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Abstract: Over the past few decades, solar water splitting has evolved into one of the most promising
techniques for harvesting hydrogen using solar energy. Despite the high potential of this process for
hydrogen production, many research groups have encountered significant challenges in the quest to
achieve a high solar-to-hydrogen conversion efficiency. Recently, ferroelectric materials have attracted
much attention as promising candidate materials for water splitting. These materials are among the
best candidates for achieving water oxidation using solar energy. Moreover, their characteristics are
changeable by atom substitute doping or the fabrication of a new complex structure. In this review,
we describe solar water splitting technology via the solar-to-hydrogen conversion process. We will
examine the challenges associated with this technology whereby ferroelectric materials are exploited
to achieve a high solar-to-hydrogen conversion efficiency.
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1. Introduction

In order to effectively address energy-related problems such as global warming, which is caused
by the emissions of air pollutants including carbon dioxide (CO2), there is a growing interest in many
kinds of renewable energy (such as solar, wind power, hydroelectric energy, and biomass), and their
related applications as an alternative to fossil fuels [1,2].

Among the various alternative energy sources, solar energy is an almost unlimited and clean
energy source, given that the Sun has been providing energy in the form of light and heat to the Earth
for more than four billion years. Until now, solar energy has been considered as an alternative energy
option that could help address several problems of global importance such as an insufficient energy
supply, environmental pollution, and fossil fuel resource depletion. Moreover, most regions of our
planet including the atmosphere, oceans, and soil receive approximately 3850 zetta joules (ZJ = 1021 J)
of energy every year (~0.539 ZJ of energy was consumed worldwide in 2010). Considering only the
amount of energy received from the Sun, solar energy is one of best candidates as a substitution for
fossil fuels. Even though many researchers have been actively involved in alternative energy research
and related technologies have been developed over the years, no more than 1% of the energy produced
by the Sun is used by our planet. Therefore, we need to concentrate on the efficiently of solar energy
use, whether indirectly or directly [3,4]. In particular, for a solar energy carrier, three main points have
to be considered. (1) How much cheaper and abundant are chemical reactants? (2) Is the carrier easily
stored and transported? (3) In the process, is carbon dioxide generated and emitted?

On the other hand, hydrogen energy and related applications are considered to be excellent
alternative renewable energy carriers due to their storability, transportability, and convertibility to
energy on demand. Hydrogen gas is a clean, nontoxic, colorless, and eco-friendly source (does not
release carbon dioxide) that could be obtained by splitting naturally occurring water into hydrogen
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and oxygen. Moreover, hydrogen could be used in various energy applications such as hydrogen fuel
cells (HFCs), combustible fuel, and synthetic natural materials. It is known that when the gas is used
for electricity production such as in the case of hydrogen-powered fuel cells, it has three times the
efficiency of electricity generation (~65%) compared to conventional combustion-based power plants
(~35%) [5–7].

In order for hydrogen to be classified as an environmentally friendly alternative energy source,
it should be produced using appropriate processes that use carbon-free environmentally friendly
materials instead of fossil fuels. Compared with other methods of hydrogen production (biomass,
thermal decomposition of natural gas, water electrolysis, and thermochemical cycles), water-splitting
technology has been proposed as the most suitable method for the eco-friendly generation of hydrogen
gas from water. It should be noted that solar energy has been used as an energy conversion source
of solar thermal and photovoltaics starting from solar light. In particular, water splitting using
photovoltaics based on solar energy is ideal for the generation of hydrogen gas from water [8,9].

This review will address solar water-splitting technology (such as water splitting in
photosynthesis, photoelectrochemical water splitting, and photocatalytic water splitting), including the
systems involved and hydrogen production from water and solar energy. Moreover, we will introduce
the recent progress in solar water splitting using ferroelectric materials, and summarize how each
material plays an important role in achieving efficient solar water splitting.

2. Overview of Solar Water Splitting

In a solar water-splitting system, hydrogen is produced from the semiconductor–electrolyte
interface where sunlight is absorbed in the depletion layer and electron–hole pairs are separated
to drive the chemical reaction at the semiconductor–electrolyte interface, Light energy is used to
directly dissociate water molecules into hydrogen and oxygen through the following steps: light
absorbance, conversion of light to exciton (electron–hole pair), and chemical reaction (separated
hydrogen). Water splitting via solar energy is achieved through three kinds of hydrogen production
systems [8–12]: (1) particulate photocatalysis (PC) systems, (2) photoelectrochemical (PEC) systems,
and (3) photovoltaic–photoelectrochemical (PV–PEC) systems, as shown in Figure 1. In this section,
we describe in more detail the mechanism for solar energy conversion to hydrogen fuel, and the
as-mentioned three approaches for hydrogen generation are introduced.
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Figure 1. The solutions for solar hydrogen via water splitting. (a) Particulate photocatalytic (PC)
water splitting system, (b) Photoelectrochemical (PEC) water splitting system and (c) Photovoltaic–
photoelectrochemical hybrid (PV–PEC) system [10]. Copyright 2017, Elsevier.

2.1. Basic Mechanism for Solar Energy to Hydrogen Conversion System

The concept of photocatalytic water splitting (PWS) was introduced by hydrogen production via
photoelectrochemical water splitting with a rutile TiO2 (anode) as the photocatalyst, and a platinum



Appl. Sci. 2018, 8, 1526 3 of 30

(cathode). This was first reported by Fujishima and Honda in 1972 [13]. Hydrogen could be generated
directly from water, and solar light could be generated through the solar energy conversion process.

In PWS systems, photocatalysts play an important role in the conversion of solar energy to
hydrogen in response to visible light in the water-splitting system. The hydrogen gas production
process involves a photocatalytic reaction such as the direct conversion of solar energy into hydrogen
gas in a semiconductor with an energy bandgap that is positioned between their energy band structures.

A photocatalytic water-splitting reaction via semiconductor-based photocatalysts is conducted
in terms of charge carrier generation, separation, transport, and transfer. This refers to the following
three-step process [10–14].

Step 1: Light (photons) is absorbed near the surface of the semiconducting materials with energies
greater than their bandgap energy (e.g., ~1.7 eV). Excited electrons (excitons) and holes are generated
inside the semiconducting materials by bandgap excitation.

Step 2: The electrons and holes henceforth referred to as photogenerated electrons and holes are
separated in the bandgap and drift to the surface of the semiconducting materials, causing the release
of oxygen from water (catalytic water oxidation reaction).

Step 3: The photogenerated electrons combine with H+ via the metal electrode (catalytic water
reduction reaction).

Figure 2 shows the principle of photocatalytic water-splitting reactions with photoelectrons and
holes that are generated by the absorption of light. The photoelectrons and holes reduce and oxidize
water on the surface of the semiconductors as the two half-reactions of water splitting via the following
reactions [10–12].
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Figure 2. Principle of photocatalytic water-splitting (PC) reactions [7]. Copyright 2014, Elsevier.

The water-splitting reaction is thermodynamically nonspontaneous, and therefore is an uphill
reaction. As such, the net Gibbs free energy (∆G ≈ 237 kJ/mol) needs to be increased. Namely,
if a photocatalyst has a bandgap that is larger than the energy required for water splitting (~1.23 eV),
then its conduction and valence band edge should contain the oxidation and reduction potential of
water [8].

It is clear that the O2/H2O redox potential difference is 1.23 V. Therefore, the requirement of
a bandgap is larger than the required energy for water splitting (1.23 eV). For more details, the valence
band potential must be more positive than the O2/H2O redox potential of 1.23 V versus Normal
hydrogen electrode (NHE, pH = 0) to permit water oxidation, and the conduction band must be more
negative than the H+/H2 redox potential of 0 V versus NHE to facilitate water reduction [8–10].
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2.2. Solar Energy to Hydrogen Conversion System for Solar Water Splitting

Among the previously mentioned hydrogen production systems, i.e., the PC, PEC, and PV–PEC,
the PC offers reasonable solar-to-hydrogen efficiency, a low process cost, simplicity of design,
and a large-scale method for water splitting. Moreover, the PC reaction could be performed in
the homogeneous phase without transparent electrodes and directional illumination. However,
a PC system should be inserted in a gas separator because both hydrogen and oxygen gases are
produced during the water-splitting process. Therefore, an enclosed reaction system is required
on a large-scale [10,14–16]. However, the PEC systems do not require gas separation due to their
structure, which entails one or two conductive electrodes and a small bias. The two different gases are
sequentially generated and remain at the opposite electrodes.

A PEC cell system is composed of an electrolyte, an n-type semiconductor (anode), and a p-type
semiconductor (cathode) with a semiconductor/liquid junction, as shown in Figure 3. Photogenerated
charge carriers are separated, and minor carriers (holes and electrons originated from p-/n-type
semiconductor electrodes) move within the semiconductor–liquid interface. This allows for the
separate release of oxygen and hydrogen gases during the water-splitting reaction.
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Figure 3. Schematic diagram of photoelectrochemical (PEC) photovoltaic (PV)–PEC hybrid water
splitting system; (a) PV/PEC hybrid cell, (b) A photoelectrode PEC cell with anode and cathode
combined in parallel, and (c) Two photoelectrodes combined in series [3]. Copyright 2010, Royal Society
of Chemistry.

In electrode–liquid electrolyte systems, the photovoltaic and photoelectrochemical reaction
behavior is mainly conducted in three steps: (1) light absorption, (2) water reduction and oxidation,
and (3) the recombination of electrons and holes. When the system is exposed to photons with
sufficiently high light energy, they are induced to form electron–hole pairs, resulting in chemical
reactions such as oxidation-reduction reactions. During these reactions, photogenerated currents
and voltages are observed inside the system. Such electrical phenomena can be observed in both
photovoltaic and photoelectrochemical systems. The photovoltaic (PV) process is so-called because the
conversion of light into electricity occurs in a photoelectrode through a process of conversion photons.
In the case of a photoelectrochemical process, the generated photons induce a chemical reaction in the
electrodes. Since both photovoltaic and photoelectrochemical processes are related to light absorbance
and the conversion of photons to induce chemicals reactions, various semiconducting materials can be
used to convert solar energy to hydrogen. They have been extensively used in the past for solar water
splitting [17,18].

Until now, several different concepts have been proposed and reported from different research
groups for solar water splitting. Figure 3 shows a schematic diagram of an enhanced PEC and
PV–PEC hybrid water splitting system, which was proposed to improve solar energy to hydrogen
efficiency. The PV/PEC hybrid cell consists of a photoelectrode PEC cell and a PV cell. The PV
cells play an important role in supplying a potential to the PV cell. The PV cell assists the PEC cell
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to develop a potential for photogenerated electrons, allowing water reduction at the surface of the
photocathode [19,20].

2.3. Strategy for High Solar-to-Hydrogen (STH) Efficiencies

The energy conversion efficiency in solar water-splitting cells is usually evaluated by various
methods such as standard solar-to-hydrogen (STH) conversion efficiency (ηSTH), quantum efficiencies
such as the incident photon-to-current efficiency (IPCE), photon-to-current efficiency (ABPE), and the
absorbed photon-to-current conversion efficiency (APCE) [21,22]. Among these, we will further
examine the standard ηSTH and ABPE in greater detail.

The standard ηSTH is the ratio between the total energy generated and the total energy input in
the sunlight irradiation of AM 1.5 G (air mass at a solar zenith angle of 48.2◦), which can be calculated
using following the equation:

ηSTH =
Total Energy generated

Total enery input
=

∆G × rH2

Psun × S
(1)

where ∆G is the Gibbs free energy (237 kJ/mol), rH is the rate of hydrogen production in moles
per second, Psun is the incident light intensity (100 mW/cm2) and S is the illuminated area of the
photoelectrode (cm2).

The ABPE can be calculated from the J–V curve of the photoelectrode while an external bias is
applied to the two electrodes.

ABPE (%) =

[
J
(
mA/cm2) × (1.23 − Vbias(V)

Pin (mA/cm2)

]
AM 1.5G

× 100 % (2)

2.4. Strategy to Improve High STH Efficiency for Water Splitting

Solar water splitting with high STH efficiencies has been developed over the last few years.
Recently, Jia et al. [23] reported on solar water splitting by photovoltaic–electrolysis STH with
an efficiency over 30% for two days using two polymer electrolyte membrane electrolyzers in series
with one InGaP/GaAs/GaInNAs(Sb) triple junction solar cell.

To achieve high STH efficiency for solar water splitting, we should carefully select the
semiconducting materials. The bandgap of the semiconducting materials, including the electrode,
is very important in the solar water-splitting process. Most photons cannot be absorbed by the
semiconductor if they have energy that is lower than the bandgap energy. Therefore, the bandgap of the
selected semiconducting materials must be chosen in the range of at least ~1.23–2.0 eV to absorb light
in the visible range, which facilitates a high photocatalytic effect. The semiconducting materials used
for the cells should have strong catalytic activity and stability regardless of the oxidation/reduction
reaction. With regard to the process, the semiconductor is easily oxidized and reduced by excited
electrons and holes. Since their photoreproductive capability decreases, the cell’s STH efficiency also
decreases. Additionally, the materials used for cells should be easily modified and readily available at
low cost [23–25].

3. Solar Energy Conversion of Ferroelectric Materials

3.1. Ferroelectric Effect and Materials

The basic concept of ferroelectricity was introduced by Rochelle salt in 1920: if an external electric
field is applied to a ferroelectric material, the dipoles in the crystalline or polycrystalline structure are
induced to produce a ferroelectric phenomenon with spontaneous polarization and alignment with
the external field. Even when the electric field is switched off, the material maintains a spontaneous
polarization. This is called the ferroelectric phenomenon. Furthermore, the spontaneous polarization
is reversed by the application of an electric field. Ferroelectrics exhibit a phase transition phenomenon.
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Namely, the polarization of the dipoles exhibits interactive electric dipole moments with and without
an applied electric field. When the ferroelectric is at a higher temperature than the phase transition
temperature, the spontaneous polarization is lost due to thermal fluctuations.

When the spontaneous polarization is reversed, it causes the ferroelectrics to exhibit the property of
piezoelectricity. Ferroelectric materials can be categorized into two types: the order–disorder type and the
displacement type, based on the physical mechanism used to generate the ferroelectric characteristics.

Ferroelectric materials, which are mostly used as condenser and as semiconductor elements,
are a cubic system with a perovskite structure. When the crystal structure of the perovskite exceeds
the Curie temperature Tc (~120 ◦C), similar to a ferroelectric crystal of the ABO3 perovskite structure,
it changes its form to a paraelectric phase in which the crystal structure is the cubic symmetry [26,27].

3.2. Ferroelectric Photovoltaics—Phenomenology of Ferroelectric Solar Cells

The photovoltaic effect in a semiconducting material occurs when an asymmetry in the electric
potential occurs throughout the materials due to a flow of photogenerated electrons and holes.
A photocurrent occurs as a result of the absorption of photons with high energy, which leads to
the transfer of electrons from the valence band (VB) to the conduction band (CB).

Conventional photovoltaic phenomenon could be observed in interfaced doped semiconductors
such the p–n junction structure when the following three processes should be involved: high light
absorption, generation of the electron–hole pairs, and separation of the free charges.

Usually, hole (positive charge) and electron (negative charge) carriers are generated by high energy
photons. Over time, the excited carriers return to the ground-state level, and the internally absorbed
energies are released as light or heat. While most commercial solar cells are based on the p–n junction
principle between two different metallic contacts, they are limited by the so-called Shockley–Queisser
limit, which prevents any single p–n junction solar cell from converting more than 33.7% of the incident
light [23]. Their heterojunction structure is limited with regard to the selection of potential materials
due to dopant issues and the mismatched lattice of the structure.

Ferroelectric materials have been recently proposed as excellent potential candidates to solve
these problems. The phenomenon of a photovoltaic effect in a ferroelectric has been observed in
BaTiO3, LiNbO3, and Pb(Zr,Ti)O3 with weak pyroelectric currents (photovoltaic current above Tc).
However, ferroelectrics have a significant disadvantage of large band gaps in the range of ~3–4 eV,
which is challenging for applications as photovoltaic materials. Their large band gaps values result
in the degradation of efficient conversion because small current densities and large open circuit
photovoltages are typical. In recent years, the higher efficiency of narrower bandgap ferroelectrics in
ferroelectric solar cells such as those of BiFeO3 (BFO, 2.2–2.7 eV) and multiferroic Bi12FeCrO6 (BFCO,
1.9–2.1 eV), has been reported.

Ferroelectric photovoltaic effects are divided into photoferroic phenomena including the bulk
photovoltaic effect (BPE) and the anomalous photovoltaic effect (APE). Photoferroic phenomena
could be demonstrated in hybrid organic–inorganic halide perovskites such as CH3NH3PbI3 (MAPI)
to fabricate high-efficiency photovoltaic devices. Ferroelectric domains as internal junctions can
induce the generation of photoexcited electrons and hole pairs, and decrease recombination by
dividing charged carriers. The effect could produce a higher open circuit voltage (VOC) and the
current−voltage hysteresis observed in perovskite solar cells. The photoferroic system has an intricate
interface between the photoresponse and the ferroelectric phase stability, single/multidomain,
and distributions. The photoferroic system has recently achieved power efficacies in excess of 8%
power for Bi2FeCrO6 [26]. The larger bandgap (~3 eV) in the polar materials shows their potential for
development as light absorbers [25–27].

The photovoltaic effect (BPE) is a phenomenon that is observed in an open circuit voltage under
dark illumination. The BPE generates a photovoltaic current that results in an anomalous photovoltaic
effect (APE), as a type of bulk photovoltaic effect that occurs between semiconductors and insulators
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as a result of an open-circuit voltage induced by light. Sometimes, the generated voltage approaches
almost thousands of volts.

The mechanisms of the anomalous photovoltaic effect (APE) are schematically represented in
Figure 4. The generated photovoltage in the anomalous photovoltaic effect (APE) is limited by its
bandgap. This results in a photoresponse of the heterojunctions, the photo-Dember effect, and grain
boundaries. As shown in Figure 4, its mechanisms could be explained by three categories as follows:
(a) the photo-Dember effect, (b) p–n homojunction domains, (c) and ferroelectric domains [27,28].
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4. Ferroelectric Materials for Photoelectrochemical (PEC) Water-Splitting Devices

4.1. General Requirements for Photoelectrode Materials

The choice of appropriate materials for photoelectrodes plays a decisive role in the PEC activity
for water splitting. Conventional materials, including semiconductors, can be categorized into
wide-bandgap and narrow band-gap materials. Traditionally, wide-bandgap materials (TiO2, SrTiO3,
BaTiO3, and WO3) are considerably stable in an electrolyte solution, but they can have the limited
absorbance range in the ultraviolet region. Even though narrow bandgap materials (Cu2O, InAs,
and CuO) can absorb much more visible light irradiation in the solar spectrum, they have a high
possibility of being damaged from strong electrolytic environments. However, we do not have many
options for selecting suitable materials for photoelectrodes (photocathodes and photoanodes) of PEC.
For photocatalytic water splitting, the selected materials must have bandgaps of approximately 2 eV
(at least 1.23 eV) as a result of thermodynamic energy and kinetic loss. Figure 5 shows the bandgap of
various materials. Therefore, it is imperative that the following general requirements are met prior to
the fabrication of high-performance PECs [12,29,30].
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Figure 5. The bandgap of various materials including ferroelectrics and the semiconductor.

(i) Suitable bandgap energy and band edge positions. The electrolysis of water is composed of
two reactions occurring at different electrodes. There is a reduction reaction generating hydrogen with
H+/H2 redox potential of 0 V vs. NHE at the photocathode, whilst the O2/H2O redox potential of 1.23 V
vs. NHE (pH = 0) in an oxidation reaction at the photoanode; thus, the bandgap of the materials needs
to be larger than 1.23 V in order to be able to occur water split. In addition, the thermodynamic energy
losses (0.3–0.4 V) and an overpotential (0.4–0.6 V) should also be considered. Consequently, a minimum
bandgap of ~1.8 eV is required. Furthermore, visible light is very limited below 390 nm, and this
limits the upper value of the bandgap energy to 3.2 eV. Therefore, materials with a bandgap energy
in the range between 1.9–3.2 eV are promising candidates for the generation of large photovoltages.
When a photoelectrode material that meets these requirements with respect to the bandgap value
absorbs incoming photons, electrons are excited to the conduction band (CB) and leave holes in the
valence band (VB). The CB edge must be more negative than the H+/H2 redox potential of 0 V versus
normal hydrogen electrodes (NHEs) (pH = 0) to induce H2 production, while the VB edge value must
be more positive than the O2/H2O redox potential of 1.23 V versus NHE to generate water oxidation.

(ii) Efficient charge separation and transfer. Low efficiency in PEC devices is mostly attributed
to charge recombination and inefficient carrier transportation. As a result, many studies have been
performed with the objective of addressing these challenges to achieve enhanced performance on
PEC devices. Both the intrinsic properties (hole and electron mobility) and the extrinsic properties
(crystallinity, nanostructure) affect the separation and transfer of the photogenerated carriers.

(iii) Robust catalytic activity and stability. Generally, there are energy barriers for the transfer of
electrons or holes, and these barriers exhibit energy losses in the reaction. Appropriately rapid surface
reaction kinetics can overcome these barriers and suppress electron–hole recombination. In PEC
systems, the hydrogen evolution reaction (HER) generates H2 from H+ (in acid) or H2O (in base),
whereas oxygen evolution reaction produces O2 from H2O (in acidic) and OH− (in base) [31,32].
Photocorrosion is a major problem for long-term PEC cells because of water splitting, which leads
to the decomposition and fluctuation of photocurrent in a short time interval, especially in harsh
conditions (strongly acidic or alkaline). However, a high ionic environment (low or high pH) is essential
to minimize other challenges such as ohmic losses and localized pH gradient overpotentials in the PEC
systems of separate photoelectrodes [33,34]. Therefore, ferroelectric materials with intrinsically stable
properties even in harsh electrolyte are potential candidates for the generation of new PEC systems.
Furthermore, the suitable alignment between the band edge potentials of the candidate materials and
the relative decomposition potentials can promote stable PEC devices. Lastly, cost-effective materials
along with earth-abundant elements are also required for a practical approach.
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4.2. Ferroelectric-Based Materials in Photocathodes for Hydrogen

Promising photocathodes are generally p-type semiconductors and must meet some of the
aforementioned requirements to generate the required cathodic current for water reduction. Single
metallic oxides such as Cu2O, CuO, and NiO are at the forefront of the p-type semiconductors that have
been investigated as photocathodes for solar water splitting. However, these materials are hindered
by some major shortcomings such as photocorrosion [35,36], low conduction band position [37–39]
and wide bandgap (3.6–4.0 eV), along with the low potential of the valence band [40,41]. As a result,
the PEC devices fabricated from conventional single semiconductors exhibit a limited photocurrent
and low stability, thereby reducing their PEC performance. Therefore, the possibility of incorporating
ferroelectrics into conventional oxide-based photocathodes is a novel and facile way to enhance their
PEC activity. In this section, the review is focused on ferroelectric-based materials for photocathodes,
which include ferroelectric ternary/quaternary metal oxides.

4.2.1. Ferroelectric Oxide Perovskites

Ternary Metal Oxides

(1) BiFeO3

BiFeO3 (BFO) is a well-known multiferroic material with a bandgap in the range of 2.2–2.7 eV,
which has been researched extensively because it possesses a wide range of intriguing properties [42–51].
Many studies have been reported on the significant effect of polarization on band bending in BFO,
which plays a crucial role in the photocatalytic activity for PEC water splitting. This enhanced
charge separation is attributed to the intimate relation between band bending and the separation
of photoexcited electron–hole pairs in the space charge region [52]. Depending on the fabrication
method, BFO can exhibit properties of either an n or p-type semiconducting material, thereby playing
a role as either an anodic or cathodic electrode in PEC water splitting [42,45,47,51].

Although BFO presents robust ferroelectricity and has attracted significant interest from
researchers involved in PEC water-splitting research, there are two challenges that limit the tremendous
potential of BFO as a photoelectrode material. The first issue is the low photocathodic current due to
the rapid recombination of electron–hole pairs, which is required to achieve a better PEC performance.
Another challenge is the rapid degradation during the PEC reaction [53,54]. Undoubtedly, the noble
metal Pt is by far the best-performing photocathode for H2 evolution to date [55]. Theoretically,
a combination of BFO and a noble metal such as Pt is considered a good choice to facilitate H2

generation reaction. This can be explained by the reduced charge recombination and enhanced electric
field that is attributed to the Schottky barrier due to the different work functions between BFO and Pt
as well as the localized surface plasmon resonance (LSPR) effect of these noble metals [56,57]. However,
contact between Pt and BFO impedes the transfer of photoexcited electrons from an electrode surface to
the electrolyte due to the Schottky upward barrier. Fortunately, the injection of a buffer layer between
Pt and BFO has been discovered to overcome this shortcoming.

Gu et al. [53] inserted a porous carbon layer sandwiched between Pt and BFO to obtain
a ITO/BFO/carbon/Pt photocathode in order to inhibit the formation of a BFO/Pt Schottky upward
barrier. As a result, drastically enhanced photocathodic performance is achieved with a photocurrent
density (Jo) and onset potential (Vop) up to −235.4 µA/cm2 and 1.19 V versus reversible hydrogen
electrode (RHE), respectively, while the values for a photocathode without a carbon interlayer are
only −61.6 µA/cm2 and 0.83 V versus RHE, respectively. More importantly, the BFO films were
macroscopically poled to investigate the effect of the ferroelectric polarization on the PEC performance,
and the results are reported in Figure 6. After poling, the Jo and Vop values increased significantly,
which is attributed to the effective separation of the photogenerated carriers in the BFO films, thereby
enhancing the PEC activity of the photocathodes.
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The novel configuration with carbon resulted in a reduced charge recombination and the
facilitation of charge transfer by the removal of the upward barrier between Pt and BFO. Based on
this result, an amorphous TiO2 was chosen as a buffer layer to insert between BFO and Pt with the
similar desire for the Schottky barrier [58]. As expected, the PEC yielded a Jo of −460 µA/cm2

at 0 V versus RHE and Vop of 1.25 V versus RHE under 100 mW/cm2 Xe-lamp illumination.
More importantly, the role of TiO2 in stabilizing the photocathode is apparent with a 10-h continuous
effective PEC reaction in an acid solution. Meanwhile, most of the BFO photocathodic performance is
degradable within only 2 h of continuous reaction, even when measured using the neutral Na2SO4

electrolyte [53,54]. The limitation of the performance of PEC cells used BFO as photocathodes
could be overcome by an interlayer TiO2 as protection layer to avoid direct contact with its
electrolyte. This interpretation could show a promising pathway to reduce cathodic photocorrosion
at the semiconductor/electrolyte interface by employing a variety of protection layers on the
photocathodes. To utilize a wide range of the visible light spectrum, tandem PEC systems composed
of both photoanodes and photocathodes have been investigated in many recent studies [59,60].
Among many tandem architectures, the photocathodes based on the crystal Si-pn+ were constructed
with an improvement in PEC activity [61,62]. However, the efficiency is far from the desired
value because of the remaining photoexcited electrons inside the holes of Si. In a recent report,
Cheng et al. [54] overcame his shortcoming to fabricate a Si-pnn+/ITO/Au/BFO hybrid photocathode
with enhanced photocurrent and onset potential by utilizing the local surface plasmon resonance
(LSPR) effect of Au nanoparticles and the depolarization electric field of BFO.

(2) LaFeO3

LaFeO3 (LFO) is an n-type semiconducting perovskite oxide that has emerged as an attractive
candidate for photoelectrochemical water splitting because of its many advantages, such as high
stability under illumination in an aqueous environment, and abundant quantity of rare-earth element
oxides [59,60]. The bandgap of LFO is estimated to be from 2.0 eV to 2.6 eV, which is small enough to
utilize a portion of the visible spectrum light [39].

Although LFO has stood out as a promising perovskite oxide, it still has some drawbacks that
limit its use as an effective photocathode for hydrogen production [63–67]. The LFO photocathode
in PEC shows low photoresponse characteristics because of the lack of a sophisticated preparative
technique [68]. The p-type LFO film, which is prepared by more sophisticated fabrication techniques
such as pulsed laser deposition (PLD) and atomic layer deposition (ALD) as a photocathode coupling
with an n-type Fe2O3 photoanode for stable water splitting, has assisted in the suppression of the
aforementioned limitation [63,69]. High-quality LFO films and good back contacts resulted in the
generation of a photocurrent density at 0 V versus RHE of 64.5 µA/cm2 under AM 1.5 G irradiation for
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100 nm of LFO, while the reaction time was maintained for 120 h without any obvious decline of the rate
of oxygen and hydrogen production [63]. In addition, under external bias, the Fe2O3-LaFeO3 system
shows outstanding performance in both the development of the gas evolution rates and stability,
even in alkaline conditions, in comparison with an Fe2O3-Pt system. Furthermore, the modified
LFO photocathode with high performance, especially its long-term stability and low cost, could be
considered one of the promising candidates to replace the normal Pt photocathode in PEC systems.

Although the low photoresponse problem was solved by PLD instead of the sol-gel spin-coating
method, the value of the photocurrent onset potential was ~1.0 V versus RHE, which is lower than the
standard potential of 1.23 V for water electrolysis. Recent efforts to enhance the photoelectrochemical
behavior of LFO has yielded many positive results. Díez-Garcia et al. [70] synthesized metal-doped
LFO thin film electrodes using the sol-gel method, resulting in a significant improvement in efficiency,
with an onset potential as high as 1.4 V versus RHE. The enhancement of the efficiency in PCE devices
is attributed to an increase of both majority carrier density and mobility by doping with a relatively
large amount of Mg2+ and Zn2+ (5% with respect to the iron atoms).

In addition, it is reported that metal doping is an effective strategy for enhancing the p-type
nature of the ternary oxides [71]. In particular, LFOs have been shown to exhibit both cathodic and
anodic photocurrents depending on the specific conditions [72]. Although sophisticated fabrication
techniques such as PLD can improve the PEC response of LFO photocathodes, the high cost and
challenging technical requirements are still primary impediments. Recently, novel research in the
preparation of nanostructured LFO thin films using an inexpensive spray-pyrolysis method resulted in
outstanding results [73]. The fabricated photoelectrode yielded a photocurrent density of 0.16 mA/cm2

at 0.26 V versus RHE, which is by far a more drastic enhancement compared to the PLD technique [63].
Interestingly, this is the first time that spontaneous hydrogen generation has been achieved using

PEC water splitting without any external bias voltage using LFO as a single photoelectrode material.
Admittedly, LFO is a potential candidate for a photocathode because of its stable characteristics in
aqueous solutions, as well as its very positive onset potential values. However, further research should
be performed to improve the slow kinetics of charge transfer, which favors recombination at surface
trap states.

(3) SrTiO3

Among the various ternary metal oxides, SrTiO3 (STO), which is a stable n-type semiconductor
with a bandgap value of 3.25 eV [74], has been utilized as a promising photoelectrode for splitting
water into hydrogen and oxygen, with many outstanding properties. However, a wide bandgap limits
light absorption to the UV region.

Since the first report by Wrighton et al. [75] on the usefulness of STO for light-assisted
photocatalytic water splitting, numerous studies have focused on bandgap engineering [76–78] and
the tuning of the charge separation ability [79–81] to overcome the aforementioned drawbacks and
achieve effective photoelectrochemical water splitting. It is expected that a heterojunction of STO
with a small bandgap material should be able to narrow the overall bandgap and help suppress the
limitation of visible light absorption.

TiO2 is a conventional n-type semiconductor, which is considered as the most promising
photoanode material [82–85], and Cu2O is one of the most investigated p-type semiconductors for PEC
water-splitting. It is reported that loading Cu2O particles on TiO2 nanotube arrays can significantly
improve visible light absorption compared with pure TiO2 nanotubes [86]. Meanwhile, there is a similar
valence and conduction band position between STO and TiO2, with a conduction band edge that is
about 200 mV higher than TiO2 [87]. Recently, Cu2O has been combined with STO with controllable
thickness to form a Cu2O/STO heterojunction photoelectrode, which has been proven to be effective in
driving the separation of charge carriers by an electric field generated at the Cu2O/STO interface [88].
Under illumination, the Cu2O/STO photoelectrode presented a p-type photocurrent used for hydrogen
generation. As expected, the Cu2O/STO heterojunction with an optimal thickness of 343 nm exhibited
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a photocurrent density of 2.52 mA/cm2 at 0.8 V versus saturated calomel electrode (SCE), which is
25 times higher than that of pristine Cu2O (0.10 mA/cm2 at 0.8 V versus SCE), as presented in
Figure 7. This result is attributed to the synergy of broadening solar absorption and improved charge
transportation in the Cu2O/STO heterojunction. In another report, the Cu2O/STO heterojunction
photocathode was investigated using a less complicated method in which Cu2O nanoparticles (NPs)
were loaded onto the surface of STO nanocubes (NCs) through a facile deposition—precipitation
technique [89].Appl. Sci. 2018, 8, x FOR PEER REVIEW  12 of 29 
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(4) PbTiO3

PbTiO3 (PTO) is a visible light active titania-based perovskite oxide that is well-known for its high
ferroelectricity. It is a good candidate as a photocatalytic material in water splitting due to its bandgap
value of 2.75 eV and suitable band structure, which assists in charge transfer and separation [90–92].
However, there are a limited number of studies on the application of PTO as a photoelectrode material
with demonstrated higher photocatalytic activity for hydrogen evolution, especially in the case of
PEC devices.

Recently, transition metal-doped PTO was investigated as a photocathode material for improving
photogenerated electron transfer on the photocathode/electrolyte interface [92,93]. In particular,
the 1 wt % Cu-doped PTO photoelectrode in an aqueous methanol solution under visible light
irradiation (λ ≥ 400 nm) presented 2.5 times higher photocatalytic performance compared to PTO
without Cu loading using the same configuration [92].

In another report, Hu et al. [93] modified the ITO/PTO photocathode using both Fe (III) doping
and grafting, which resulted in a photocurrent increases of up to 220 µA/cm2 in comparison with
38 µA/cm2 of pure PTO photocathode. These enhancements were attributed to the change of band
positions, which facilitated the transfer of photoinduced charge carriers. A similar phenomenon
was observed for a fabricated Ag–Pt bimetallic catalyst on a ferroelectric PTO photocathode surface
deposited on ITO quartz glass. As a result, the photocurrent density increased significantly from
60 µA/cm2 for pure PTO electrode to 202 µA/cm2 for the Ag–Pt electrode one under 0 V versus SCE,
and with a 100 mW/cm2 Xe lamp illumination [94].

Due to the superior performance of PTO in comparison with other TiO2-based perovskite-type
oxide materials (BaTiO3, SrTiO3) and their stability, some innovative synthesis methods have been
introduced such as microwave-assisted synthesis [95,96] and nonhydrolytic sol-gel [97]. A promising
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and effective PTO photocathode with higher photocurrent efficiency has been achieved using such
facile and cost-effective synthesis methods.

(5) YFeO3

YFeO3 is one of the ferrite perovskites featuring a bandgap energy of approximately 2.3–2.4 eV.
Although several studies have been performed on the utilization of YFeO3 as a photocatalyst for water
splitting [98–101], research on YFeO3 as a photocathode material in PEC devices remains limited.
YFeO3 thin films are prepared by two different methodologies: nanoparticle thin film electrode via
an ionic liquid protocol [68], and compact thin film electrode via a sol-gel method. Both types of
electrodes have been evaluated for their PEC activity. They show exhibited cathodic photocurrent
responses with an onset potential of 1.05 V versus RHE with complex dynamic features that should be
addressed to application in PEC water splitting [102].

Quaternary Metal Oxides

Quaternary metal oxides, especially double perovskite materials featuring ferroelectric behavior,
have been identified as promising candidates for solar energy to electricity conversion because of
their efficient charge separation, which results from suitable control of the polarization-induced
internal electric field [103,104]. Bi2FeCrO6 (BFCO) exhibiting multiferroic properties plays a role as
a photocathode with a narrow bandgap (1.9–2.1 eV), and an appropriate conduction band position,
which shows a twofold increase of the photocurrent density after negative poling, as presented in
Figure 8 [105]. Recently, Shen et al. performed many studies on Pb(Zr,Ti)O3 (PZT) and revealed that
ferroelectric PZT films deposited on indium tin oxide (ITO)-coated quartz glass [106,107] along with
PZT films decorated with Ag nanoparticles on an ITO coated Si-pn+ junction [108] can function as
stable and effective photocathodes for water splitting. More importantly, polarization switching can
drive the photogenerated electrons transfer process, which then results in significantly enhanced
PEC activity.
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4.3. Ferroelectric-Based Materials in Photoanodes for Water

Photoanode materials, which possess bandgap values that utilize a wide range of visible light
absorption, high carrier mobility, and the possibility of efficient charge transport and separation,
generally stem from n-type semiconductors. In addition, they are cost-effective materials that have
a long-term stability in aqueous solution, and are therefore considered promising candidates for
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PEC water splitting. In this section, ferroelectric-based materials are incorporated in a photoanodic
configuration with various nanostructures via optimal fabrication techniques.

4.3.1. Ferroelectric Oxide Perovskites

(1) BaTiO3

BaTiO3 (BTO) is an n-type semiconductor, and its ferroelectricity was discovered for the first
time in 1945 by Wul and Goldman [109]. Subsequently, the relation between photocurrent efficiency
and the change in the electrode potential for the photooxidation of water was first investigated by
Kennedy [110] in 1976. This was a precursor to advanced studies on this promising ferroelectric
material. Apart from possessing a favorable structure for water splitting [111], BTO is considered
as a potential photoelectrode material because of its high stability in aqueous solution along with
a suitable band edge position, and controllable electronic properties through lattice defect modification
or oxygen stoichiometry [112,113]. However, the only disadvantage of BTO is a relatively large
bandgap of 3.2 eV, which limits its absorption spectrum to the ultraviolet region [114].

Therefore, many previous reports [115,116] were focused on doping BTO with Fe to extend its
photoresponse for effective PEC activity. More importantly, it was reported that the ferroelectric
polarization in BTO could enhance PEC performance in comparison with pristine TiO2. This is a result
of the facilitation of the separation of photogenerated electron–hole pairs along with the effectiveness of
tuning of the electronic band structure (i.e., upward band bending) in heterojunction-based PEC devices
of TiO2/BTO core/shell nanowire (NW) arrays as photoanodes [117]. However, the contribution
of the ferroelectric polarization effect plays a predominant role, which is evidenced by numerous
different measurements such as the PE hysteresis loop, dynamic contact electrostatic force microscopy
(DC-EFM) characterization, and electric poling by different directions. As a result, the positive
polarization switched by external electric field poling at the TiO2/BTO (5 nm of thickness) interface
yielded an optimal photocurrent density of water oxidation (1.30 mA/cm2) that was 67% higher than
that of a photoanode without BTO (0.78 mA/cm2). This result hints at the tremendous potential of
ferroelectric photoelectrodes in enhancing PEC performance.

(2) BiVO4

Bismuth vanadate (BiVO4) is an n-type semiconductor (bandgap value ~2.5 eV), which has been
widely applied as a photoanode material in PEC cells because of its large absorbance range in the visible
spectrum along with a suitable conduction band structure [118,119]. Based on its bandgap energy,
BiVO4 is able to generate a photocurrent density of ~7.5 mA/cm2 and a theoretical solar-to-hydrogen
conversion efficiency of 9.2% under AM 1.5 G conditions [120,121]. However, BiVO4 suffers from poor
surface catalytic reactivity and substantial recombination losses, which prevent it from achieving the
theoretical maximum. With the aim of addressing these drawbacks, many strategies such as doping,
morphology control, and the construction of heterojunction structures have been investigated in PEC
devices containing BiVO4 photoelectrodes.

Choi et al. [122] prepared nanoporous BiVO4 photoanodes with dual-layer oxygen evolution
catalysts (OEC), which is reported to alleviate bulk carrier recombination at the BiVO4/OEC junction by
creating a more favorable Helmholtz layer potential drop at the OEC/electrolyte junction. PEC devices
containing BiVO4/FeOOH/NiOOH photoanodes have been shown to yield a photocurrent density of
2.73 mA/cm2 at a potential as low as 0.6 V versus RHE without any extrinsic doping and composition
tuning. Subsequently, this author’s group performed further mild annealing treatment of nanoporous
BiVO4 under N2 flow that produced nitrogen doping and the generation of oxygen vacancies [123]. This
is attributed to the enhanced major carrier density as well as the major carrier mobility of BiVO4. The
photocurrrent was drastically improved to 4.16 ± 0.41 mA/cm2, and the NiOOH/FeOOH/N-BiVO4

photoanode manifested an applied biased photo-to-current efficiency (ABPE) of 2.0% under a bias of 0.6
V. In further investigations of the same BiVO4/Fe(Ni)OOH tandem structure, further enhancement of
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the photocurrent density up to 5.82 ± 0.36 mA/cm2 at 1.23 V versus RHE was achieved by Mo-doping
with a concentration of 3% on a nanocone FTO/BiVO4 substrate [124].

In other studies [125–128], because WO3 has well-known properties such as its low cost, high
chemical stability, and good charge transport activity, BiVO4 was coupled with this material to
overcome the moderate charge transport feature of PEC cells fabricated from pure BiVO4 to produce
PEC cells with robust performance. Nevertheless, these studies at potentials as low as 0.6 V versus
RHE still demonstrate charge separation efficiencies of less than 60%.

Kuang et al. [129] reported on a non-doped nanostructured BiVO4 photoanode with a bimetallic
NiFe-(oxy)hydroxide/borate(NiFeOx-Bi) oxygen evolution catalyst as an efficient oxidation co-catalyst
to achieve a solar energy conversion efficiency in excess of 2%. More importantly, a very high of incident
photo-to-current efficiency (IPCE) of approximately 80% was achieved at a potential as low as 0.6 V
versus RHE under front irradiation up to 460 nm, which is nearly twice of that of a previous nanoporous
BiVO4 electrode [122] without compromising other beneficial properties. Recently, Lee et al. [130]
fabricated epitaxial BiVO4 on a thin γ-WO3 template layer deposited on a SrTiO3 (001) substrate by
pulsed laser deposition (PLD).

Although PLD was applied in the fabrication of a BiVO4 photoanode electrode in PEC cells for
the first time by Liu and Yan [131] in the last decade, it drew less attention at the time because of its
very low photocurrent values, regardless of the high-quality films. However, the effect of the thin
γ-WO3 template layer on the effective charge transfer and increased active surface area of BiVO4

accounted for the significantly enhanced photocurrent density (2.20 mA/cm2) at 1.23 V versus RHE,
which is approximately 10 times higher than that of bare BiVO4. This study highlighted that PLD
combined with suitable BiVO4 photoanode materials is a facile and versatile technique for producing
good-quality electrodes for PEC water splitting.

(3) SrTiO3

Titanium dioxide (TiO2) was the first oxide used as a photoanode material for PEC water splitting
and was discovered by Fujishima-Honda [13]. Until now, it has been one of the most attractive
materials for PEC cells. However, TiO2 absorbs only in the UV part of the spectrum because of its large
bandgap [132], which exhibits low efficiency in water-splitting reactions when TiO2 is used as a single
photoanode [133–136].

SrTiO3 (STO) is a perovskite oxide that shows considerable ferroelectricity [137,138] and
possesses a favorable band edge structure that overlaps with the water redox potentials. In addition,
the conduction band edge is more negative than TiO2, as presented in Figure 9 [139]. Similar to TiO2,
STO responds only to the UV region and a negligible portion of the visible light. This has prevented it
from being a good single photoanode candidate for PEC cells. As a result, STO has been doped with
dopants, or coupled with TiO2, which the aim of shifting the Fermi level of the dual-phase STO/TiO2

composite [87], for application as a potential candidate for improving photoconversion efficiency.
Limited reports have focused on TO thin films with dopants such as (Cr, Rh, Ir, and Nb) [140–144].

However, a few of these studies have reported some drawbacks such as non-uniform doping and
the insignificant effect of such dopants, or even the resulting instability because of the formation of
IrO2 [145]. Recently, further investigation into STO/TiO2 photoanode materials has revealed some
desirable outcomes [87,139,145–148]. Wysmulek et al. [136] studied a durable eutectic system made
up of TiO2 and STO as an active photoanode material for PEC cells. Under 600 mW/cm2 of solar
irradiation, the TiO2/STO eutectic photoelectrode yielded a photocurrent density of up to 8.5 mA/cm2

at 1.5 V versus NHE and stabilized after 30 h of testing. This result not only shows an improvement
in the photocurrent density, it also showed a better long-term operation compared with Ir-doped
STO (24 h) [145]. Thus, eutectic composite-based photoelectrodes are untapped components for PEC
water splitting. In addition, the spontaneous electric polarization in STO can simultaneously enhance
charge separation and hole transportation in TiO2/STO core-shell nanowires (NWs) [146]. Compared
to the TiO2/BaTiO3 ferroelectric PEC system [138], STO ferroelectric material shows better charge



Appl. Sci. 2018, 8, 1526 16 of 30

mobility, which will facilitate hole migration inside the ferroelectric layer. Interestingly, the core shell
with an optimal STO thickness of 10 nm generates the highest photocurrent density of 1.43 mA/cm2

and has the charge-separation efficiency of 87.7% at 1.23 V versus RHE. This corresponds to an 83%
and 79% improvement in comparison with pristine TiO2 NWs. This study has paved the way for
the application of semiconducting ferroelectric materials to further advance the development of
ferroelectric PEC systems.
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a eutectic system as the photoactive anode material. (b) Charge-carrier separation mechanism at the
phase boundary, with bandgap positions and values with respect to electrochemical potential (E) vs.
NHE based on [139,147,148]. Figure 9 [139] from Copyright 2017 Elsevier.

(4) BiFeO3

The BiFeO3 (BFO) ferroelectric material shows unique photovoltaic effects that result from
large spontaneous polarization. This prominent characteristic develops a high built-in potential
that effectively enhances the separation and drift of photogenerated carriers for application in PEC
devices composed of BFO-containing photoelectrodes. In comparison with photocathodic materials,
there are few reports regarding the application of BFO as photoanodic materials in PEC water splitting.

Very recently, Song et al. [4] reported on epitaxial BFO thin-film photoanodes with different
crystallographic orientations including (111)pc, (110)pc, (001)pc, and the consequence of the ferroelectric
domain structures was also investigated. To investigate the difference among various crystallographic
orientations on ferroelectric properties and the effect of different polarization states on photovoltaic
performance, ferroelectric P–E hysteresis loop and polarization switching measurements were
performed, respectively, as shown in Figure 10. The results revealed that in the absence of polarization,
the charge energy band bending, which induces inefficient charge separation, was not observed.
In contrast, an optimal PEC performance with (111)pc BFO thin film under a downward polarization
state was revealed. Previously, enhanced efficiency in a polycrystalline BFO photoanode also exhibited
a similar mechanism when switching the polling bias from +8 V to −8 V [149]. This BFO thin film
was based on the cost-effective technology of spin coating, instead of growing epitaxial BFO thin
film using more sophisticated techniques including radio frequency (RF) and pulsed laser deposition
(PLD) [150,151]. However, this limits their application in large-scale technology.
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(5) PbTiO3

Although a large number of studies have been performed based on PbTiO3-containing materials
as photocathodes in PEC cells for hydrogen production, photoanodes composed of PbTiO3 (PTO) are
increasingly of concern. Specifically, there are numerous reports on nanostructured PTO because of
their superior PEC properties, which are related to their randomly shaped particles [152,153]. Moreover,
many useful approaches based on heterojunctions from different semiconductors have resulted in
improved photoactivity [127,154–158].

Based on these two interpretations, Jang et al. [159] synthesized vertically aligned core–shell
PTO@TiO2 heterojunction nanotube arrays fabricated on FTO glass by a three-step process that can
help suppress the opaque photoanode problem reported in a previous study [91]. As expected,
the directional charge transport in one-dimensional (1D) nanostructure and additional heterojunction
effects between PTO and TiO2 favor charge separation and enhanced PEC efficiency in PTO@TiO2

photoanode-based systems. Recently, there was a report on the synthesis of nanotubular PTO-based
photoanodes in PEC devices for the first time [160]. The investigation was performed with two
synthetic electrodes of 1D nanotube arrays of PTO (NT–PTO) and Pt-dots@PTO nanotube arrays
(PNT–PTO) in comparison with two reference electrodes made of PTO nanotubes (no Pt dots) and
PTO powder (no nanotubes). The result presents that the NT–PTO photoanode achieved the highest
photocurrent density of 64 µA/cm2 at 1.05 V versus RHE. In comparison, the PTO powder-based
photoelectrode exhibited a meager value of 8 µA/cm2 at the same RHE potential. The enhanced
PEC performance was elucidated by reducing the electron–hole recombination through the isolated
oxidation sites at the external surface of the Pt-dots@PTO nanotubular structure.

4.3.2. Ferroelectric Chalcogenides

(1) CdS

Cadmium sulfide (CdS) is the most common ferroelectric chalcogenide investigated in PEC water
splitting because of its narrow energy bandgap of 2.4 eV and suitable band edge position [157,158].
Despite these advantages, the CdS-based PEC devices showed a low performance because of inefficient
charge transfer and separation [161–165].

Uniform carbon-coated CdS core–shell nanostructures are potentially useful as a facile and
novel approach to overcome this challenge [166]. The enhanced performance is elucidated by the
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substantially improved electron transfer, which results from the high electrical conductivity of the
coated carbon layer on CdS. CdS widely couples with ZnO nanowires and nanorods as an ideal
heterostructure in PEC devices that helps to suppress internal charge recombination and enhance
solar-to-chemical conversion [167–169]. Accordingly, the development of ZnO/CdS nanotube arrays
outperforms the previous structures with a larger specific surface, which results in a superior ability
for charge extraction, especially in the case of nanoparticle plasmon metal addition [170,171].

Besides the common nanostructured CdS, a rare report on the versatile hierarchical structure of
CdS film was investigated recently [172]. Zang et al. [173] grew screw-like SnO2 nanosheets on rod-like
single-crystalline SnO2 nanowires deposited with CdS quantum dots in PEC cells that tend to move
toward efficient PEC water splitting. This structure is a combination of both the fast charge transport
path of 1D nanostructures and the high porosity and light absorption of 2D nanosheets, which will
extend the perspective of high-performance PEC cells in the near future.

(2) ZnS

Zinc sulfide (ZnS) is regarded as one of the most important II–VI semiconductors, and is
an appealing candidate for water splitting because of its own outstanding properties, which include
an ability to generate mobile photoexcited charge carriers [174], fast electron transfer because
of high CB potential, and high catalytic activity for H2 generation under conditions without
a co-catalyst [175,176]. However, the performance of pure ZnS-based photoelectrode in water-splitting
devices is limited, because absorption is only in the UV region due to the wide bandgap value of
3.66 eV of this material [177]. Furthermore, overcoming the high charge recombination is also a serious
challenge [178,179].

As a result, many modifications have been investigated for ZnS-based electrodes to increase visible
light absorption. To enhance photocatalytic activity, transition metal-doped ZnS (Cu, Ni, Mo) or doping
with GaN were investigated as potentially efficient photocatalysts to generate H2 under visible light
irradiation [180–182]. However, due to the remaining challenges of dopant introduction [181,183–186]
an alternative method by controlling defects in nanostructured ZnS has been exploited through PLD
to enhance the overall PEC properties of ZnS [187]. The fabrication of ZnS-based heterojunctions with
other semiconductors for more advanced designs has been considered to enhance PEC performance
for water splitting.

Typically, the ZnO/ZnS heterostructure has drawn tremendous attention because of the
extended visible absorption that it affords and its appropriate alignment [188–192]. Among ZnO/ZnS
heterostructures with different morphologies such as nanowires [193] and nanorings [194] synthesized
by means of chemical processes, the PEC behavior is scarcely introduced by anodization,
which facilitates electron–hole separation, and consequently, the enhancement of photoelectrochemical
activity for water splitting [195]. Moreover, the design of sandwich-structured ZnO/ZnS photoanodes
with a third component, such as noble metals Au or graphite-like carbon nitride (C3N4), have been
demonstrated with significantly superior PEC activity compared to those of a pristine ZnO
photoanode [196,197]. Nevertheless, the remaining challenge is the wide bandgap of the ZnO/ZnS
heterojunction, which still limits large-range visible light absorption. The systems that result from
coupling ZnS with narrow bandgap chalcogenide CdS exhibit much higher performance than those of
every single material-based system [198–202].

4.3.3. Hybrid Halide Ferroelectric CH3NH3PbI3 Perovskite Tandem System Approach

Tandem cell configuration is a facile and novel approach to address the limitation of single or
heterojunction PEC devices for water splitting. Organic–inorganic hybrid perovskite CH3NH3PbI3 has
attracted tremendous attention in perovskite solar cells (PSCs) because of their superb light-harvesting
characteristics, large electron/hole diffusion lengths, and high crystallinity [203–207]. Based on the
latest research, the certified highest efficiency of PSCs is 22.1% fabricated on limited to very small areas
(~1 cm2) [208]. Ferroelectric domains have been observed in CH3NH3PbI3, despite the centrosymmetric
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structure of this perovskite material, which is ascribed to the reduced symmetry of molecular CH3NH3
+

dipoles [209,210].
Recently, Luo et al. [211] demonstrated two perovskite solar cells connected in series as a tandem

cell that can serve as a separated and external power supply for water splitting, as presented in
Figure 11. Although this device can achieve a high photocurrent density of ~10 mA/cm2, the electrodes
were not directly settled in the photoreactions. Moreover, the rapid fluctuation of the photocurrent due
to the instability of the perovskite was a challenge that could be addressed by encapsulation techniques
to achieve intriguing PEC tandem systems. More recently, Da et al. reported on a CH3NH3PbI3-based
photoanode coated by an ultrathin Ni layer for the first time with a much enhanced photocurrent
density of 12 mA/cm2, which is attributed to the improved photoabsorption of CH3NH3PbI3 [212].
In their report, a Ni top layer played a decisive role in the enhancement of the photocurrent density
and assisted in the suppression of the instability of perovskite PEC tandem systems in water; this
evokes many promising perspectives in the development of hybrid perovskite-based tandem cells.
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Figure 11. Combination of the perovskite tandem cell with NiFe DLH/Ni foam electrodes for water
splitting, (a) Schematic diagram of the water-splitting device, (b) A generalized energy schematic of
the perovskite tandem cell for water splitting [211]. Copyright from 2014, American Association for the
Advancement of Science.

5. Conclusions and Outlook

Interest in solar water splitting is on the rise, which is in line with a general trend of increasing
environmental awareness. Based on state-of-the-art reports, amazing progress in solar water splitting
has been demonstrated, including the upgrade of systems, and the development of new electrode
materials and their structure. To perform high-efficiency solar water splitting, the materials used
in the different systems have to satisfy three conditions. They should have: an appropriate
bandgap energy, a suitable position of the bandgap, and chemical stability. The ideal material has
a bandgap of approximately ~2.0–2.2 eV, which can absorb about 40% of the total incident sunlight.
The conduction band (CB) and valence band (VB) of the materials should be higher—between the water
reduction level and below the oxidation level of water—in order to induce the water decomposition
reaction. At present, no materials have been identified that meet all of the requirements for water
decomposition reactions.

In this review, we introduced various ferroelectric materials for solar water splitting with high
STH efficiency. Ferroelectric materials have been known to be very stable and strong for chemical
and physical applications, and their bandgap could be narrowed by doping and/or substitution.
Even though solar water splitting systems with ferroelectric materials are the newest technology
and have attracted important new research into hydrogen generation, until now, there has not
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yet been much research performed on ferroelectric materials for use in water-splitting systems.
Solar water-splitting systems with ferroelectrics are expected as significant advances in the process of
hydrogen generation, with high STH efficiencies compared to other materials.
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