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Abstract: Accurate wind speed forecasting is of great significance for a reliable and secure
power generation system. In order to improve forecasting accuracy, this paper introduces the
LSTM neural network and proposes a wind speed statistical forecasting method based on the
EEMD-FuzzyEn-LSTMNN model. Moreover, the MIC is used to analyze the autocorrelation of wind
speed series, and the predictable time of wind speed statistical forecasting method for direct multistep
forecasting is taken as four hours. In the EEMD-FuzzyEn-LSTMNN model, the original wind speed
series is firstly decomposed into a series of components by using EEMD. Then, the FuzzyEn is used
to calculate the complexity of each component, and the components with similar FuzzyEn values
are classified into one group. Finally, the LSTMNN model is used to forecast each subsequence after
classification. The forecasting result of the original wind speed series is obtained by aggregating the
forecasting result of each subsequence. Three forecasting cases under different terrain conditions were
selected to validate the proposed model, and the BPNN model, the SVM model and the LSTMNN
model were used for comparison. The experimental results show that the forecasting accuracy of the
EEMD-FuzzyEn-LSTMNN model is much higher than that of the other three models.

Keywords: wind speed forecasting; long short-term memory; neural network; ensemble empirical
mode decomposition; fuzzy entropy; maximal information coefficient; autocorrelation

1. Introduction

With the large consumption of fossil energy and the impact of global climate change, increasing
attention has turned to renewable energy. As a kind of clean and renewable energy, wind power has
been widely valued and promoted in the world. According to the World Wind Energy Association
statistics, the total cumulative installed capacity from wind power around the world was approximately
539 GW by the end of 2017. However, with the expansion of wind power generation, its problems
have gradually become more prominent. Due to the randomness, fluctuation and intermittence nature
of wind speed, the wind power output has great uncertainty [1,2]. Therefore, large-scale wind power
integration will bring great hidden dangers to the safe and stable operation of the power system.
In order to solve the above problems, it is necessary to effectively improve the controllability and
predictability of wind power. Accurate wind power forecasting can provide an important basis for
power dispatching and improve the utilization efficiency of wind energy resources. Since wind power
has a direct relationship with wind speed, wind power forecasting can be achieved based on wind
speed forecasting.
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The accuracy of wind speed forecasting is not only dependent on the forecasting method but also
on the forecasting time horizon. In general, there are two main categories for wind speed forecasting
based on the forecasting time horizon, namely, short-term forecast (time horizon of minutes, hours, and
days) and long-term forecast (time horizon of days, weeks and months) [3]. The short-term forecast
is important for the operation of wind turbines so that dynamic controls can be accomplished to
increase the energy conversion efficiency and reduce the risk of overloading. The long-term forecast
can provide important references for site location and planning of wind farms.

In recent years, researchers have done many studies on the theory and methods of wind speed
forecasting. According to the type of input variables of the forecasting model, the wind speed
forecasting methods can be divided into physical forecasting methods, statistical forecasting methods
and hybrid forecasting methods [4]. The input variables of the physical models are meteorological
data from numerical weather prediction (NWP) and terrain feature data. Many physical models
have been introduced, and the most popular three are Prediktor [5], LocalPred [6] and Previento [7].
Generally, physical methods have advantages in long-term forecast, while statistical methods have
better performance in short-term forecast [1].

The input variables of the statistical models are long-term historical wind speed data. The
statistical models achieve the forecasting of wind speed in the future by excavating the hidden
change rules in historical wind speed data. Early statistical models include the autoregressive model
(AR) [8], the autoregressive moving average model (ARMA) [9], the grey prediction model (GM) [10],
etc. With the development of artificial intelligence techniques, support vector machines (SVM) and
a large number of artificial neural network (ANN) algorithms have been introduced into wind speed
forecasting. For example, Mohandes et al. [11] introduced SVM to wind speed prediction and compared
its performance with the multilayer perceptron (MLP) neural networks. Cadenas et al. [12] used the
ANN to forecast the wind speed in the region of La Venta, Oaxaca, Mexico, and the results showed
very good accuracy for the short-term wind speed forecasting. Flores et al. [13] used back propagation
neural network (BPNN) to forecast the wind speed. Li et al. [14] compared three different ANNs
(adaptive linear element NN, BPNN, and radial basis function NN) in one-hour ahead wind speed
forecasting, and the results showed that even for the same wind dataset, the choice of best-performing
model might not be the same with different evaluation metrics.

Hybrid forecasting methods are formed by hybridizing physical methods and statistical methods
together. In the hybrid methods, NWP data is also used as the input data of the statistical models.
Salcedo-Sanz et al. [15] used the output of the fifth generation mesoscale model (MM5 model) as the
input variables of the ANN, and the experiment results showed that the hybrid MM5-neural network
approach was able to obtain good short-term predictions of wind speed at specific points. Ortiz-García
et al. [16] then made improvements to the system proposed in Ref. [15], and used regression SVM
instead of ANN to obtain the final prediction. Giorgi et al. [17] trained the ANNs based on the
measured wind speed series and on some NWP parameters, and an improvement of the performance
had been reached, especially with the longer time horizons.

However, the wind speed series has multiscale characteristics. The multiple frequency
components existed in the wind speed series are always the challenging parts in forecasting. Currently,
the concept of “decomposition and ensemble” (or “divide and conquer”) [18,19] has been used to
solve this problem, and a number of various decomposition-ensemble based hybrid models have
been developed and widely used. For instance, Liu et al. [20] selected wavelet decomposition (WD)
and wavelet packet decomposition (WPD) to decompose an original wind speed series respectively,
and then used the ANN models to do the multistep forecasting in each subseries. Guo et al. [21]
combined empirical mode decomposition (EMD) and standard feed-forward neural network (FNN),
and Liu et al. [22] combined EMD and ANN. The new hybrid model all outperformed the conventional
FNN or ANN model. But the WD is sensitive to the wavelet base function and decomposition level, and
for the EMD, one major challenge is the frequent appearance of mode mixing [23]. Fortunately, there
exists an improved method named ensemble empirical mode decomposition (EEMD), which makes up
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for the deficiency of EMD. The EEMD is an empirical, intuitive, direct and self-adaptive data processing
method created especially for nonlinear and nonstationary signal sequences [3]. For example, Wang et
al. [24] proposed a wind speed forecasting method based on EEMD and optimized BPNN (GA-BPNN)
for short-term wind speed forecasting, and computational results had shown the good performance
of EEMD.

In this study, we mainly focus on the wind speed statistical forecasting methods for short-term
forecast. The first step is to determine the specific forecasting time horizon. When using statistical
methods for direct multistep forecasting of wind speed series, in general, the longer the forecasting
length, the lower the forecasting accuracy. Therefore, it is necessary to determine the predictable
length of direct multistep forecasting. In this paper, the autocorrelation analysis method based on the
maximal information coefficient (MIC) is introduced to measure the predictability of wind speed series.
Then, the predictable time of statistical forecasting methods based on historical wind speed data is
analyzed. The next step is to choose the wind speed statistical forecasting method. When the ordinary
neural networks mentioned above process the wind speed series, the reading and processing of the
input wind speed data are independent at each moment. These neural networks cannot fully consider
the correlation of the wind speed series itself. When forecasting the wind speed at the next moment,
they are unable to share the features learned from the previous input wind speed data. Therefore,
the forecasting accuracy of these neural network models is limited. In order to make full use of the
correlation between the data of wind speed series at each moment, this paper introduces a new long
short-term memory neural network (LSTMNN) model for wind speed forecasting. The LSTMNN has
a unique memory and forgetting mode. It can handle the long-term dependence of wind speed series
very well, and effectively use the historical input information of the wind speed series. The LSTMNN
has been widely used in many fields such as traffic forecasting [25], solar energy forecasting [26], stock
price volatility prediction [27] and water table depth prediction [28]. These predictions all get good
results [29].

In order to improve the forecasting accuracy of the LSTMNN model, this paper proposes
a novel wind speed statistical forecasting method based on the EEMD-FuzzyEn-LSTMNN model.
The EEMD-FuzzyEn-LSTMNN model is developed through combining EEMD, Fuzzy Entropy
(FuzzyEn) and LSTMNN. In the proposed model, the original wind speed series is firstly decomposed
into a series of components by using EEMD. Then, the FuzzyEn is introduced to calculate the
complexity of each component, and the components are classified according to the calculated FuzzyEn
values. The components with similar FuzzyEn values are classified into one group, and the components
of each group are superimposed to obtain a new subsequence. This process can avoid cumbersome
calculations caused by forecasting each component separately. Finally, the LSTMNN model is used to
forecast each subsequence after classification. The forecasting result of the original wind speed series
is obtained by aggregating the forecasting result of each subsequence.

The remainder of this paper is organized as follows: Section 2 briefly describes the
fundamental methods including EEMD, FuzzyEn and LSTMNN. Section 3 introduces the proposed
EEMD-FuzzyEn-LSTMNN model. Section 4 uses MIC to analyze the predictable time of statistical
forecasting methods for direct multistep forecasting. Section 5 firstly describes the wind speed data of
three cases and selects error evaluation indexes, and then provides the forecasting results of the BPNN
model, the SVM model, the LSTMNN model and the proposed EEMD-FuzzyEn-LSTMNN model.
Finally, Section 6 gives the conclusions and discusses the future work.

2. Methodology

The research methodology used in this study includes EMD, EEMD, FuzzyEn, RNN and LSTMNN.
The brief description of those methods is stated as follows.
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2.1. EMD and EEMD

EMD was proposed by Huang in 1998 [30]. It is a self-adaptive and efficient method for analyzing
nonlinear and nonstationary signals. Since the wind speed series is nonlinear and nonstationary, EMD
is efficient to analyze the wind speed signal. The basic idea of EMD is to smooth the fluctuating signals
adaptively and to decompose them into fluctuations or trends of different scales. After decomposition,
a finite and small number of intrinsic mode functions (IMFs) and a residual component are obtained.
An IMF is a function that satisfies the following two conditions: (a) in the whole data set, the number
of extrema and the number of zero crossings must either be equal or differ at most by one; and (b) at
any point, the average of the envelopes defined by the local maxima and the local minima must be
zero [31]. The specific steps for decomposing time series by using the EMD algorithm are detailed in
Ref. [30].

Mode mixing is the most significant drawback of EMD [23], which means that a single IMF
consists of signals with dramatically disparate scales or a signal of the same scale appears in different
IMF components. The mode mixing compromises the stationarity of IMFs and therefore limits the
effectiveness of the EMD algorithm. To solve the mode mixing problem in EMD, a new noise-assisted
data analysis method EEMD is proposed. In EEMD, the white Gaussian noise is added into the original
time series, and the EMD is then applied on noise added time series to obtain IMFs that are free from
mode mixing [32,33]. However, the resulting IMFs include white noise, which is then removed by
obtaining the mean of multiple trials. Therefore, the true IMF components are defined as the mean of
an ensemble of trails and each trail consists of the decomposition results of the signal plus a white
Gaussian noise of finite amplitude [3].

For the wind speed series {v(t), t = 1, 2, . . . , N}, the main steps of the EEMD algorithm are
described as follows:

Step 1: Add the white Gaussian noise series εj(t) to the original wind speed series v(t) and obtain
a new series Vj(t).

Step 2: Decompose the new series Vj(t) into several IMFs and a residue by using the EMD algorithm.

Step 3: For j = 1, 2, . . . , NE, repeat Step 1 and Step 2, and add different white Gaussian noise series
each time. NE is the number of repeated procedures.

Step 4: Take the mean of all IMF components and the mean of residual components as the final results.

After the decomposition by using EEMD algorithm, the wind speed series {v(t)} can be
expressed as:

v(t) =
n

∑
i=1

ci(t) + rn(t) (1)

where {ci(t), I = 1, 2, . . . , n} represents the different IMF component, and rn(t) is the residue after n
IMFs are derived. These IMFs contain components of different time characteristic scales of the wind
speed series. Their scales range from small to large, and the frequencies range from high to low.

2.2. Fuzzy Entropy

Using the EEMD algorithm to decompose the wind speed series, a series of components are
obtained. If a forecasting model is built separately for each component, the process is slightly
redundant. Moreover, when superimposing the forecasting results of all components, the forecasting
errors of each component are also superimposed. In order to reduce the calculation scale and the
accumulation of forecasting errors, the components obtained by EEMD can be classified according
to certain criteria. Then, the components under each category are superimposed to form a new
subsequence, and each subsequence is forecasted separately. The forecasting result of the original
wind speed series can be obtained by superimposing the forecasting result of each subsequence.

FuzzyEn is a metric of the complexity of time series [34–36]. It measures the complexity of the
series by the probability that the time series produces a new pattern as the embedding dimension
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changes. The larger the FuzzyEn value, the greater the probability that the sequence will produce
a new pattern, which means the sequence is more complex. Each IMF and the residue obtained by
EEMD contain components of the wind speed series at different time characteristic scales. Their
frequencies are different, so the complexity of each component is also considered to be different. In this
paper, FuzzyEn is introduced to calculate the complexity of all components, and then the components
are classified according to the obtained FuzzyEn value. For the components with similar FuzzyEn
values, they can be considered to have similar complexity and wind speed characteristics, so they can
be classified into one group.

The specific steps for calculating the FuzzyEn of time series are detailed in Ref. [34].

2.3. RNN and LSTMNN

LSTMNN is developed on the basis of Recurrent Neuron Network (RNN). Unlike ordinary
neural networks, RNN adds a self-connected hidden layer spanning time steps. Therefore, RNN
can memorize the input information in front of the time series and apply it to the calculation of the
current output.

A simple RNN consists of three layers: an input layer, a hidden layer and an output layer. Given
m as the number of forecasting steps of direct multistep forecasting, the structure diagram of the RNN
forecasting model for wind speed series is shown in Figure 1. In this figure, {vi, i = 1, 2, . . . , t} is
the measured input wind speed; {Vi+m, i = 1, 2, . . . , t} is the forecasted output wind speed; ai is the
activation value from time-step i; Wav, Wva and Waa are the connection weights between neurons,
which are the same at each time step.
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Figure 1. The structure of the RNN forecasting model for wind speed series.

In the RNN model, the hidden layers of the front and back time steps are connected. It can make
full use of the information of the wind speed series before the forecasted time, thereby improving the
forecasting accuracy. However, the RNN model may have the vanishing gradient problem during
the training process [37]. The LSTMNN proposed by Hochreiter and Schmidhuber [38] can solve this
problem of the RNN model through its special structural design. Moreover, the LSTMNN can better
handle the long-term dependence of time series and effectively utilize the historical input information
of time series.

The basic LSTMNN also consists of three layers: an input layer, a hidden layer and an output
layer. But compared with the RNN, the hidden layer of the LSTMNN adds some threshold units for
controlling information transfer, which makes the neural network have a unique memory mode [38,39].
The structures of the RNN forecasting model and the LSTMNN forecasting model at the time-step i
are shown in Figure 2.

In the forward propagation process of the LSTMNN forecasting model, besides the activation
value ai, a memory cell ci is transferred from the previous hidden layer to the latter. In addition, three
gate structures are added to the hidden layer in LSTMNN, namely forget gate, update gate, and output
gate. The three gate structures can control the preservation, reading and modification of the memory
cell in the LSTMNN forecasting model.
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Figure 2. The structure of forecasting model for wind speed series at the time-step i: (a) the RNN
forecasting model; (b) the LSTMNN forecasting model.

In the forward propagation process of the LSTMNN forecasting model, the forecasted output
wind speed of the time-step i is calculated as follows:

c̃i = tanh(Wca·ai−1 + Wcv·vi + bc) (2)

fi = σ
(

W f a·ai−1 + W f v·vi + b f

)
(3)

ui = σ(Wua·ai−1 + Wuv·vi + bu) (4)

oi = σ(Woa·ai−1 + Wov·vi + bo) (5)

ci = fici−1 + ui c̃i (6)

ai = oitanhci (7)

Vi+m = σ(Wva·ai + bv) (8)

where the subscript i represents the time-step i; c̃i is the candidate for replacing the memory cell; ci is
the memory cell; fi, ui and oi are the values of forget gate, update gate and output gate, respectively;
σ is the sigmoid function; Wca, Wcv, Wfa, Wfv, Wua, Wuv, Woa, Wov, Wva are weight matrices; bc, bf, bu, bo,
bv are bias vectors.

After the forward propagation process of the LSTMNN forecasting model is completed, the back
propagation process is followed. The model is firstly expanded into a deep network in chronological
order. Then, the BPTT algorithm [40] and chain rule are used to iteratively update the connection
weights and thresholds in the model until the optimal solution is obtained.

3. The EEMD-FuzzyEn-LSTMNN Model

In this section, the EEMD-FuzzyEn-LSTMNN model is established for wind speed forecasting
based on the concept of “decomposition and ensemble”. The flowchart of the proposed model is
shown in Figure 3. The main structure of the EEMD-FuzzyEn-LSTMNN model includes the following
four steps:

Step 1: Use EEMD to decompose the original wind speed series into a number of IFM components
and a residual component. These components are respectively denoted by IMF1, IMF2, . . . ,
IMFn and Rn.

Step 2: Calculate the FuzzyEn of each component and classify all components according to the
calculated FuzzyEn values. The components with similar FuzzyEn values are classified into
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one group, and the components in one group are superimposed to obtain a new subsequence.
All subsequences are respectively denoted by S1, S2, . . . , SN.

Step 3: Use the LSTMNN model to forecast each subsequence separately.
Step 4: Aggregate the forecasting result of each subsequence to obtain the ultimate forecasting series

of wind speed.
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4. The Predictable Time of Wind Speed Series

The MIC is a statistic that measures the correlation between two variables [41]. Based on mutual
information, the MIC can measure both the linear correlation and the nonlinear correlation between
two variables. It has generality and equitability. The calculation method of MIC is detailed in [41].
Since the wind speed series is a well-known nonlinear time series, the MIC with many excellent
characteristics can be used to measure its autocorrelation. In this section, we use MIC to measure the
predictable time of statistical forecasting methods based on historical wind speed data.

4.1. Selection of Wind Speed Series

In this paper, we selected wind speed series from three anemometer towers in China. The three
anemometer towers are in three wind farms which are located in Hunan province, Henan province and
Zhejiang province, respectively. The location, local terrain condition, selected time and measurement
height of the three anemometer towers are shown in Table 1. These wind speed series were used
to analyze the predictability of direct multistep forecasting. On the three anemometer towers, the
calibrated NRG measuring instruments were used to automatically record the wind speed data, and the
recorded time interval was 10 min. After processing the missing and invalid data of the anemometer
towers, the integrity rate of the wind speed data can reach 100%. And these wind speed data have
passed the reasonableness test.
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Table 1. Information of wind speed series from three anemometer towers.

Number Location Local Terrain
Condition

Selected Time of Wind
Speed Series

Height of Wind Speed
Measurement (m)

1 Hunan province Mountainous area From April 2014 to March 2015 80
2 Henan province Plain area From June 2016 to May 2017 120
3 Zhejiang province Coastal area From August 2011 to July 2012 100

4.2. Autocorrelation Analysis of Wind Speed Series Based on MIC

The MIC was used to measure the autocorrelation of the selected wind speed series. There are
36 months of wind speed series. Taking a month’s wind speed series {v(t), t = 1, 2, . . . , N} as an
example, the MIC of {v(t), t = 1, 2, . . . , N} and {v(t), t = 1, 2, . . . , N} was firstly calculated. Then,
the MIC of {v(t), t = 1, 2, . . . , N − 1} and {v(t), t = 2, 3, . . . , N} was calculated. Continuing this step
until the MIC of {v(t), t = 1, 2, . . . , N − τ} and {v(t), t = τ + 1, τ + 2, . . . , N} was calculated. In the above
example, N represents the number of wind speed data; τ represents the number of delay time (unit
is 10 min) and this paper took τ as 300. After calculating the auto-correlated MIC of all wind speed
series, the variation law of the MIC with the delay time is shown in Figure 4.
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It can be seen from Figure 4 that as the delay time increases, the auto-correlated MIC of the
wind speed series gradually decreases and finally reaches a steady trend. With the decrease of
MIC, the correlation between future and historical wind speed series also decreases. At this time,
the forecasting error will gradually increase when forecasting the future wind speed based on the
historical wind speed. Therefore, in order to ensure the forecasting accuracy of the direct multistep
forecasting, a fixed MIC value can be determined, and the delay time corresponding to the MIC value
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can be used as the predictable time of the wind speed series. According to the calculation results of the
three anemometer towers in Figure 4, the variation law of MIC with delay time tends to be gentle when
the MIC drops to 0.2. Therefore, we can take the corresponding delay time (or correlation length) as
the predictable time of the wind speed series when the MIC is equal to 0.2. The calculation results are
shown in Table 2.

Table 2. Correlation length of wind speed series when MIC equals 0.2.

Month
Correlation Length (h)

Anemometer Tower 1 Anemometer Tower 2 Anemometer Tower 3

January 8.17 6.17 6.67
February 5.83 5.83 3.67

March 14.83 4.50 6.83
April 7.50 6.00 4.67
May 12.50 4.17 6.17
June 4.50 3.67 4.83
July 7.00 3.33 5.33

August 3.00 4.00 8.67
September 6.33 3.83 6.67

October 9.67 6.00 5.17
November 7.67 6.50 5.00
December 9.00 4.17 8.50

4.3. Analysis of Predictable Time

Because the selected wind speed series in different regions are different, the correlation length
of each month’s wind speed series obtained by taking MIC equal to 0.2 is also different. Therefore,
this paper compared the influence of different correlation lengths on wind speed forecasting error to
obtain a more general wind speed predictable length.

In this paper, the basic time series forecasting method, Persistence Model [42], was used to forecast
the corresponding correlation length of each month’s wind speed series. Assuming that the wind
speed series of a certain month is {v(t), t = 1, 2, . . . , N}, and the correlation length obtained when the
MIC equals 0.2 is denoted by l (unit is h). Since the recorded time interval of the three anemometer
towers is 10 min, the number of wind speed data with a correlation length of l is 6l. The wind speed
series was segmented according to 6l, and then the wind speed of the previous period was used to
forecast the wind speed of the next period. That is to say, {v(t), t = 1, 2, . . . , 6l} was used to forecast
{v(t), t = 6l + 1, 6l + 2, . . . , 2 × 6l}; {v(t), t = 6l + 1, 6l + 2, . . . , 2 × 6l} was used to forecast {v(t), t = 2 × 6l
+ 1, 2 × 6l + 2, . . . , 3 × 6l} and so on until the end of the series.

After using the persistence model to forecast the 36 wind speed series in different regions,
the errors between the measured and forecasted wind speed of each month were counted. Mean
Absolute Error (MAE) and Root Mean Squared Error (RMSE) were used as the error evaluation index.
The formulas for calculating MAE and RMSE are as follows:

MAE =
1
N

N

∑
i=1

∣∣vi − vpi
∣∣ (9)

RMSE =

√√√√ 1
N

N

∑
i=1

(
vi − vpi

)2 (10)

where N is the number of forecasted wind speed data; vi is the measured wind speed, m/s; vpi is the
forecasted wind speed, m/s.

The variation law of MAE and RMSE with the correlation length is shown in Figure 5. As the
correlation length of the wind speed series increases, the forecasting error tends to increase overall.
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However, when the correlation length is less than four hours, the forecasting error is small and stable,
and the fluctuation range is small. Therefore, four hours can be used as the predictable time of the
wind speed series for direct multistep forecasting based on historical wind speed data. The forecasting
time of the wind speed series in the following section was taken as four hours.
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5. Case Study

The three forecasting cases of wind speed series selected in this paper are from three
anemometer towers in mountainous area, plain area and coastal area, respectively. Then the
EEMD-FuzzyEn-LSTMNN model was established to forecast the wind speed series for the future four
hours. Furthermore, the applicability and effectiveness of the EEMD-FuzzyEn-LSTMNN model were
verified by comparing with the BPNN model, SVM model and LSTMNN model.

5.1. Wind Speed Data Description of the Cases

The wind speed data selected in Case A, Case B and Case C is the wind speed series from October
to December of the anemometer tower 1, 2 and 3 respectively. The detailed information of the three
anemometer towers is shown in Table 1.

The direct multistep forecasting time of the wind speed series was taken as four hours according
to the conclusion of Section 4. In each case, 864 wind speed data from 6 days in December were
randomly selected as the test set of the forecasting model, and the wind speed data from the previous
two months were used as the training set of the forecasting model. Taking the wind speed series {v(t),
t = 1, 2, . . . , N} of a certain case as an example, the training and test set of the forecasting model are
illustrated as follows. The training set is {v(t), t = 1, 2, . . . , N − 864 − 24}, in which {v(t), t = 1,2, . . . ,
N − 864 − 24 × 2} is the training input sample and {v(t), t = 24 + 1, 24 + 2, . . . , N − 864 − 24} is the
training output sample. Similarly, the test set is {v(t), t = N − 864 – 24 + 1, N − 864 – 24 + 2, . . . , N},
in which {v(t), t = N − 864 – 24 + 1, N − 864 – 24 + 2, . . . , N − 24} is the test input sample and {v(t), t =
N – 864 + 1, N – 864 + 2, . . . , N} is the test output sample.

5.2. Error Evaluation Index

The selection of evaluation indexes has an important impact on the assessment of wind speed
forecasting methods. The evaluation indexes selected in this paper are MAE, RMSE and Mean Absolute
Percentage Error (MAPE). The calculation formulas of MAE and RMSE are given by Formulas (9) and
(10), and the formula for MAPE is as follows:

MAPE =
1
N

N

∑
i=1

∣∣vi − vpi
∣∣

vi
(11)
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5.3. Parameter Settings of the BPNN Model, the SVM Model and the LSTMNN Model

When the BPNN model, the SVM model and the LSTMNN model were used to forecast the wind
speed series in the cases, a series of parameter settings for the models are shown in Table 3. In addition
to the parameters specified in the table, the default values given by the corresponding software toolbox
were used for other parameters. The wind speed data should be normalized before being input into
the forecasting model. The normalization function used in this paper is the mapminmax function,
which normalizes the wind speed series to [−1, 1].

Table 3. Parameter settings of wind speed forecasting model.

Forecasting Models Parameters Number or Type

BPNN model
Number of neurons in the hidden layer 20

Learning rate of training 0.001
Training target 0.00001

SVM model
Type of svm epsilon-SVR

Type of kernel function linear kernel function

LSTMNN model

Number of neurons in the LSTM layer 20
Type of activation function of the output layer tanh

Optimizer adam
Learning rate 0.0001

5.4. Decomposition Results by EEMD

In order to improve the overall forecasting performance, this paper firstly adopted EEMD to
decompose the original wind speed series of the three cases separately, and the decomposition results
are listed in Figure 6. It is obvious that each wind speed series is decomposed into 13 components
which are respectively denoted by IMF1, IMF2, . . . , IMF12 and R from top to bottom.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  11 of 18 

software toolbox were used for other parameters. The wind speed data should be normalized 

before being input into the forecasting model. The normalization function used in this paper is the 

mapminmax function, which normalizes the wind speed series to [−1, 1]. 

Table 3. Parameter settings of wind speed forecasting model. 

Forecasting Models Parameters Number or Type 

BPNN model 

Number of neurons in the hidden layer 20 

Learning rate of training 0.001 

Training target 0.00001 

SVM model 
Type of svm epsilon-SVR 

Type of kernel function linear kernel function 

LSTMNN model 

Number of neurons in the LSTM layer 20 

Type of activation function of the output layer  tanh 

Optimizer adam 

Learning rate 0.0001 

5.4. Decomposition Results by EEMD 

In order to improve the overall forecasting performance, this paper firstly adopted EEMD to 

decompose the original wind speed series of the three cases separately, and the decomposition 

results are listed in Figure 6. It is obvious that each wind speed series is decomposed into 13 

components which are respectively denoted by IMF1, IMF2, …, IMF12 and R from top to bottom. 

 
(a) 

Figure 6. Cont.



Appl. Sci. 2019, 9, 126 12 of 19

Appl. Sci. 2018, 8, x FOR PEER REVIEW  12 of 18 

 
(b) 

 
(c) 

Figure 6. The decomposition results of wind speed series: (a) Case A; (b) Case B; (c) Case C. Figure 6. The decomposition results of wind speed series: (a) Case A; (b) Case B; (c) Case C.



Appl. Sci. 2019, 9, 126 13 of 19

5.5. Classification of Components Based on FuzzyEn

The original wind speed series of the three cases are all decomposed into 13 components by
EEMD. Then, the FuzzyEn values of each component were calculated respectively, and the results are
shown in Figure 7.
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In the three cases, the FuzzyEn values of the 1st component to the 13th component gradually
decrease firstly, and then become smooth. The FuzzyEn of the high-frequency component is large,
which means it is more complicated. On the contrary, the FuzzyEn of the low-frequency component is
small, indicating that its complexity is small. The components with similar FuzzyEn values can be
classified into one group. In Figure 7, the FuzzyEn values of the components at the front descending
curve segment are quite different, so each component can be regarded as a subsequence. The FuzzyEn
values of the 7th component to 13th component at the final stationary curve segment are almost the
same, so they can be grouped together and superimposed to form a new subsequence. After the
classification was completed, 7 subsequences were finally obtained.

5.6. Forecasting Results and Analysis

The BPNN model, the SVM model, the LSTMNN model and the EEMD-FuzzyEn-LSTM model
were used to forecast the 864 wind speed data randomly selected from the three cases. The forecasting
results are shown in Figure 8 and the forecasting error is shown in Figure 9.
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As is shown in Figure 8; Figure 9, the forecasting effect of the BPNN model is similar to that of the
SVM model, and the forecasting effect of the LSTMNN model is slightly better than that of the BPNN
model and the SVM model for wind speed series in different regions. However, the forecasting effect
of the EEMD-FuzzyEn-LSTMNN model is greatly improved compared with the LSTMNN model, and
the forecasting error is obviously reduced.

The subsequences are forecasted separately in the EEMD-FuzzyEn-LSTMNN model, and the
fluctuation of wind speed forecasting results obtained by the superposition is smoother. By analyzing
each subsequence, it was found that the first few high-frequency subsequences have strong randomness
and their regularity is very low. MIC was used to analyze the autocorrelation of the first three
high-frequency subsequences, and the variation law of MIC with delay time is shown in Figure 10.
As the delay time increases, the MIC of autocorrelation decreases rapidly. In the forecasting of wind
speed series for the future four hours (24 × 10 min), the autocorrelation of these high-frequency
subsequences is poor, which leads to large forecasting errors. When the forecasting results of all
subsequences are superimposed, the high-frequency part of the wind speed series is weakened due to
the low forecasting accuracy, which results in more gentle fluctuation of the forecasting results.
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The error evaluation indexes of the four forecasting models are calculated and presented in
Table 4. In the table, the evaluation indexes of the EEMD-FuzzyEn-LSTMNN model are the best and
its forecasting accuracy is the highest.

Comparing the LSTMNN model with the BPNN model, the MAE, MAPE and RMSE of the three
cases are reduced by 0.01–0.04 m/s (1–3%), 0.004–0.01 (1–3%), 0.02–0.03 m/s (1–2%), respectively.
In the case study of this paper, the default values given by the toolbox were used for most parameters
of the LSTMNN model, which may lead to a small increase in the evaluation indexes. Since the
training process of the LSTMNN involves the adjustment of many parameters, the forecasting accuracy
of this model will be further improved after systematic parameter optimization. Comparing the
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EEMD-FuzzyEn-LSTMNN model with the LSTMNN model, the error evaluation indexes are greatly
improved. The MAE, MAPE and RMSE of the Case A are reduced by 0.4413 m/s (29.18%), 0.11 (29.7%),
0.6014 m/s (30.04%), respectively. The MAE, MAPE and RMSE of the Case B are reduced by 0.2773 m/s
(19.74%), 0.1051 (21.74%), 0.3076m/s (16.81%), respectively. The MAE, MAPE and RMSE of the Case C
are reduced by 0.3397m/s (26.99%), 0.0882 (26.27%), 0.4009m/s (25.66%), respectively. The values in
the parentheses above are all relative values.

Table 4. Calculation results of error evaluation indexes for the four forecasting models.

Case Forecasting models MAE (m/s) MAPE RMSE (m/s)

Case A

BPNN model 1.5308 0.3800 2.0371
SVM model 1.5264 0.3742 2.0211

LSTMNN model 1.5122 0.3704 2.0022
EEMD-FuzzyEn-LSTMNN model 1.0709 0.2604 1.4008

Case B

BPNN model 1.4406 0.4875 1.8626
SVM model 1.4523 0.4861 1.8694

LSTMNN model 1.4045 0.4835 1.8295
EEMD-FuzzyEn-LSTMNN model 1.1272 0.3784 1.5219

Case C

BPNN model 1.2697 0.3397 1.5798
SVM model 1.2733 0.3374 1.5767

LSTMNN model 1.2585 0.3358 1.5624
EEMD-FuzzyEn-LSTMNN model 0.9188 0.2476 1.1615

In addition, compared with the anemometer towers in other areas (Case B and Case C), the
forecasting accuracy of the mountainous anemometer tower (Case A) is improved more greatly.
Therefore, the EEMD-FuzzyEn-LSTMNN model is more advantageous for forecasting the wind speed
series which has large forecasting errors by using ordinary neural networks.

6. Conclusions

This paper first introduces the LSTM neural network for the forecasting of wind speed series.
Then, in order to further improve the forecasting accuracy, a wind speed statistical forecasting method
based on the EEMD-FuzzyEn-LSTMNN model is proposed. And the autocorrelation analysis based on
the MIC is used to obtain the predictable time of wind speed series for direct multistep forecasting.
The main conclusions of this paper are as follows:

• MIC is used to analyze the autocorrelation of wind speed series from different terrain conditions,
and some suitable correlation lengths are obtained. As the correlation length of the wind speed
series increases, the forecasting error tends to increase overall. The forecasting error analysis
shows that four hours can be taken as the predictable time of the wind speed series for direct
multistep forecasting based on historical wind speed data.

• The wind speed series from different terrain conditions is forecasted for the future four hours, and
the forecasting accuracy of the LSTMNN model is slightly higher than that of the BPNN model
and the SVM model. It shows that the LSTM neural network can make better use of the historical
input information of the wind speed series, and it is more suitable for the wind speed statistical
forecasting method.

• Under different terrain conditions, the forecasting accuracy of the EEMD-FuzzyEn-LSTMNN
model is much higher than that of the LSTMNN model. Comparing the EEMD-FuzzyEn-LSTMNN
model with the LSTMNN model, the MAE, MAPE and RMSE of the three cases are reduced by
0.2773–0.4413 m/s (19.74–29.18%), 0.0882–0.11 (21.74–29.7%), 0.3076–0.6014 m/s (16.81–30.04%),
respectively. Moreover, the EEMD-FuzzyEn-LSTMNN model has more advantages for forecasting
the wind speed series which has large forecasting errors by using ordinary neural networks.
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The current forecasting method in this paper is to directly forecast the same steps for each
subsequence. However, due to the strong randomness of the high-frequency subsequence, it is not
appropriate for the high-frequency subsequence to make a direct multistep forecasting of the same
steps as the low-frequency subsequence. Therefore, the autocorrelation of each subsequence can be
analyzed to determine its own appropriate steps for the direct multistep forecasting. Then, each
subsequence is forecasted separately according to its corresponding forecasting steps, and all the
forecasting results of subsequences are superimposed to get the final forecasting results. This method
will help to further improve the forecasting accuracy of the EEMD-FuzzyEn-LSTMNN model, and it
will become our next research goal.
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