the one used for
the previous experiments and tested on the same test bench (as discussed in Section 2).

Then, aiming at validating ANN5 generalization capability over different SOFC single cell set-ups,
the second one is related to a polarization experiment performed on another test bench, implementing
cells with a slightly different geometry, yet featuring the same material composition (as reported in
Reference [42]). Table 5 summarizes the experiments input variables regarding both of them—for the
further, see column “Exp synF”, while for the latter column “Exp synG”. All of process input variables
fall in the input ranges used to develop ANN5.

Figure 6 shows simulation results obtained with ANN5. On the left side, the experiment related to
“Exp synF”is reported. The blue dotted line shows the ANN5 simulation output, while the red-diamond
series depicts the experimental evidence, that is to say, the validation target of the simulation tool.
There is a good agreement between the two curves, as also confirmed by the calculation of RMS (2.23%
on the entire current density range observed 0–500 mA·cm−2).
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Table 5. Validation experiments input data.

Variables
Exp synF
Settings

Exp synG
Settings

ANN5
Input Range

Min Max

Temperature (◦C) 765 800 700 800

Equivalent hydrogen flowrate
(mL·min−1·cm−2) 18.34 15.48 10.80 23.56

Area Specific partial flowrates
(mL·min−1·cm−2)

H2 3.67 (20.0%vol) 5.16 (20.0%vol) 0 10.51

CO 7.34 (40.0%vol) 5.16 (20.0%vol) 0 12.74

CO2 2.75 (15.0%vol) 3.87 (15.0%vol) 0 5.73

CH4 1.83 (10.0%vol) 1.29 (5.0%vol) 1.27 11.46

N2 2.75 (15.0%vol) 10.32 (40.0%vol) 0 32.17

Current density (mA·cm−2) 0–500 0–500 0 1300
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Likewise, on the right side of Figure 6, results regarding experiment Exp synG are shown. In this
case, being the forecast accuracy still acceptable, the simulation through ANN5 is not as good as in
the previous example. However, this issue was anticipated by the fact that Exp synG experimental
results regard a different SOFC specimen tested on a different test bench. Nonetheless, RMS is still
low (3.17%, considering the entire current density range simulated 0–500 mA·cm−2 ) and the ANN5
tool can be used with a good approximation also to predict results related to the operation of SOFC
cells as in Reference [42]. In addition to that, it is worth highlighting the distribution of forecast error
in the current density range observed (grey dotted lines in Figure 6). Both simulated curves fit well
the real voltage at open circuit and in a current density range, which recalls real applications. In fact,
the relative error on the single measurement is significantly lower (<2% Exp synF, <3% Exp synG) at
0 mA·cm−2 and in the current density range 300–500 mA·cm−2. In terms of RMS, the result scored is
0.93% and 1.6% for the Exp synF curve simulation and Exp synF curve simulation respectively.

4. Conclusions

This paper aimed at the development of a simulation tool for SOFC performances based on a
feed-forward backpropagation neural network algorithm. The neural network approach was chosen
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in order to get a lean and quick simulator that can be implemented in any computational code/system
simulation software, without getting computational time slower because of the complexity due to a
deterministic set of detailed modelling equations.

As a result, a 3-hidden layer network (featuring 25, 22 and 18 neurons and a transfer function
Tansig) is the best configuration to fit the experimental data collected for the purpose, by means of
thorough test campaign on state-of-the-art SOFC materials. The accuracy of the developed model
is very high, implying low forecast errors in reproducing SOFC output voltage fed with fuels with
a variable hydrogen concentration, as well as variable amount of non-reformed light hydrocarbons
(in this study, methane was considered as model compound for this category). Furthermore, the
variation of the fuel utilization, as well as the operating temperature of the cell, are considered to build
the application framework of the model. The last two features make this neural network simulator
advanced with respect to other already presented and provide the additional value when it comes to
SOFC operation in integrated systems.

In detail, considering the error between experimental results and data-set used for the
development, RMS on forecast is 0.67%, while it is slightly higher 2% and 3% respectively in the
simulation of a polarization curve obtained in a different experiment with the same SOFC type and in
reproducing the performance of a SOFC cell with different geometry. However, RMS shrinks to about
1%, whether the typical current density range for SOFC operation (300–500 mA·cm−2) is observed.

For the features of the experimental data-set used as training basis and the interpolation capability
of the algorithm verified through the final validation data-set, the model can be applied whether the
SOFC operating variables fall into the neural network input range. In other words, whether the SOFC
is run on fuel mixtures exhibiting a composition in the range 0–48%vol H2, 0–38%vol CO, 0–45%vol
CH4, 9–32%vol CO2, 0–54%vol N2, with an equivalent hydrogen area-specific flow-rate between 10.8
and 23.2 mL·min−1·cm−2 and temperature from 700 ◦C to 800 ◦C.

Since the input range contains the operating conditions occurring in many relevant system designs,
this algorithm shows useful impacts in the simulation of a number of applications of technical interest.

Author Contributions: Methodology, investigation, validation, data collection, writing and original draft
preparation, A.B.; conceptualization, review and editing L.B.; software, F.B.; formal analysis and data curation,
F.C.I.; supervision, G.B.

Funding: This research was funded by EUROPEAN UNION’S HORIZON 2020 research and innovation program
under project Net-Tools, Grant Agreement-736648.

Acknowledgments: F.C.I. acknowledges the Erasmus+ program for Mobility for Traineeship.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Suzuki, K. Industrial and Control Engineering Applications. In Artificial Neural Networks; InTechOpen, 2011;
p. 490. Available online: https://www.intechopen.com/books/artificial-neural-networks-industrial-and-
control-engineering-applications (accessed on 20 November 2017). [CrossRef]

2. Deng, J.; Stobart, R.; Maass, B. The Applications of Artificial Neural Networks to Engines. In Artificial Neural
Networks—Industrial and Control Engineering Applications; Loughborough University: Loughborough, UK,
2012; p. 450.

3. Basheer, I.A.; Hajmeer, M. Artificial neural networks: Fundamentals, computing, design and application.
J. Microbiol. Methods 2000, 43, 3–31. [CrossRef]

4. Raza, M.Q.; Nadarajah, M.; Ekanayake, C. Demand forecast of PV integrated bioclimatic buildings using
ensemble framework. Appl. Energy 2017, 208, 1626–1638. [CrossRef]

5. Yildiz, B.; Bilbao, J.I.; Dore, J.; Sproul, A.B. Recent advances in the analysis of residential electricity
consumption and applications of smart meter data. Appl. Energy 2017, 208, 402–427. [CrossRef]

6. Ma, W.; Fang, S.; Liu, G.; Zhou, R. Modeling of district load forecasting for distributed energy system.
Appl. Energy 2017, 204, 181–205. [CrossRef]

https://www.intechopen.com/books/artificial-neural-networks-industrial-and-control-engineering-applications
https://www.intechopen.com/books/artificial-neural-networks-industrial-and-control-engineering-applications
http://dx.doi.org/10.5772/2041
http://dx.doi.org/10.1016/S0167-7012(00)00201-3
http://dx.doi.org/10.1016/j.apenergy.2017.08.192
http://dx.doi.org/10.1016/j.apenergy.2017.10.014
http://dx.doi.org/10.1016/j.apenergy.2017.07.009


Appl. Sci. 2019, 9, 51 13 of 14

7. Ahn, J.; Cho, S.; Chung, D.H. Analysis of energy and control efficiencies of fuzzy logic and artificial neural
network technologies in the heating energy supply system responding to the changes of user demands.
Appl. Energy 2017, 190, 222–231. [CrossRef]

8. Sadough Vanini, Z.N.; Khorasani, K.; Meskin, N. Fault detection and isolation of a dual spool gas turbine
engine using dynamic neural networks and multiple model approach. Inf. Sci. 2014, 259, 234–251. [CrossRef]

9. Talaat, M.; Gobran, M.H.; Wasfi, M. A hybrid model of an artificial neural network with thermodynamic
model for system diagnosis of electrical power plant gas turbine. Eng. Appl. Artif. Intell. 2018, 68, 222–235.
[CrossRef]

10. Tahan, M.; Tsoutsanis, E.; Muhammad, M.; Abdul Karim, Z.A. Performance-based health monitoring,
diagnostics and prognostics for condition-based maintenance of gas turbines: A review. Appl. Energy 2017,
198, 122–144. [CrossRef]

11. Davoudi, E.; Vaferi, B. Applying artificial neural networks for systematic estimation of degree of fouling in
heat exchangers. Chem. Eng. Res. Des. 2018, 130, 138–153. [CrossRef]

12. Barelli, L.; Bidini, G.; Bonucci, F. Diagnosis methodology for the turbocharger groups installed on a 1 MW
internal combustion engine. Appl. Energy 2009, 86, 2721–2730. [CrossRef]

13. Barelli, L.; Bidini, G.; Bonucci, F. Development of the regulation mapping of 1 MW internal combustion
engine for diagnostic scopes. Appl. Energy 2009, 86, 1087–1104. [CrossRef]

14. Barelli, L.; Bidini, G.; Bonucci, F. Diagnosis of a turbocharging system of 1 MW internal combustion engine.
Energy Convers. Manag. 2013, 68, 28–39. [CrossRef]

15. Barelli, L.; Bidini, G. Design of the measurements validation procedure and the expert system architecture
for a cogeneration internal combustion engine. Appl. Therm. Eng. 2005, 25, 2698–2714. [CrossRef]

16. European Commission. Communication from the Commission to the European Parliament, The Council, The
European Economic and Social Committee, The Committee of the Regions and the European Investment Bank—Clean
Energy for All Europeans; EU: Bruxelles, Belgium, 2017; Volume 14.

17. IEA. Technology Roadmap: Energy Storage; International Energy Agency: Paris, France, 2014.
18. Zhao, Y.; Liu, P.; Wang, Z.; Zhang, L.; Hong, J. Fault and defect diagnosis of battery for electric vehicles based

on big data analysis methods. Appl. Energy 2017, 207, 354–362. [CrossRef]
19. Xiang, C.; Ding, F.; Wang, W.; He, W. Energy management of a dual-mode power-split hybrid electric

vehicle based on velocity prediction and nonlinear model predictive control. Appl. Energy 2017, 189, 640–653.
[CrossRef]

20. Daud, W.R.W.; Rosli, R.E.; Majlan, E.H.; Hamid, S.A.A.; Mohamed, R.; Husaini, T. PEM fuel cell system
control: A review. Renew. Energy 2017, 113, 620–638. [CrossRef]

21. Almeida, P.E.M.; Simões, M.G. Neural optimal control of PEM fuel cells with parametric CMAC networks.
IEEE Trans. Ind. Appl. 2005, 41, 237–245. [CrossRef]

22. Kheirandish, A.; Motlagh, F.; Shafiabady, N.; Dahari, M.; Khairi Abdul Wahab, A. Dynamic fuzzy cognitive
network approach for modelling and control of PEM fuel cell for power electric bicycle system. Appl. Energy
2017, 202, 20–31. [CrossRef]

23. Wu, G.; Sun, L.; Lee, K.Y. Disturbance rejection control of a fuel cell power plant in a grid-connected system.
Control Eng. Pract. 2017, 60, 183–192. [CrossRef]

24. Cheng, S.J.; Miao, J.M.; Wu, S.J. Use of metamodeling optimal approach promotes the performance of proton
exchange membrane fuel cell (PEMFC). Appl. Energy 2013, 105, 161–169. [CrossRef]

25. Madani, O.; Das, T. Feedforward based transient control in solid oxide fuel cells. Control Eng. Pract. 2016, 56,
86–91. [CrossRef]

26. Tran, D.L.; Tran, Q.T.; Sakamoto, M.; Sasaki, K.; Shiratori, Y. Modelling of CH4 multiple-reforming within
the Ni-YSZ anode of a solid oxide fuel cell. J. Power Sources 2017, 359, 507–519. [CrossRef]

27. Chaichana, K.; Patcharavorachot, Y.; Chutichai, B.; Saebea, D.; Assabumrungrat, S.; Arpornwichanop, A.
Neural network hybrid model of a direct internal reforming solid oxide fuel cell. Int. J. Hydrogen Energy
2012, 37, 2498–2508. [CrossRef]
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