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Abstract: In open and complex underwater environments, targets to be monitored are highly dynamic
and exhibit great uncertainty. To optimize monitoring target coverage, the development of a method
for adjusting sensor positions based on environments and targets is of crucial importance. In this
paper, we propose a distributed hybrid fish swarm optimization algorithm (DHFSOA) based on the
influence of water flow and the operation of an artificial fish swarm system to improve the coverage
efficacy of the event set and to avoid blind movements of sensor nodes. First, by simulating the
behavior of foraging fish, sensor nodes autonomously tend to cover events, with congestion control
being used to match node distribution density to event distribution density. Second, the construction
of an information pool is used to achieve information-sharing between nodes within the network
connection range, to increase the nodes’ field of vision, and to enhance their global search abilities.
Finally, we conduct extensive simulation experiments to evaluate network performance in different
deployment environments. The results show that the proposed DHFSOA performs well in terms of
coverage efficacy, energy efficiency, and convergence rate of the event set.

Keywords: underwater environment; sensor deployment; event-driven coverage; fish swarm
optimization; congestion control

1. Introduction

Underwater acoustic sensor networks (UASNs) are new network systems developed for
underwater monitoring. UASNs are composed of numerous sensor nodes with capabilities that
include information perception, data storage, data processing, underwater acoustic communication,
and more. UASNs have been drawing increasing attention from both governments and research
centers due to their extensive use in marine resources surveys, pollution monitoring, aided-navigation,
and tactical surveillance. They are a hot topic in the study of sensor networks [1,2].

Recent studies of UASNs have mainly focused on node deployment, location tracking,
routing algorithms, energy efficiency strategies, water safety, and other practical aspects. However,
the research on node deployment of UASNs (also called coverage control) actually has its
shortcomings [3–5]. Node deployment in UASNs has unique challenges which are not found in
the deployment of land sensor networks. These include the influence of ocean currents and other
factors, the fact that the underwater environments and monitoring targets are more dynamic than their
land counterparts, and the challenge that underwater sensor nodes cannot be static and fixed in the
monitoring space; instead, network topology must evolve gradually with network operation [6–8].
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Therefore, developing a method for adjusting the position of sensor nodes autonomously in response
to a changing environment, as well as achieving an effective monitoring system for target waters,
are two of the problems researchers face when employing underwater wireless sensor networks.

In recent years, UASN deployment algorithms have mainly included graph-based classes [9],
body-centered cubes [10], virtual force classes [11], and group-based intelligent optimization
classes [12]. The first three types of redeployment algorithms are relatively complex and thus are
not suitable for solving large-scale underwater environment problems. The group-based intelligence
optimization algorithm [13], however, can generally determine the optimal solution of a complex
optimization problem faster than traditional optimization algorithms [14]. This algorithm is simple to
calculate, is neither a centralized nor a global model, and is highly versatile since it utilizes the
advantages of group distributed searching. The artificial fish swarm algorithm is an emerging
metaheuristic, bionic cluster, intelligent optimization algorithm. Inspired by the operation of the
fish swarm system, this paper proposes a distributed hybrid fish swarm optimization algorithm
(DHFSOA). The proposed DHFSOA is implemented and its performance is evaluated by simulation.

The following is the general framework of this paper: Section 2 introduces related works; Section 3
defines the underwater sensor deployment problem and its performance metrics; Section 4 presents
a detailed introduction to the DHFSOA algorithm; Section 5 consists of a comprehensive evaluation;
Section 6 contains our summary and conclusions.

2. Related Works

Swarm Intelligence (SI) is a feature of subjects without intelligence or with simple intelligence
exhibiting intelligent behavior through any form of aggregation and collaboration. It is an important
branch of artificial intelligence (AI) [15]. Without centralized control and without providing a global
model, swarm intelligence provides the basis for finding solutions to complex distributed problems.
At present, many research achievements have been made in the field of underwater sensor network
coverage control. This section will summarize the coverage control algorithm based on group
intelligence optimization.

Iyer [16] proposed an underwater sensor network positioning and deployment scheme based
on the genetic algorithm of optimization technology, which determined the fewest number of nodes
required to cover an area of interest (AOI). However, this kind of algorithm is obviously easy to fall
into local optimum when the network connectivity is not high, and the influence of water flow is not
considered. Yiyue [17] proposed an optimal deployment algorithm based on an artificial fish swarm
algorithm. This deployment algorithm simulates the preying and following behaviors of artificial fish
in order to determine the maximum coverage value. The proposed artificial fish deployment algorithm
improves the coverage performance of the common artificial fish algorithm. The inadequacy is that it
does not take into account the self-adaptability of the search step size and the information sharing of
all nodes in the network, so it is easy to fall into local optimum in the later stage. Dhillon [18] proposed
the max average coverage deployment (MACD) algorithm, which uses the grid model to simulate the
monitoring area and completes node deployment by utilizing the greedy iterative strategy. The MACD
can achieve higher network coverage and connectivity rates, even achieving full network coverage and
connectivity. However, since high node density is needed for its successful deployment, this algorithm
cannot be applied in situations with sparse underwater sensor network deployment.

In response to the aforementioned shortcomings, Du [19] proposed a particle swarm-inspired
underwater sensor self-deployment (PSSD) algorithm that fully utilizes the behavioral characteristics
of particle swarms and effectively solves the network coverage problem. However, there exist
two obvious disadvantages in this algorithm, one is that it only considers the network coverage
of events, and it is difficult to obtain higher network connectivity rates. In addition, since nodes may
move blindly when using this algorithm, given their limited energy and the large energy consumption
in an underwater environment, underwater nodes will die due to the rapid exhaustion of energy.
The other is that the PSSD algorithm was inspired by the classic group intelligence optimization
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algorithm-particle swarm optimization (PSO). For the traditional optimization algorithm, PSSD is
a simple and effective optimization problem, with one obvious drawback, which is the tendency to fall
into local extremes [20].

Taking into consideration both the effectiveness and the limitations of the above PSSD algorithm,
as well as the non-uniform deployment of underwater monitoring nodes, a distributed hybrid fish
swarm optimization algorithm (DHFSOA) is proposed. The DHFSOA provides sensor nodes with an
autonomous tendency to cover events by simulating fish foraging behavior and congestion control.
Additionally, the concept of an “information pool” is introduced in order to expand the visual range of
nodes and avoid blind movements, thus reducing node energy consumption during deployment.

3. Preliminaries

3.1. Description of the Problem

Assume that n underwater sensor nodes are deployed in the monitoring area A and si represents
the ith node in the network, so that the corresponding sensor node set is S = {s1, s2, · · · , sn}.
The dynamic point e, which users are interested in, is referred to as an event; thus, in monitoring area A,
the event set E = {ei |ei ∈ A, i = 1, 2, · · · , m}. Assuming that any underwater node has the ability to
sense, communicate, and move, Bj =

(
rs

j , rc
j , lj, Pj

)
, where rs

j , rc
j , lj, Pj respectively represent the radius

of perception, the radius of communication, the maximum moving step length of node sj, and the
current position of the node sj, and rs

j ≥ 0, rc
j ≥ 0, and lj ≥ 0 (0 ≤ j ≤ n). In a homogeneous network,

all nodes have the same attributes, which are rs
j = rs, rc

j = rc, and lj = l (0 ≤ j ≤ n). A sensor node
can sense an event and communicate with its neighbor nodes to obtain status information (number of
events covered) of neighbor nodes. The task of a node is to cover an event, collect information about
the event, and maintain connectivity between nodes.

3.2. Coverage Perception Model

It is assumed that in the monitoring area A, the coverage model of each underwater sensor
node is a sphere with the sphere’s center as the node’s coordinates and rs

j as its radius of perception.
The communication range is also a sphere, with radius rc

j . To ensure the connectivity of the network,
the radius of communication is set to be greater than or equal to twice the radius of perception; that is,
rc

j ≥ 2rs
j [21]. Assume the Euclidean distance d

(
ei, sj

)
between event ei and sensor node sj is

d
(
ei, sj

)
=
√(

xj − x′ i
)2

+
(
yj − y′ i

)2
+
(
zj − z′ i

)2, (1)

where coordinate
(

xj, yj, zj
)

is the coordinate of node sj and coordinate
(

x′ j, y′ j, z′ j
)

is the coordinate

of event ei. The probability that the defined event ei is covered by the sensor node sj is p
(
ei, sj

)
.

A Boolean sensor coverage model is used to simplify the computation, and the probability is a binary
function [22]:

p
(
ei, sj

)
=

{
1, d

(
ei, sj

)
≤ rs,

0, otherwise.
(2)

If d
(
ei, sj

)
≤ rs, node sj covers event ei. In this case P

(
ei, sj

)
equals 1; otherwise, it is equal to 0.

Similar to the calculation process for a two-dimensional sensor coverage area, the probability that the
underwater three-dimensional space event ei is covered by node set S is P (ei, S), where

p (ei, S) = p (ei, s1) ∨ p (ei, s2) ∨ · · · ∨ p (ei, sN) = 1−
N

∏
i=1

(1− p (ei, si)). (3)
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Definition 1. According to the preceding analysis, the relative effective coverage degree of event ei can be
described as [19]:

DA (ei) = ∑
sj∈S

p
(
ei, sj

)
1 + ∑

ei∈E
I
(
d
(
ei, sj

)
≤ rs

) , (4)

where I(·) is an indicator function, that is, when the condition d
(
ei, sj

)
≤ rs is satisfied, I

(
d
(
ei, sj

)
≤ rs) is

equal to 1; otherwise, it is 0. ∑
ei∈E

I(d(ei, sj) ≤ rs) indicates the number of adjacent events ei for node sj.

3.3. Evaluation Standards

In this section, we introduce the coverage efficiency of the event set as well as the network
coverage in order to measure the performance of the proposed method.

Definition 2. Coverage entropy of the event set [19]. This measures the degree of coverage uniformity, and can
be calculated as

HA (E) = ∑
ei∈E

D′A (ei) lg
1

D′A (ei)
, (5)

where the normalized coverage degree D′A (ei) is

D′A (ei) =
DA (ei)

∑
ej∈E

DA
(
ej
) . (6)

It is well known that the coverage entropy of event set HA (E) reaches its maximum value lg m
only when D′A (ei) = 1

m (for i = 1, ..., m) has equal probability.

Definition 3. Network coverage Cv is

Cv =
t̃e

te
, (7)

where t̃e is the number of the events covered by nodes and te is the total number of the events.

Definition 4. The coverage efficiency of the event set is [19]

η (E) = α
HA (E)

lg m
+ β

ñ
n

, (8)

where α, β ∈ [0, 1], α + β = 1 and ñ is the number of events covered by nodes.

From Definition 4, we can see that when all nodes cover events, that is, n = ñ, and simultaneously
the coverage entropy HA (E) reaches a maximum value of lg m, η (E) will reach its maximum value of
1. Putting it simply, the main goal of underwater node deployment is to place nodes so as to achieve
the maximum value of η (E).

4. Node Deployment Scheme for UASNs Based on the DHFSOA

The artificial fish swarm algorithm (AFSA) is a heuristic intelligent search algorithm for global
optimization. By simulating the preying and survival activities of fish, the AFSA can solve combination
optimization problems such as optimal ordering, grouping, or screening of discrete events with a faster
convergence speed than previous methods. The fish swarm algorithm and the underwater mobile
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sensor network are intrinsically related. The sensor node in the sensor network is equivalent to the
artificial fish in the AFSA, events are equivalent to food, and the process of the node sensing the event
is equivalent to the process of artificial fish searching for food. Therefore, the AFSA has been widely
used in underwater mobile sensor networks.

In this study, we propose a DHFSOA and apply it to UASNs. Inspired by the operation of the
fish swarm system, the DHFSOA gives the sensor nodes an autonomous tendency to cover events
by simulating fish foraging and adjusts the distribution of nodes based on the degree of congestion.
Additionally, the concept of an “information pool” is proposed, which expands the node’s visual range
and accelerates the algorithm’s global search capability. Figure 1 is the flow chart of the artificial fish
swarm algorithm. Behaviors such as preying, following, and swarming, which occur when fish forage,
are the basis for the overall optimization.
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there are neighbors
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Figure 1. Flow chart of the artificial fish swarm algorithm.

(1) Preying behavior: preying behavior consists of fish randomly swimming in search of food; let the
current state of the artificial fish be Xi, randomly select a state Xj within its visual range. When the
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maximal value problem is obtained, if Yi < Yj, then go further in the direction, that is Xnext;
otherwise, re-randomly select the state Xj, judging whether the forward condition is satisfied;
after repeatedly trying Nmax times, if the forward condition is still not satisfied, the step is
randomly moved.

(2) Following behavior: following behavior occurs when a fish finds a location with abundant food
and other fish quickly follow; suppose the current state of the artificial fish is Xi, the number of
partners in the current neighborhood (dij < Visual) is n f , and the partner with the highest food

concentration among the (n f ) partners is Xj (food concentration is Yj), if
Yj
n f

> δYi, indicating that
the state of partner Xj has a higher food concentration and it is not too crowded around, then
goes further in the direction of Xj; otherwise, the preying behavior is performed.

(3) Swarming behavior: swarming behavior is the tendency for fish to naturally gather in groups
while swimming. Set the number of partners in the current neighborhood (dij < Visual) to be n f ,
and the central position status to be Xc. if Yc

n f
> δYi, indicating that the partner center has more

food and the surrounding area is less crowded, moving further toward the partner center position
Xc; otherwise, the preying behavior is performed.

Of course, the proposed DSFSOA mainly includes two kinds of behaviors: preying and following.
In the following sections, the DHFSOA will be described in detail.

4.1. Construction of the Information Pool

Fish, whether real or artificial, rely on their vision to perceive external conditions, as shown in
Figure 2. Here, Xi is the current position of the artificial fish, Visual is its visual range, and Xh is
the visual position at a particular time. If the concentration of food at the visual position is greater
than that of the current position, it is assumed that the fish will proceed towards the visual position,
thus arriving at the next position, Xnext. Otherwise, the artificial fish continues to swim within its visual
range. The more the fish swims within its visual range, the more comprehensive the understanding of
the state within its visual range will become. This results in a full-scale, stereoscopic perception of the
surrounding environment, which aids with corresponding judgments and decisions.

Visual

hX

iX

 nextX




jX

nX



Step

Figure 2. Concept of artificial fish vision.

The sensor node in the DHFSOA is equivalent to the artificial fish in the AFSA, the radius of the
communication rc is equivalent to the visual range of the artificial fish, and the event is equivalent to
the food. The process of the mobile node exploring the larger network coverage in the sensor network
is similar to the preying and following behaviors of individual artificial fish, and the network coverage
of the sensor nodes is analogous to the food concentration in the environment of the artificial fish.
However, the traditional artificial fish swarm algorithm cannot be directly applied to the underwater
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sensor network, mainly due to the fact that sensor nodes have limited amounts of energy. Given this
limitation, excessive exploration by sensor nodes within their visual range will lead to their premature
death. To enhance the global optimization and neighborhood search capabilities of the artificial fish
swarm algorithm, while at the same time avoiding falling into a local optimum, an information pool
is introduced here. As shown in Figure 3, it is assumed that there are five nodes in the underwater
sensor network S = {s1, · · · , s5}, and that each node can sense the surrounding events, here the event
coverage is defined as the concentration F = { f1, · · · , f5}. If all other nodes within the radius of
communication of a node are referred to as neighbor nodes, then the neighbor nodes of the five nodes
si (i = 1, 2, · · · , 5) are represented as g1 = {s2, s3}, g2 = {s1}, g3 = {s1, s4}, g4 = {s3}, and g5 = {φ}.

The information pool (which can also be thought of as a set) is constructed as follows: each node
si transmits data (the data mainly consist of the neighbor nodes and the number of coverage events)
to each of its neighbor nodes through the network, and each neighbor node then transmits data to
neighbor nodes other than the node that sent the data. Continue in this fashion until the data have
traversed all the nodes in the connected state. Thus, the information pool in Figure 3 consists of
node s1, s2, s3, and s4, that is, Csum = {s1, s2, s3, s4}, and node s5 is an isolated point. The benefits of
the information pool in DSFSOA do not just include an increase in the global search speed of nodes
(analogous to fish), but also consist of improvements in network connectivity through collaboration
between nodes. As shown in Figure 4, the isolated node s5 improves its isolated state through the
preying behavior, establishes the connectivity between the node s5 and the network, and expands the
amount of information in the information pool, that is, Csum = {s1, s2, s3, s4, s5}, The next step will be
to focus on the self-organizing deployment process of nodes. The pseudo-code of the information pool
construction algorithm is in Algorithm 1.

Algorithm 1: Construction of the Information Pool (Output Set Csum).
1: si ← a node in monitoring area A;
2: Compute the set formed by node sj, neighbor of node si, Ci = {sj|d(si, sj) ≤ rc};
3: Csum = Ci

⋃{si};
4: Ctmp = Ci;
5: while

(∣∣Ctmp
∣∣ 6= 0

)
do

6: Ck =
|Ctmp|⋃

j=1

{
sk
∣∣d (sk, sj

)
≤ rc };

7: Ctmp = Ck − Csum;
8: Csum = Ck

⋃
Csum;

9: end while
10: Output Csum;

1s

Sea level BS

2s

3s

4s

5s 2 1g s 1 2 3,g s s

 3 1 4,g s s

 4 3g s

 5g 
2s

1s

3s

4s

5s

 1s
 1 2 3, ,s s s

 1 2 3 4, , ,s s s s

 1 2 3 4, , ,s s s s

 

2s 1s 3s 4s 5s

Construction process

Prey
ing beh

avio
r

Figure 3. An example of information pool construction (there is an isolated node s5).
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1s

Sea level BS

2s

3s

4s
5s

 2 1g s 1 2 3,g s s

 3 1 4,g s s

 4 3 5,g s s
 5 4g s

2s

1s

3s

4s

5s

 1s
 1 2 3, ,s s s

 1 2 3 4, , ,s s s s

 1 2 3 4, , ,s s s s

2s 1s 3s 4s 5s

Construction process

 1 2 3 4 5, , , ,s s s s s

Figure 4. An example of information pool construction (no isolated nodes).

4.2. Description of Artificial Fish Behaviors

The artificial fish swarm optimization algorithm is a centralized, group intelligence search method.
Inspired by the operation of the artificial fish swarm system, this paper proposes a distributed and
achievable underwater sensor node deployment algorithm, the DHFSOA. The process in which
nodes in the sensor network tend to increase network coverage is similar to the preying and
following behaviors of artificial fish. Prior to introducing the two behaviors, the following definitions
are provided:

Definition 5. Congestion. The allowed congestion of node si in monitoring area A is

σ (si) = ψ · Ne (si) , (9)

where the constant ψ represents the expected coverage of a single event and Ne (si) represents the number of
events covered by node si, expressed as

Ne (si) = ∑
ej∈E

p
(
ej, si

)
. (10)

Definition 6. The number of nodes Ns
ne (si) within the communication range and the number of nodes Ns

co (si)

within the perceived range of the node si can be expressed as

Ns
ne(si) = card(λ(sj)), (11)

where card(λ(sj)) indicates the number of nodes in the collection λ(sj), λ
(
sj
)

={
sj
∣∣d (si, sj

)
≤ rc, 1 ≤ i, j ≤ n, i 6= j

}
represents the set of nodes sj within the communication radius

of the node si, and d
(
si, sj

)
represents the Euclidean distance between node si and sj:

Ns
co(si) = card(γ(sj)), (12)

where γ
(
sj
)

=
{

sj
∣∣d (si, sj

)
≤ rs, 1 ≤ i, j ≤ n, i 6= j

}
represents the set of nodes sj within the perceived range

of the node si

Next, the behavioral description of the artificial fish will be specifically described. n sensor nodes
are randomly scattered in the underwater monitoring area A. Node si may perform the following
operations based on its own status as well as that of its neighbor nodes:

(1) Following behavior: Set the number of partners in the visible domain (radius of communication
being rc) of node si as Ns

ne (si), Ns
ne (si) > 0 and information pool built with the partners as Csum,

and determine the optimal node sopt in Csum,
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sopt = arg max
sk∈Csum

{Ns
ne (sk)} . (13)

If node si finds more events covered at sopt and sopt is less crowded, i.e., Ne
(
sopt
)
≥ Ne (si) and

Ns
co
(
sopt
)
< σ

(
sopt
)
, then move one step toward the position of partner sopt:

Xnext = Xi + rand (l)×
Xopt − Xi∥∥Xopt − Xi

∥∥ , (14)

where Xi and Xopt represent position vectors of si and sopt respectively, and l is the value of the
moving step.

(2) Preying behavior: Set the number of partners in the visible domain (radius of communication
being rc) of node si as Ns

ne (si), Ns
ne (si) = 0, which indicates that node si is in an isolated state. l is

the maximum value of the moving step. Set the current position of node si as ~xi, and randomly
move to the new position ~xj within its maximum moving step l:

Xnext = Xi + rand (l)×
Xi − Xj∥∥Xi − Xj

∥∥ , (15)

where rand(l) represents the random value between 0 to l. If Ne (si) increases, the preying
behavior is successful; if the preying fails, then it randomly reselects a new position. After
repeating this process Nmax times (In general, the value of Nmax is small, mainly based on our
practical experience and repeated experiments [23].), if Ne (si) still cannot be increased, then
randomly move forward one step:

Xnext = Xi + rand (−l, l)×U, (16)

where U is an arbitrary unit vector, and rand(−l, l) represents a random number between−l and l.

4.3. Description of the DHFSOA

The preceding section describes the process of the sensor nodes simulating the preying and
following behaviors of artificial fish. The following analogous behavior can help the sensor node
move to an improved state, thus accelerating the convergence of the algorithm. Preying behavior
is characterized by the searching activity of the sensor node within the radius of communication rc,
which ensures that the sensor node continues moving towards the optimal state. In addition, in the
early stages of algorithm implementation, a larger step size should be adopted. This allows the sensor
node to perform a coarse search within a larger range and helps to enhance the global search ability
and convergence speed of the algorithm. As the search progresses, the step size is gradually reduced,
and the algorithm slowly evolves into a local search. The sensor node eventually locates the area near
the optimal position for a precise search, thereby improving the local search capability of the algorithm
and the accuracy of the optimization result. Therefore, the step size l of the node is adjusted as follows:

lIter = lIter−1 × a + lmin, (17)

a = exp
(
−g×

(
Iter

IterNum

)g)
, (18)

where l is the maximum value of the moving step, lmin is the minimum value of the moving step, Iter is
the current number of iterations, and IterNum is the maximum number of iterations. It is known from
Equation (17) that the moving step depends on the value of a, and the value of a is determined by k
and g. Figure 5a depicts the relationship between parameter k, g and a when Iter is 20 and IterNum is
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50. It is easy to see that the value of a increases as g increases, but decreases as k increases. When k
and g are fixed, it is apparent that function a = f (Iter) in Equation (18) is a subtraction function in the
interval [1, IterNum]. Therefore, the choice of k should be as large as possible, while the choice of g
should be as small as possible. k = 20 and g = 5 are based on our practical experience and repeated
experiments. Figure 5b shows the relationship between a and Iter when k = 20 and g = 5. The DHFSOA
algorithm uses the maximum value at the beginning of the search, then gradually reduces it, eventually
reaching and maintaining the minimum, which is in line with the original intention of the design.
Based on the above description, a complete underwater sensor node placement algorithm inspired by
fish swarms is presented in Algorithm 2.

Algorithm 2: DHFSOA Description

1: Input: Bi =
(
rs

i , rc
i , li, Pi

)
, IterNum;

2: Output: Pk+1
i ;

3: S = {s1, s2, · · · , sn} ← Randomly deploy sensors in UWSNs;
4: for k = 1, 2,· · · , IterNum do

5: Ne (si), i ∈ [1, n]← Detect events covered by node si;
6: Ns

co (si),i ∈ [1, n]← Number of nodes within the node’s perceived range;
7: if Ns

ne(si) > 0 then

8: Use Algorithm 1 to get Set Csum;
9: Sort the nodes in Set Csum according to the number of events covered, find Set <,

and satisfy Ne
(
sopt
)
≥ Ne (si) and Ns

co
(
sopt
)
< σ

(
sopt
)
;

10: sopt = arg max
sk∈<

{Ne (si)};

11: Perform following behavior and move closer to node sopt;
12: else

13: for Nprey = 1, 2, · · · , Nmax do
14: Perform preying behavior and randomly move;
15: if Ne (s′ i) > Ne (si) do
16: break;
17: endif
18: endfor
19: end if
20: end for
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Figure 5. Selection of relevant parameters of the moving step in the DSFSOA(distributed hybrid fish
swarm optimization algorithm) algorithm. (a) the relationship between parameter k, g and a when Iter
is 20 and IterNum is 50; (b) the relationship between a and Iter when k = 20 and g = 5.
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5. Performance Analysis

To fully verify the performance of the DHFSOA algorithm proposed in this paper, multiple Monte
Carlo simulation experiments were implemented in the ocean (3D) node deployment on the Matlab
platform(2016b, MathWorks, Natick, MA, USA). The PSSD algorithm is a typical non-uniform
deployment algorithm for underwater wireless sensor network nodes. To evaluate the performance
of the DHFSOA algorithm, the PSSD algorithm was selected for comparison. Evaluation included
simulation, comparison, and analysis of network coverage, coverage efficacy of the event set, and total
moving distance of the node. In addition, to eliminate any random effects of individual experiments,
the final result was the average of 30 experiments. The parameter settings and experimental parameters
of the algorithm are shown in Table 1.

Table 1. Simulation parameters.

Parameter Value Parameter Value

Node’s radius of perception rs 50 m Maximum number of iterations Tmax 50
Node’s radius of communication rc 100 m Constant Nmax 5

Length of moving step l 15 m Constant ψ 0.1

5.1. Static Environment Sensor Deployment

Three sets of experiments were implemented in a three-dimensional monitoring area of
200 m × 200 m × 200 m: (1) six sensor nodes and 40 events were unevenly distributed in a T shape;
(2) six sensor nodes and 40 events were randomly distributed; and (3) six sensor nodes and 40 events
were unevenly distributed in a line.

Figure 6 shows the results of the DSFSOA algorithm for self-organizing deployment of nodes.
The light blue sphere represents the three-dimensional sensing range of the sensor node (the red center
of the sphere is the position of the node), and the blue star represents the event. It can be seen that
the DHFSOA algorithm is capable of achieving a final state in which all events covered by nodes and
there is a good match between node distribution density and event distribution density.

The PSSD algorithm and the DHFSOA were used to deploy the sensor nodes. Figure 7 shows
the evolution of the total moving distance and event coverage for the two algorithms in the three
experiments. It should be noted that the final result for each set of experiments here is the average
of 30 experiments. It can be seen in Figure 7a,c,e that the DHFSOA algorithm not only achieved
high coverage of the event, but indeed achieved optimal coverage after just a few moves of the
node, demonstrating faster convergence speed than the PSSD. More critically, the DHFSOA algorithm
overcame the node blindness found in the traditional heuristic random search algorithm, while the
PSSD algorithm exhibited significant instability and a poor final result. Figure 7b,d,f, is a comparison
of the trend of the total moving distance of the node with the change of the number of iterations of
the DSFSOA algorithm and the PSSD. It is clear that the DHFSOA algorithm greatly decreases the
total moving distance of nodes during deployment compared with the PSSD algorithm. This is mainly
due to the fact that the nodes in the PSSD algorithm make blind movements. The DHFSOA algorithm
utilizes information sharing between the nodes based on the information pool. This improves the
global sensing ability of the distributed fish swarm algorithm and thus avoids the blind movement of
nodes, thereby reducing the total moving distance of nodes during deployment.
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(a) (b)

(c)

Figure 6. Achievement of self-organized Deployment of Nodes using the DHFSOA. (a) events unevenly
distributed in a T shape; (b) 40 events randomly distributed; (c) 40 events unevenly distributed linearly.
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Figure 7. Comparison of the evolution of total moving distance and event coverage of two methods
in three sets of experiments. (a) Experiment 1: average coverage; (b) Experiment 1: total moving
distance of nodes; (c) Experiment 2: average coverage; (d) Experiment 2: total moving distance of
nodes; (e) Experiment 3: average coverage; (f) Experiment 3: total moving distance of nodes.

5.2. Sensor Deployment in a Dynamic Environment

To analyze the reliability and adaptability of the DHFSOA algorithm, this section explores the
results of sensor deployment in a non-uniformly covered, dynamic ocean environment. Water flow
velocity was generated based on a model presented in a previous study [19,24]; model parameters are
listed in Table 2. The update period T for sensors in the DHFSOA was 0.5 s.

For the case in which events take place in a dynamic ocean environment, flowing water will cause
their positions to change. The simulation results at four different times are shown in Figure 8a–d.
As can be seen in the figures, when events present a linear distribution, underwater nodes also exhibit
a linear distribution, and regions with high event densities have more underwater nodes. It can be seen
that underwater nodes move with events and always present the same distribution shape. The node
covers the events well, and achieves the matching of underwater node density and event density.
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(g) (h)

(i) (j)

Figure 8. The distribution of sensor nodes and events at times t1 to t4. (a) initial time node t1 and
event distribution; (b) initial time node t2 and event distribution; (c) initial time node t3 and event
distribution; (d) initial time node t4 and event distribution.

Next, the network operation time was divided into 10 segments. Figures 9 and 10 respectively
compare the coverage efficacy of the event set and the evolution of the total moving distance of the
nodes during each monitoring period. It can be seen in Figure 8 that the coverage efficacy of the event
set is constantly changing with time, and both the DHFSOA and PSSD algorithms maintain good states.
The DHFSOA, however, dynamically adjusts quickly and is slightly better than the PSSD algorithm.
Figure 9 is a comparison diagram between the PSSD algorithm and the DHFSOA for the changes in
total node moving distance during the network running time. It can be seen that, compared with
the PSSD, the DHFSOA algorithm greatly reduces the total moving distance of the nodes during the
network operation, thus reducing total energy consumption. This allows the nodes to retain more
energy, which can be used to participate in other tasks, effectively extending the network life cycle.
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Figure 9. Comparison of the evolution of coverage efficacy at different times.
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Figure 10. Comparison of the evolution of the total moving distance of nodes at different times.

We can see from the preceding figures that, compared to the PSSD algorithm, the DHFSOA has
obvious advantages in terms of network coverage, coverage efficacy of event sets, and total moving
distance of nodes. This is due to that fact that, during network operation, the DHFSOA constructs an
information pool, expands the nodes’ field of vision, enhances information sharing between nodes in
the network connectivity state, avoids blind movement of nodes, and retains the global search ability
of the traditional fish swarm heuristic algorithm.

Table 2. Parameters of the dynamic ocean environment.

Parameter
The Water Flow Field Target Number

k c av ε ω Sensors Events

Value 2π
7.5 0.12 1.2 0.3 0.4 6 40
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6. Conclusions

This paper has proposed a distributed hybrid fish swarm optimization algorithm (DHFSOA) in
order to optimize the deployment of underwater acoustic sensor nodes. The proposed DHFSOA was
inspired by the artificial fish swarm operation system designed to simulate the preying, following,
and swarming behaviors of fish. Applying these sorts of behaviors to sensor nodes gives them the
autonomous tendency and ability to cover events within a monitoring area. Congestion distribution
control was used to match node and event distribution densities. In addition, by constructing
an information pool, the DHFSOA not only overcame the blindness of the traditional artificial fish
swarm heuristic algorithm random search, but also retained the global search ability of the traditional
fish swarm heuristic algorithm.

The proposed algorithm was evaluated by running a large number of comparative simulation
experiments. Once the static and dynamic environments of the underwater acoustic sensor networks
(UASNs) were established, the proposed DHFSOA was used for actual testing. The simulation results
showed that the DHFSOA has the following three advantages over the PSSD algorithm: (1) the DHFSOA
can maintain higher event coverage and coverage efficacy of event sets; (2) the DHFSOA can avoid
blind movement of nodes, thus reducing total node moving distance and thereby reducing total energy
consumption during node deployment; and (3) DHFSOA is a distributed algorithm, which shows
strong extensibility during node deployment. In our next study, we will improve the proof of DHFSOA
convergence and begin experimenting in actual underwater environments.
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