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Featured Application: This work will serve as a valuable resource for the research on APS.

Abstract: The Astragalus polysaccharides (APS) are important bioactive components of Astragali
Radix, the dry root of Astragalus membranaceus, which has been used in traditional Chinese medicine.
In this review, the extraction conditions and extraction rates of APS are first compared for water,
microwave-assisted, ultrasonic wave, and enzymatic hydrolysis extraction methods. Some studies
have also shown that different methods can be combined to improve the extraction rate of APS.
Subsequently, the chemical composition and structure of APS are discussed, as related to the
extraction and purification method. Most studies have shown that APS is mainly composed of glucose,
in addition to rhamnose, galactose, arabinose, xylose, mannose, glucuronic acid, and galacturonic
acid. We also reviewed studies on the modification of APS using chemical methods, including
sulfated modification using the chlorosulfonic acid–pyridine method, which is commonly used for
chemical modification of APS. Finally, the pharmacological activities and mechanisms of action of
APS are summarized, with a special focus on its immunoregulatory, antitumor, anti-inflammatory,
and antiviral effects. This review will serve as a valuable resource for the research on APS.

Keywords: Astragalus polysaccharides; extraction; chemical composition; structural modification;
pharmacological activity

1. Introduction

Astragali Radix (Huangqi) is the dry root of Astragalus membranaceus (Fisch.) Bge. and A.
membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao. It is a traditional Chinese medicine,
which is described in the 2015 edition of Chinese Pharmacopoeia [1]. The use of Astragali Radix
dates back to more than 2000 years ago, and it was recorded in Shen Nong’s Materia Medica, written
during the Han dynasty. Astragali Radix growing in the Inner Mongolia area is considered a genuine
medicinal material and is famous for its high quality [2]. Since there is a substantial demand for
Astragali Radix and its wild resources have been nearly exhausted, Astragali Radix for commercial
purposes is currently mainly obtained by artificial cultivation. Astragali Radix produced in Inner

Appl. Sci. 2019, 9, 122; doi:10.3390/app9010122 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-3110-3892
https://orcid.org/0000-0002-5366-8464
http://dx.doi.org/10.3390/app9010122
http://www.mdpi.com/journal/applsci
http://www.mdpi.com/2076-3417/9/1/122?type=check_update&version=2


Appl. Sci. 2019, 9, 122 2 of 15

Mongolia ranks first in China and is mainly produced in Chifeng, Baotou, Ulanchabu, Bayannaoer,
Alxa League, and Hohhot [3,4].

Studies conducted in the last two decades have provided significant insights into the
pharmacological activities of different components of Astragali Radix, especially its polysaccharide
fraction [5]. The Astragalus polysaccharides (APS) are important bioactive components of Astragali Radix,
which has important pharmacological activities both in vivo and in vitro, such as immunomodulation,
antitumor, anti-inflammatory, antiviral, antioxidant, anti-aging, and cardiovascular protection
activities [6–8]. Its chemical composition and structure play an important role in the pharmacological
activities of APS. Numerous studies have found that the structural modification of polysaccharides
greatly enhances their biological activities. To further develop and utilize APS, studies have focused
on the extraction process of APS since the 1980s. Currently, the commonly used methods include
water, microwave-assisted, ultrasonic wave, and enzymatic hydrolysis extraction. In addition, several
studies have suggested that a combination of these methods can increase the extraction rate of APS.
At present, studies on the modification of APS mainly use chemical methods, including sulfation,
phosphorylation, selenation, carboxymethylation, acetylation, alkylation, etc. In this paper, extraction,
purification, the chemical composition, structural modification, and pharmacological functions of APS
are reviewed to provide the basis for the development and clinical application of APS.

2. Extraction of Astragalus Polysaccharides

Polysaccharides are polar macromolecules, and different kinds of polysaccharides are obtained
with different extraction methods. Most of the methods involve extraction with water or diluted alkali
solutions as solvents. In recent years, the extraction of APS has been studied extensively, and some of
the commonly used extraction methods are described below.

2.1. Water Extraction Methods

These methods are simple and easy to operate. Moreover, they are the most traditional extraction
method for APS. The main factors affecting the extraction process are ranked in the following
decreasing order of their effects: extraction temperature > material/liquid ratio > extraction time [9].
Zhu et al. [10] concentrated a crude water extract of APS to a certain volume using a rotary evaporator,
then added absolute ethanol, allowed the mixture to stay overnight, and finally precipitated and
centrifuged the extract. The results showed that the best solid-to-liquid ratio was 1:10, and the best
extraction temperature and time were 80 ◦C and 2 h, respectively; under these conditions, the extraction
rate reached 9.77%. Aqueous solutions of CaO and Na2CO3 have also been used to prepare APS crude
extracts, and the results showed that the extraction yield was the highest (11.7%) with a CaO aqueous
solution, which was 3.25 and 2.05 times higher than that obtained with water (3.6%) and a Na2CO3

aqueous solution (5.7%), respectively [11]. However, the temperature of boiling water is usually 100 ◦C,
leading to two major disadvantages. The first one is the poor selectivity of the extraction method
so that components such as flavonoids and saponins cannot subsequently be separated from APS.
The second disadvantage is the waste of energy and resources, leading to low economic returns.

2.2. Microwave-Assisted Extraction Methods

Microwaves are characterized by strong penetration, high selectivity, and a high heating efficiency.
The thermal effect of microwaves can break the cell wall and inactivate enzymes in the cell membrane;
therefore, polysaccharides can be easily extracted from cells, and the yield can be effectively improved.
Thus, microwaves can be employed in the extraction of APS. The following have been reported as
the optimal extraction conditions for microwave-assisted extraction: the water/material ratio, 12:1;
pH, regulated by saturated limewater, 9; and two doses of microwave radiation (300 W) for 10 min
each. Under these conditions, the yield of the crude APS product was 14.6%, and the purity was
88.1% [12]. In another study using a microwave-assisted extraction method, the extraction rate of APS
was 4.50%, with the APS content of 31.25%, indicating that this method was time and energy saving
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and highly efficient [13]. Dong et al. [14] have reported the optimum enzymatic-microwave extraction
conditions as follows: the liquid/solid ratio, 10:1; enzyme ratio, 57.6 U/g; and cellulase reaction time,
60 min, followed by 8 min of microwave irradiation (480 W). Under these conditions, the maximum
extraction rate reached 16.07%, and the purity was up to 88.40%, which were considerably higher than
those achieved by other extraction methods. Although microwave-assisted extraction methods can
improve the extraction rate of polysaccharides, the effects of microwaves on the chemical structure
and pharmacological activities of polysaccharides are still unclear and require further studies.

2.3. Ultrasonic Wave Extraction Methods

The cavitation effect of ultrasound leads to the rupture of the plant cell wall, thereby increasing
the yield of polysaccharides. Ultrasonic extraction methods have been used to extract APS since they
can shorten the extraction time and improve the extraction efficiency. A study on ultrasonic-assisted
extraction of APS has reported the following as the optimal extraction conditions: the extraction time,
90 min; ultrasonic power, 250 W; and extraction temperature, 80 ◦C [15]. The effects of these factors on
ultrasonic extraction were shown to decrease in the following order: ultrasonic power > extraction
temperature > extraction time. The extraction of APS using ultrasonic waves in combination with
microwaves resulted in an extraction rate as high as 4.25% under the following optimal extraction
conditions: the extraction time, 150 s; microwave power, 120 W; and solid/liquid ratio, 1:25 [16].
When ultrasonic extraction was combined with cellulase hydrolysis to extract APS, the effects of the
factors influencing the extraction rate were shown to decrease in the following order: ultrasonic time
> ultrasonic temperature > enzyme amount > material/liquid ratio. The extraction rate was 24.12%
under the following optimal conditions: the ultrasound time, 30 min; ultrasound temperature, 40 ◦C;
solid/liquid ratio, 1:20; and enzyme amount, 10 mg [17]. Overall, an ultrasonic wave extraction
method can be an important supplement to other methods.

2.4. Enzymatic Hydrolysis Extraction Methods

Cellulase can break down the plant cell wall, thereby releasing polysaccharides from cells without
destroying the structure of polysaccharides. For APS extraction with cellulase, the optimum enzymatic
hydrolysis time was 120 min, the ratio of the enzyme was 0.8%, and the hydrolysis temperature was
75 ◦C. Under these conditions, the extraction rate of APS was 9.78%, and that of total sugar was
50.2% [18]. After pretreatment with three different cellulase concentrations (0.3%, 0.4%, and 0.5%),
the yield of APS obtained by a water extraction method increased by 314.8%, 392.6%, and 342.6%,
respectively, compared with that obtained by the water extraction method alone [19]. When enzymatic
hydrolysis was combined with a microwave method, the maximum extraction rate of APS reached
16.07%, and the purity was 88.40% under the following optimum extraction conditions: the liquid/solid
ratio, 10:1; enzyme ratio, 57.6 U/g; and cellulase reaction time, 60 min, followed by 8 min of microwave
irradiation (480 W) [14]. In conclusion, enzymatic hydrolysis of plant material can be employed as a
pretreatment to improve the yield of APS.

3. Purification of Astragalus Polysaccharides

The purity of the extracts obtained with the above extraction methods is not sufficient for APS
to be used for chemical composition and structure analyses. The extracted APS usually contains
oligosaccharides, pigments, proteins, flavonoids, and other impurities. Therefore, purification
must be carried out. The common purification methods employed are as follows: enzyme-Sevag,
diethylaminoethyl-Sephadex A-25, and Sephadex G-100 [10]; a polyamide column and an AB-8
macroporous resin column [9,20]; X-5 macroporous resin [21]; chitosan flocculation [22]; and a type II
ZTC1+1 natural clarifier [23]. The purified APS obtained by these methods can be used for subsequent
chemical composition and structural analyses.
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4. Chemical Composition and Structure of Astragalus Polysaccharides

The monosaccharide compositions of APS obtained from different plant varieties and habitats
and using different methods are different. High-performance liquid chromatography (HPLC),
gas chromatography (GC), mass spectrometry (MS), and nuclear magnetic resonance (NMR) are
commonly used to analyze the chemical composition and structure of APS. Most studies have shown
that APS is mainly composed of glucose, in addition to rhamnose, galactose, arabinose, and other
monosaccharides (Figure 1). The main chain contains linked α-(1→4) glucose residues. The relative
molecular mass of APS is 5.6 × 103–106 Da (Table 1). Monosaccharide composition analysis of an APS
sample by HPLC revealed that it was composed of rhamnose, glucose, galacturonic acid, and arabinose
in a molar ratio of 1.19:72.01:5.85:20.95 [24]. Hydrolysis of another APS sample with trifluoroacetic
acid to monosaccharides and analysis of the monosaccharide composition by HPLC revealed that this
polysaccharide was composed of mannose, rhamnose, galacturonic acid, glucose, and arabinose in a
molar ratio of 0.02:0.05:0.17:1.00:0.18 [25]. Yao et al. [26] determined the monosaccharide composition
of APS by capillary GC, and the results showed that it was composed of arabinose, fructose, glucose,
and mannose in a molar ratio of 1.00:3.24:7.00:0.46.
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Figure 1. The monosaccharide structure of Astragalus polysaccharides.

The structures of APS isolated from different varieties of Astragali Radix are also different.
Moreover, the chemical structure of polysaccharides influences their biological activities. Thus,
Chen et al. [27] analyzed monosaccharides in APS by GC-MS, and the results revealed that the
polysaccharide was mainly composed of L-rhamnose, L-arabinose, D-xylose, L-xylose, D-ribose,
L-ribose, D-galactose, D-glucose, and D-mannose. Furthermore, monosaccharides extracted from a
different A. membranaceus variety were different. The structure of APS was determined by GC-MS and
infrared spectroscopy (IR), and the results showed that the main chain was mainly composed of glucose,
xylose, and galactose, and the side chains were composed of glucose, arabinose, and galactose [28].
Furthermore, the branching point was composed of glucose, galactose, and arabinose, and the terminal
residue was glucose. The APS powder for injection, developed by Panhua Pharmaceutical Co.,
Ltd., is mainly used as a chemotherapy or adjuvant therapy after radiotherapy in cancer patients.
It has been reported that the main components of APS are alpha-1,4(1,6)-glucan, arabinose–galactose,
rhamnose–galacturonic acid polysaccharide, and arabinose–galactoprotein polysaccharide [29].
These studies have laid a foundation for further analysis of the mechanisms of pharmacological
activities of APS.
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Table 1. The chemical composition of Astragalus Polysaccharides.

Name Molecular
Mass (Da) Monosaccharide Composition Molar Ratio Method Reference

APS 3.0 × 105 L-Rhamnose, D-Xylose, D-Glucose, D-Galactose 1:4:5:1.5 GC; H-1, C-13 NMR Fu et al. [30]
LMw-APS 5.6 × 103 Glucose, Galactose, Arabinose, Galactoside acid, Xylose 10:1.3:1.7:0.95:1 HPLC; GC Qu [28]
APS 2.1 × 104 1,4 Glucose backbone, 1,6 Glucose branched NMR Niu et al. [31]
Rap-APS 1.3 × 106 Rhamnose, Arabinose, Glucose, galactose, Galactoside acid 0.03:1.00:0.27:0.36:0.30 GC-MS; 1H, 13C NMR Yin et al. [32]
APS 7.6 × 106 L-Arabinose, D-Galactose, D-Galacturonic acid, D-Glucuronic acid 18:18:1:1 Electrophoresis; GC Shimizu et al. [33]
APS 3.6 × 105 α-D-(1→4) glucose GC-MS; 13CNMR Wang et al. [34]

1.1 × 104 Rhamnose, Glucose, Galactose, Arabinoser 1.19:72.01:5.85:20.95 HPLC; IR; 1HNME Li et al. [35]
MAPS-5 1.3 × 104 α-D-(1→4) glucose GC-MS; IR; NMR Lin et al. [36]
APS I 4.8 × 106 Arabinose, Xylose, Glucose 0.54:1.00:18.14 HPLC; GC; IR; NMR Liu [37]
APS II 8.7 × 103 Arabinose, Xylose, Glucose 0.23:1.00:29.39 HPLC; GC; IR; NMR Liu [37]
APS 3.8 × 104 Glucose, Galactose, Arabinose 1.00:0.95:0.70 HPLC Liu et al. [38]
APS 3.6 × 104 α-(1→4)-D-glucose FTIR; AMLC; GLC- MS; NMR Li et al. [39]
HAPS Rhamnose, Arabinose, Xylose, Mannose, Galactose, Glucose 1.00:2.26:0.21:0.74:2.49:19.47 HPLC; GC Shan et al. [40]
APS Rhamnose, Arabinose, Xylose, Mannose, Galactose, Glucose 1.00:4.34:3.92:1.95:11.41:20.52 HPLC; GC Shan et al. [40]

HAPS 1.7 × 106 Mannose, Glucose, Xylose, Arabinose, Glucuronic acid, Rhamnose 0.06:28.34:0.58:0.24:0.33:0.21 UPLC/ESI-Q-TOF-MS; FT-IR
and NMR Liao et al. [41]

APS 2.0 × 106 Mannose, Glucose, Xylose, Arabinose, Glucuronic acid, Rhamnose 0.27:12.83:1.63:0.71:1.04:0.56 UPLC/ESI-Q-TOF-MS; FT-IR
and NMR Liao et al. [41]

APP-2A 2.3 × 106 Rhamnose, Galactose, Arabinose, Glucose 1.00:2.13:3.22:6.18 FT-IR; GC; NMR Pu et al. [42]

Note: APS: Astragalus polysaccharides; GC: Gas chromatography; NMR: Nuclear magnetic resonance; HPLC: High-performance liquid chromatography; MS: Mass spectrometry;
IR: Infrared spectroscopy.
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5. Structural Modification of Astragalus Polysaccharides

Pharmacological activities of polysaccharides are closely related to their structures. Several
studies have shown that structural modification of polysaccharides can change their pharmacological
activities. Structural modification is usually performed using chemical, physical, enzymatic, and other
effective methods for the improvement of nutraceutical and therapeutic functions of polysaccharides.
Currently, studies on the modification of APS mainly employ chemical methods, including sulfation,
phosphorylation, selenation, and carboxymethylation.

Sulfation of APS is a commonly used chemical modification method. It involves the reaction
of polysaccharides, dissolved in a specific solvent, with corresponding sulfating reagents under
certain conditions, leading to the introduction of sulfate groups into hydroxyl groups of side chains of
polysaccharides (Figure 2). Sulfated polysaccharides can be obtained using the chlorosulfonic acid–
pyridine (CSA–Pyr), sulfuric acid, and sulfur trioxide–dimethylacetamide or pyridine methods [43–45].
The CSA–Pyr method is the most popular, owing to its convenience, high yield, and high degree of
sulfation. The sulfated APS obtained by the CSA–Pyr method had a better anti-inflammatory activity
than did unmodified APS, in vitro and in vivo [46,47]. Sulfation of APS by the CSA–Pyr method also
enhanced its antiviral effect [48]. Huang et al. [49] have found that compared with non-sulfated APS,
sulfated APS could significantly increase the antibody titer and promote lymphocyte proliferation.
Therefore, sulfated APS can be a candidate for a new immune adjuvant [50,51].
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Phosphorylation is a covalent modification of hydroxyl groups in side chains of polysaccharides
with phosphate groups. Studies have shown that phosphorylation of polysaccharides can enhance their
bioactivities. Phosphorylation of APS using the sodium tripolyphosphate–sodium trimetaphosphate
method enhanced its antiviral effect against duck viral hepatitis [52]. Reaction with polyphosphoric
acid under alkaline conditions resulted in a good antiviral activity of APS against porcine reproductive
and respiratory syndrome virus [53].

Natural Se-containing polysaccharides have been found in several animals, plants,
and microorganisms. As organic Se compounds, polysaccharides modified with Se can exhibit the
physiological activities of both Se and polysaccharides. Moreover, the bioavailability of Se and its
physiological functions as an essential trace element are effectively improved, while its toxicity and
side effects are considerably lower than those of inorganic Se. Gong et al. [54] have reacted APS with
a SeOCl2 reagent and obtained a Se-containing APS, with a Se content of 16.820 mg/g. It has been
reported that the inhibitory rate of tumor growth was 51.14% in the Se–APS group compared with
23.66% in the water control group, suggesting that combining APS with Se might enhance not only the
tumor inhibitory effects of APS but also the antioxidant effect of Se [55,56]. It has been reported that a
high Se content in Se-modified APS increases the antioxidant effect of APS [57].

Carboxymethyl groups are introduced into polysaccharide chains for complete carboxymethylation
of polysaccharides. Carboxymethylation increases the negative charge of polysaccharide chains and
their solubility in water. In addition, carboxymethylation has a strong effect on the bioactivity
of polysaccharides. Yang et al. [58] prepared carboxymethyl-modified APS in the reaction
with NaOH and C2H3ClO2. The optimum reaction conditions were as follows: the reaction
temperature, 65 ◦C; NaOH/C2H3ClO2 ratio, 16:1; and reaction time, 3.5 h. The results showed
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that the carboxymethyl-modified APS had the highest growth-promotion for microwave and
immunological activities.

6. Pharmacological Activities of Astragalus Polysaccharides

Astragali Radix enhances immunity, as well as antioxidation, antiradiation, antitumor,
antibacterial, and antiviral effects, and protects the cardiovascular and cerebrovascular systems,
as well as the liver, kidneys, and lungs [59]. The Astragalus polysaccharides are important chemical
components of Astragali Radix. Recent studies have indicated that APS has immunoregulatory,
antitumor, anti-inflammatory, antiviral, antioxidant, anti-aging, and other biological activities.

6.1. Immunoregulatory Effects

The Astragalus polysaccharides not only enhance the function of immune organs and cells but also
stimulate the release of cytokines, affect the nervous–endocrine–immune system network, and promote
the expression of related genes. APS can enhance the immune function by increasing the weight of
immune organs. It has been reported that APS administration (220 mg/kg) in feed could significantly
increase the relative weight of immune organs, as well as the number of lactobacilli and Bacillus cereus
in the intestinal microbiota of chicks [60]. Furthermore, APS could increase the weights of the thymus
and spleen, as well as the number of peritoneal macrophages in mice [40], and enhance the function
of macrophages. It has been reported that APS at a concentration of 300 µg/mL could significantly
increase the nitric oxide (NO), interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α levels in
the human monocyte/macrophage strain TPH-1, indicating that APS can activate macrophages [61].
Astragalus polysaccharides showed an impact on the functional status and phenotype of T cells during
polymicrobial sepsis. Treatment of mice with APS at a dose of 400 mg/kg on day one after cecal ligation
and puncture could increase the T helper (Th) cell population and also the percentage of Th17 cells in the
blood. Consequently, APS could attenuate immunosuppression in polymicrobial sepsis [62]. In tilapia
fish, it has been shown that 1500 mg/kg APS supplementation could upregulate the phagocytic
activity, as well as the superoxide dismutase, glutathione peroxidase, and amylase activities. However,
APS had no effect on the serum NO and malondialdehyde levels [63]. In addition, APS can be used as
an immunomodulator of vaccines. At a dose of 5, 10, and 20 mg/kg, APS could markedly increase
the titer of foot-and-mouth disease virus (FMDV)-specific antibodies in a dose-dependent manner
and upregulate the mRNA expression of interferon (IFN)-γ and IL-6, indicating that APS can protect
against FMDV [64]. In summary, APS can be used as an immunopotentiator, affecting the non-specific
and specific immune systems.

6.2. Antitumor Effects

Studies have suggested that the antitumor mechanism of APS may be related to its immune
enhancement effect. The polysaccharide could enhance the proliferation of spleen lymphocytes,
which explained the stimulation of immune activities observed in rats with stomach cancer [65].
It has been reported that bladder cancer was significantly reduced in mice treated with 50 mg/mL
APS, compared with that in the controls, because APS could enhance the innate immune response of
bladder epithelial cells by increasing the Toll-like receptor 4 expression [66]. It has also been reported
that APS could reduce the telomerase activity and induce the apoptosis of human leukemic HL-60
cells, thus exerting an antitumor effect [67]. Xu et al. [68] have reported that APS showed no direct
antitumor effect; however, an antitumor effect was achieved by promoting the production of TNF-α
in macrophages and INF-γ in splenocytes. Additionally, APS could inhibit the invasion of HepG2
hepatoma cells by regulating the tumor growth factor-β/Smad signal transduction pathway [69].
In vitro studies do not fully reflect the in vivo antitumor activity of APS. However, the effects of APS
on the tumor cell cycle, angiogenesis, telomerase activity, signal transduction, and immune function
can all contribute to its antitumor activity.
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6.3. Anti-Inflammatory Effects

Inflammation is closely associated with immunity, and the inflammatory response mostly
involves the immune mechanism. Early symptoms of inflammation, such as increased vascular
permeability, inflammatory exudation, and tissue swelling, accompanied by increased levels of
inflammatory transmitters, indicate that the immune function of relevant cells has been affected.
The Astragalus polysaccharides can regulate the signal transduction of nuclear factor-kappa B (NF-κB)
and secretion of anti-inflammatory and proinflammatory factors, ultimately balancing the immune
response [70]. Zhang et al. [71] have reported that inhibition of adhesion between inflammatory cells
and microvascular endothelial cells by downregulating the expression of CD34 on the surface of
microvascular endothelial cells may be one of the anti-inflammatory mechanisms of APS. It has been
reported that APS could significantly reduce the serum NO level and improve chronic inflammation
caused by NO metabolic disorder [72]. At a dose of 200 mg/kg, APS could significantly improve
2,4,6-trinitrobenzene sulfonic acid-induced colitis in rats by downregulating the expression of TNF-α
and IL-1β at both mRNA and protein levels, and upregulating the expression of nuclear factor of
activated T cells 4 mRNA and protein [73]. Thus, APS can interfere with various inflammatory
diseases and affect several pathways and mediators of inflammation. Although research on the
anti-inflammatory mechanism of APS has been conducted at the cellular and molecular levels, in-depth
studies on its targets are still lacking.

6.4. Antiviral Effects

The Astragalus polysaccharides can protect the body against viruses, induce, to a certain extent,
the production of IFN, and inhibit the viral reproduction. It can also induce CD4+ T cells to produce
IL-4, IL-2, and IFN-γ, suggesting that APS can be a potent adjuvant for a hepatitis B virus (HBV) DNA
vaccine [74]. It has been reported that 0.5 mg of APS can significantly enhance the efficacy of FMDV
vaccine by significantly enhancing the phagocytic capacity of peritoneal macrophages, proliferation of
splenic lymphocytes, the titer of serum antibodies, and the production of IL-4 and IL-10. The Astragalus
polysaccharides can maintain the health of livestock and poultry by inhibiting the propagation of the
virus [75]. Moreover, APS could significantly increase the resistance of 15-day-old chickens to H5N1
avian influenza virus [76], and prevent porcine circovirus infection by decreasing the oxidative stress
and activating the NF-κB signaling pathway [77]. Furthermore, APS at a concentration of 30 µg/mL
could inhibit the reproductive capacity of herpes virus, thereby reducing the incidence of tumor [78].
Briefly, the antiviral activity of APS is generally closely related to cytotoxic T lymphocytes, induced T
lymphocytes (CD3+ and CD4+), and NF-κB.

6.5. Other Activities

Recent studies on the pharmacological activities of APS have reported that, besides
immunomodulatory, antitumor, anti-inflammatory, and antiviral effects, it also exerts antioxidant,
anti-aging, cardiovascular protective, antidiabetic, and intestinal protective effects. These pharmacological
activities and mechanisms of action of APS are listed in Table 2.
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Table 2. Pharmacological activities and mechanisms of Astragalus Polysaccharides.

Pharmacological Experimental Model Dosage Mechanism Reference

Antioxidant

Radiation injury model mice 80 mg/kg Significantly increased peripheral blood leucocyte count and DNA content in marrow
cells, and the activities of SOD in serum. Liu et al. [79]

Carbon tetrachloride-induced hepatocyte 200, 400, 800 µg/mL
in vitro; 1.5, 3 g/kg in vivo

Inhibited the elevation of GPT, GOT, LDH and MDA;
significantly increased the level of SOD Jia et al. [80]

Human cardiac myocytes 200 µg/mL Significantly inhibited generation of ROS Zhang et al. [81]

Subcutaneously inoculated viable
B16-F10 cells male mice Significantly inhibited the NBT reduction index Li et al. [82]

BPD cell model 2.5 mg/mL Down-regulated the expression of IL-8, ICAM-1, and NF-κB p65 Huang et al. [83]

Anti-aging

Mouse liver 100, 200, 300 mg/kg Scavenging reactive oxygen species (ROS); inhibiting mitochondrial PT; increasing the
activities of antioxidases Li et al. [84]

Aging model of D-galactose mice 50, 100, 200 mg/kg Increased the spleen and thymus indexes, and decreased MDA content and increased
SOD, GSH-Px, and CAT activity. Zhong et al. [85]

HDF cell 1.0 mg/mL Enhanced cell viability and decreased the number of SAβ-gal positive cells Zhao et al. [86]

Cardiovascular
protection

Rat cardiomyocyte injury model; mouse
heart failure model 1.5 g/kg Restored normal autophagic flux; regulated the AMPK/mTOR pathway Cao et al. [87]

THP-1 derived foam cells 25, 50, 100 mg/L Protected ABCA1 against the lesion of TNF-α in THP-1-derived foam cells Wu et al. [88]

SD neonatal rat 10 mg/L Decreased the expression of ANP mRNA, TNF-α, and IL-6 in extracellular fluid Zhang et al. [89]

Human cardiac microvascular
endothelial cells (HCMEC) 2.5, 5, 10 mg/mL Reduced the expression of ICAM-1 and VCAM-1 in HCMEC, inhibiting

leukocytes infiltration Chen et al. [90]

Diabetes treatment

KKAy female mice 700 mg/kg Restored insulin-induced protein kinase B Ser-473 phosphorylation; translocate glucose
transporter 4 in skeletal muscle Liu et al. [91]

Rat model of type II diabetes mellitus 700 mg/kg Restored the glucose homeostasis; reduced the ER stress in the rat model of T2DM Wang et al. [92]

NOD mice 2.0 g/kg Correcting the imbalance between the Th1/Th2 cytokines Chen et al. [93]

Intestinal protection

Ulcerative colitis rat 200 mg/mL Increased the volatile fatty acids; and liver bacterial translocation was in effective
control; effectively control bacterial translocation in liver Liang et al. [94]

2, 4, 6-trinitrobenzene sulfonic
acid-induced colitis rat model 400 mg/kg Restoring the number of Treg cells;

Inhibiting interleukin IL-17 Zhao et al. [95]

Tumor-bearing mice; γδT cells 150 and 300 mg/kg Improved proliferation and function of intestinal intraepithelial γδT cells Sun et al. [96]

Hepatoprotective

Chronic liver injury male SD rats 450 mg/kg Lowered the levels of serum ALT, AST, ALP, and hepatic MDA concentration;
higher SOD, CAT activities, and GSH concentration Yan et al. [97]

Liver injury mice 100 mg/kg Anti-apoptosis pathway Liu et al. [98]

CCl4 induced liver damage mice 1.0 g/kg Scavenge free radicals to ameliorate oxidative stress and to inhibit lipid peroxidation Pu et al. [99]

Note: SOD: Superoxide dismutase; GPT: Glutamate pyruvate transaminase; GOT: Glutamate oxalate transaminase; LDH: Lactate dehydrogenase; MDA: Malondialdehyde; ROS: Reactive
oxygen species; NBT: Nitroblue tetrazolium; PT: Permeability transition; GSH-Px: Glutathione peroxidase; CAT: Catalase; AMPK/Mtor: Adenosine monophosphate-activated
protein kinase/mammalian target of rapamycin; HCMEC: Human cardiac microvascular endothelial cells; ER: T2DM: ER: Endoplasmic reticulum; T2DM: Type II diabetes mellitus;
ALT: Alanine aminotransferase; AST: Aspartate transaminase; ALP: Alkaline phosphatase SD: Sprague-Dawley; BPD: Bronchopulmonary dysplasia; HDF: Human diploid fibroblasts;
CCl4: C arbon tetrachloride.
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7. Conclusions

After several decades of extensive research, great progress has been made in the study of APS.
The extraction methods and extraction rate of APS have been continuously improved. It has been found
that water, microwave-assisted, ultrasonic wave, enzymatic hydrolysis, and other extraction methods
can be combined to improve the extraction rate of APS. Depending on the extraction method and the
degree of purification, the chemical composition and structure of APS can be confirmed by HPLC,
GC, MS, and NMR. The chemical composition of APS mainly includes glucose, rhamnose, galactose,
arabinose, xylose, mannose, glucuronic acid, and galacturonic acid. However, the monosaccharide
composition and the structure of sugar chains of APS, obtained by different extraction and purification
methods, are different. Therefore, the extraction and purification methods of APS need to be
improved continuously.

As an important bioactive component of Astragali Radix, APS shows important pharmacological
activities, including immunoregulatory, antitumor, anti-inflammatory, antiviral, and other activities.
Currently, studies on the modification of APS mainly employ chemical methods, including sulfation,
phosphorylation, selenation, and carboxymethylation, and suggest that structural modification can
change the pharmacological activity of APS. However, studies on pharmacological activities of APS
usually use crude polysaccharides, which does not allow the establishment of the structure–activity
relationship. In addition, the molecular mechanisms of pharmacological activities of APS are still
unclear, which also limits its further development and application. Therefore, separation and
purification of APS should be improved. Subsequently, the structure–activity relationship of APS
should be elucidated at the primary and secondary structure levels. Finally, the pharmacological
activities and molecular mechanisms of APS should be studied with homogeneously purified APS.
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