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Abstract: Neurotransmitters are molecules that transfer chemical signals between neurons to convey
messages for any action conducted by the nervous system. All neurotransmitters are medically
important; the detection and analysis of these molecules play vital roles in the diagnosis and treatment
of diseases. Among analytical strategies, electrochemical techniques have been identified as simple,
inexpensive, and less time-consuming processes. Electrochemical analysis is based on the redox
behaviors of neurotransmitters, as well as their metabolites. A variety of electrochemical techniques
are available for the detection of biomolecules. However, the development of a sensing platform
with high sensitivity and selectivity is challenging, and it has been found to be a bottleneck step
in the analysis of neurotransmitters. Nanomaterials-based sensor platforms are fascinating for
researchers because of their ability to perform the electrochemical analysis of neurotransmitters
due to their improved detection efficacy, and they have been widely reported on for their sensitive
detection of epinephrine, dopamine, serotonin, glutamate, acetylcholine, nitric oxide, and purines.
The advancement of electroanalytical technologies and the innovation of functional nanomaterials
have been assisting greatly in in vivo and in vitro analyses of neurotransmitters, especially for
point-of-care clinical applications. In this review, firstly, we focus on the most commonly employed
electrochemical analysis techniques, in conjunction with their working principles and abilities for the
detection of neurotransmitters. Subsequently, we concentrate on the fabrication and development of
nanomaterials-based electrochemical sensors and their advantages over other detection techniques.
Finally, we address the challenges and the future outlook in the development of electrochemical
sensors for the efficient detection of neurotransmitters.

Keywords: electrochemical analysis; neurotransmitters; in vitro and in vivo detection; nanomaterials

1. Introduction

In multicellular organisms, the nervous system transmits information generated in the brain to
the entire body [1]. In this process, nerve cells transfer signals from neurons to targeted neuronal
chemical synapses. This signal transfer occurs electrically and chemically between nerve cells. In brief,
firstly, electrical signals are transmitted along the cell membrane within cells. Secondly, the electrical
signals are converted into chemical signals for communication between cells. These chemical signals
are conveyed by small messenger molecules, called neurotransmitters, which drive the behavioral,
cognitive, and emotional states of an organism. They also have impact on muscle movement and heart
rate, while regulating sleep, memory, and learning. There are different types of neurotransmitters that
are described as amino acids, peptides, monoamines, gas transmitters, trace amines, and purines. In
current analytical research, neurochemical quantification has led to many enhancements toward the
understanding of the biochemistry of the nervous system. Abnormal neurotransmitter levels, such as
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degenerative diseases, mental disorders, depression, and many other health issues, may significantly
affect physiological and behavioral processes. The quantitative detection of neurotransmitters has the
strong potential to aid in the development of medical diagnostics and therapeutics [2].

Spectroscopic, chromatographic, and electrochemical strategies are the most commonly used
analytical methods for the detection of neurotransmitters. For instance, optical spectroscopy,
liquid chromatography, capillary electrophoresis separations, mass spectrometry, microelectrodes,
electrochemical sensors, and biosensors are widely employed techniques for the detection of
neurochemicals [3]. To utilize spectroscopic and chromatographic techniques, sample separation
and purification, which are tedious and time consuming, are required prior to measurements.
Moreover, in the optical-based techniques, sample preparation is an additional step and is involved
with other chemical species, such as fluorescent dyes or metal complexes, for the selective and
sensitive detection of neurotransmitters [4]. The applicability of these technologies are further
limited in in vivo measurements due to complex instrumentation, difficulties in miniaturization,
and high cost. In contrast, electrochemical-based approaches with microelectrodes might be employed
either directly or following sample purification via ultra-dialysis, centrifugation, or perfusion
methods [5]. The electrochemical analysis of neurotransmitters involves the measurement of changes
in currents when an electrode potential is applied. In principle, if a neurotransmitter can be oxidized
electrochemically, it should be detected and monitored through in vivo or in vitro electrochemical
measurements. In vitro studies, conducted outside of a living organism in a controlled environment,
are commonly used for electrochemical measurements. These studies prove the ability of a certain
nanomaterial to detect a given neurotransmitter but are not reflective of the complexity of a true living
organism. For this reason, in vitro studies may not be a truly accurate description of the nanomaterials’
performance within a living organism. In vivo studies are conducted within living tissue and are
typically more complicated than in vitro measurements. In vivo measurements are more reflective of
the true performance of the nanomaterial being studied. Short-term analysis may confirm the feasibility
of a proposed nanomaterials-based electrochemical sensor, but long-term measurements should be
performed to ensure the stability and toxicity of a nanomaterial in a living organism. The integration
of both in vivo and in vitro measurements would provide important information regarding the ability
of a nanomaterial to detect neurotransmitters. To detect and monitor neurotransmitters, various
electroanalytical methods have been employed such as cyclic voltammetry (CV), differential pulse
voltammetry (DPV), squarewave voltammetry (SWV), amperometry, and so forth [6,7].

CV is the most extensively used technique for initial electrochemical studies, in which potential
is applied to the electrode in a triangular waveform and the resulting current is measured. Based
on cyclic voltammograms, qualitative and quantitative information of analytes can be provided by
means of measuring the redox peak potential and peak current. CV is also employed to obtain
thermodynamic and mechanistic information related to electrochemical reactions. Akin to CV, linear
sweep voltammetry (LSV) is also a very useful tool to elucidate reaction mechanisms and electrode
processes. These techniques are practically useful for studying more complex reactions of various
biologically important molecules, including, but not limited to, neurotransmitters. However, in these
techniques, the inherent non-faradaic process contribution is unavoidable, and it may significantly
limit the detection of analytes. Thus, in order to measure the small faradaic current, the non-faradic
current should be subtracted. Moreover, to minimize the non-faradic contribution toward lowering
the limit of detection, differential pulse voltammetry (DPV) and squarewave voltammetry (SWV) have
been employed in electrochemical sensing and biosensing of disease-related biomarkers and chemical
contaminants [8]. Scanning electrochemical microscopy (SECM) is also another important technique
that has been used to detect and monitor neurotransmitters. For instance, dopamine released from
single cells was successfully monitored using SECM [9].

Amperometry is another useful electrochemical technique for the detection of neurotransmitters.
In amperometry, the electrode is held at a constant potential to enable the oxidation or reduction of an
analyte of interest where a mass transport limited current is generated. The mass transport limited
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currents may be converted into concentrations using calibration factors obtained from standards
of known concentrations. This technique might detect neurotransmitters at the sub-nanomolar
concentration range. As some biomolecules (e.g., proteins) may not be electrochemically oxidized/
reduced directly, mediators may be utilized for the electrochemical detection of the targeted molecules.
However, these techniques may be subject to some complications, such as mutual interference due
to the oxidation of multiple biomolecules at the same potential, inherent low concentration, and
possible fouling. To overcome these challenges, considerable efforts have been invested to develop
nanomaterials-based electrochemical sensors for the sensitive detection of biologically significant
molecules for medical applications [4,8]. In this review article, we mainly focus on the development of
various functional nanomaterials-based electrochemical sensors for the detection of neurotransmitters.

A variety of nanomaterials have been explored for the electrochemical detection of neurochemicals,
as illustrated in Figure 1. For instance, noble metals (e.g., Au, Ag, Pt, and Pd), non-noble metal
oxides (e.g., Fe2O3, FeMoO4, NiO, and Co3O4), polymers (e.g., polypyrrole, Nafion, and poly(3,4-
ethylenedioxythiophene) (PEDOT)), carbon-based nanomaterials (carbon nanotubes (CNT), graphene,
and carbon fiber), and the combination of these materials have been used for in vitro and/or in vivo
detection of neurotransmitters [9–12]. The size, shape, and synthetic procedure of the functional
nanomaterials may considerably influence the sensing performance. The advancement of synthetic
chemistry and the evolution of nanoscience and technology have greatly assisted in the fabrication of
sensitive and selective sensing platforms. Numerous methods have been reported for the synthesis
of noble metal-based nanoparticles, such as chemical reduction, hydrothermal, solvothermal, and
thermal annealing methods, with controlled size and shape [13–17]. Among the noble metal-based
nanomaterials, gold nanoparticles have been widely exploited for biomedical applications due to
their peculiar properties such as chemical, optical, electrical, and catalytic biocompatibility and its
ability to conjugate with biomolecules [18]. Silver nanoparticles have also been extensively explored
for practical applications due to their highly selective and sensitive performance towards the detection
of biomolecules [19–21]. In addition, various non-noble metal-based metal/metal oxides have been
fabricated and tested for the in vitro analysis of neurotransmitters.Appl. Sci. 2018, 8, x FOR PEER REVIEW  4 of 30 
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Furthermore, carbon-based nanomaterials have been extensively explored in the real-time analysis
of biomolecules due to their biocompatibility, non-toxic properties, and low costs. Different types of
carbon materials, such as single-walled CNTs, multi-walled CNTs, graphene, and reduced graphene
oxide (rGO) have been exploited for biosensing and electrochemical sensing applications [22,23]. CNTs
exhibit both metallic and semiconductor properties, depending upon the diameter, chirality, and
number of sheets of the tubes. Arc discharge, laser ablation, and chemical vapor deposition are the
major methods for the growth of CNTs. Among the carbon-based nanomaterials, CNTs have been
extensively explored in the development of electrochemical sensors due to their high surface-to-volume
ratio, rapid electrode kinetics, and high conductivity [24,25]. Another widely studied carbon-based
material is graphene, which is a two-dimensional carbon material with its carbon atoms arranged in
hexagonal fashion. This novel carbon material exhibits good electrochemical, thermal, mechanical,
and optical properties, which are desirable for designing a high-performance sensor platform.
Various carbon nanomaterials-based electrochemical sensors and biosensors has been reported for
pharmaceutical, environmental, and biomedical applications [26–31]. The advantages of using a
nanomaterials-based approach for electrochemical sensing are the improved selectivity, reduction
of cost, potential for miniaturization, and higher sensitivity. Detecting neurotransmitters using a
bare electrode could be challenging due to its low sensitivity and selectivity. Nanomaterials-based
electrochemical sensors provide distinct advantages over those without nanomaterials.

Broad scientific knowledge and modern engineering have led to the design and development of
miniaturized and portable electrochemical sensors and biosensors for the in vitro and in vivo detection
of neurotransmitters. Nanomaterials-based electrochemical sensors have increasingly appealed
to researchers in the disciplines of analytical chemistry due to their augmented electrocatalytic
activity, high surface area-to-volume ratios, and possible functionalization enabling them with
tailor-made physicochemical properties. Over the last decade, nanomaterials-based electrochemical
sensor and biosensors emerged as a promising strategy for the detection of neurotransmitters
with improved selectivity and sensitivity [32–34]. This review will strive to elucidate the recent
development of nanomaterials-based electrochemical sensors for the in vitro and in vivo detection of
common neurotransmitters, including epinephrine, dopamine, serotonin, norepinephrine, glutamate,
acetylcholine, nitric oxide, and purines. Besides the in vitro detection, this review also highlights some
recent in vivo monitoring of neurotransmitters in the live tissues of drosophila, rats, chicken, and
zebrafish. Some core issues associated with the electrochemical approaches used in the detection and
monitoring of neurotransmitters and the future development in this exciting area are addressed.

2. In Vitro Detection of Typical Neurotransmitters

The introduction of the electrochemical techniques in neurochemical detection has created some
significant advantages, such as portability, rapid response, low cost, and self-contained instrumentation.
In this section, the recent advancements in the nanomaterials-based in vitro electrochemical analysis
of the aforementioned common neurotransmitters is presented.

Epinephrine (EP), which is also known as adrenaline, is a catecholamine neurotransmitter. It
increases the amount of glucose in the circulation via an enzymatic reaction to assist with fight or
flight responses. The function of EP depends on its oxidation by an enzyme called amine oxidase,
and its abnormal levels affect the regulation of blood pressure, heart rate, lipolysis, the immune
system, and glycogen metabolism [33]. Parkinson’s disease patients may have low amounts of EP
in their bodies. In addition, EP has a positive impact on local sedative adsorption into the blood
stream by narrowing the blood vessels, reducing toxic side effects, and increasing the duration of
medicinal activity [34,35]. Nanomaterials-based electrochemical sensors show high performance in
the detection of EP in a wide range of concentrations. As shown in Figure 2, DPV and amperometry
were employed to detect EP using a nanoporous sponge-like Au–Ag electrode, showing a systematic
increase in the current density in the concentration range of 10–275 µM and 25–500 µM, respectively [36].
In the DPV method, the highest sensitivity (1.52 mA cm−2 mM−1) and the lowest detection limit
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(5.05 × 10−6 M) were observed for the efficient detection of EP in the presence of ascorbic acid
(AA). In contrast to bulk gold, this dealloyed nanoporous Au–Ag film showed high electrocatalytic
activity for EP oxidation due to the nanosize effect of the electrode. As proposed in Figure 2C, the
EP oxidation followed the electron transfer–chemical reaction–electron transfer (ECE) mechanism.
The mechanisms of the electrochemical detection of neurotransmitters could be varied with the
different neurotransmitters being investigated. In general, the loss of one or more electrons from
the molecule leads to a change in functional groups, as well as a change in the molecule’s structure.
For example, in Figure 2, the first step of the oxidation of epinephrine involves the loss of two
electrons and the formation of epinephrinequinone. The following step involves a further change
of the structure to leucoadrenochrome via the formation of a five-membered ring. Wierzbicka et al.
reported highly ordered gold/aluminum oxide as a sensing platform for the detection of EP, showing
high sensitivity of 2.05 mA cm−2 mM−1 and the lowest detection limit (2.43 × 10−6 M) in the
presence of uric acid (UA) [37]. Beitollahi et al. modified a glassy carbon electrode (GCE) with
CNTs and 2-(4-oxo-3-phenyl-3,4-dihydro-quinazolinyl)-N′-phenyl-hydra-zinecarbothioamide for the
simultaneous determination of EP and norepinephrine (NE) [38], where two well-defined peaks with
a separation of 240 mV appeared in the SWV. In another study, ZnO-based molecularly imprinted
polymer arrays were employed to detect EP in the presence of UA and AA using DPV with a sensitivity
of 0.66 µA µM−1, which was lower than that of some previously discussed work. This may be
ascribed to its low crystallinity and the high resistance of the fabricated non-noble metal oxide-based
materials [39]. As the electrochemical oxidation of EP and dopamine may occur at a similar electrode
potential, the design of the nanomaterials is crucial for the real sample analysis for the selective
detection of EP. One strategy that can be employed to improve the selectivity of the electrode is to
modify the surface with some chemical moieties (e.g., functional groups) that have a higher affinity to
EP over dopamine.

Dopamine (DA) is a neurotransmitter of the phenethylamine family that participates in
metabolism, attention span, central nerve function, emotions, and neuronal elasticity. It also
regulates plasma glucose levels, endocrine function, and neuroimmune regulation [40–42]. The
DA receptor in the peripheral nervous system activates DA, and the activated DA is involved
in cross-talk between the immune and neural systems. An abnormal activated DA level may
cause neuro-immune system dysfunctions [43–45]. Molecularly imprinted polymers on a gold
electrode were employed for the detection of DA in human blood serum using DPV with the limit of
detection of 0.13 µM [46]. The designed electrode exhibited high selectivity, effectively discriminating
DA molecules from AA and UA. Electrochemical detection with microchip electrophoresis is a
novel approach for the analysis of neurotransmitters. A palladium microelectrode with microchip
capillary electrophoresis was employed for the selective detection of DA with a sensitivity of
2.6 pA µM and a detection limit of 2.1 µM. As palladium does not show high catalytic activity
for the electrochemical oxidation of DA, the integration of platinum and/or gold with palladium
was proposed to improve the performance of the palladium-based sensor [47]. Gold nanowires
(Au NW), with different widths in the range of 30–1500 nm, were used for the oxidative
detection of DA [48]. The current density of the Au NW electrode (25.87 mA cm−2 @ NW
~614 nm) was much higher than that of an Au thin film (0.043 mA cm−2). However, the
selectivity of the NW-based sensor needs to be improved for real sample tests. Core-shell and
hollow poly(3,4-ethylenedioxythiophene)/poly(N-methylpyrrole)/poly(3,4-ethylenedioxythiophene)
microspheres, fabricated using chemical polymerization with FeCl3, had the capacity to detect DA
with a concentration range from 0.5 to 2 mM [49]. These polymer-based electrode materials showed
efficacy as electrochemical sensors, and this approach may be used to fabricate various multilayered
sensor platforms with dopants. As displayed in Figure 3, polymer-based organic electrochemical
transistors (OECT) with graphene were demonstrated to have a limit of detection (LOD) of 5 nM
for DA [50]. The mechanism of the electrochemical oxidation of dopamine involves a two-electron
transfer to form dopamine-o-quinone. A magnetic Fe3O4/rGO-based sensor has been reported for the
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simultaneous detection of AA, DA, and UA using DPV [51]. A carbon nanorod array electrode was
developed for the sensitive detection of dopamine with a limit of detection of 60 nM and a sensitivity
of 7 nA µM−1 [52]. Xinying et al. fabricated a graphene-based electrode to detect DA in the presence
of a number of potential interferents such as EP, UA, and AA. Moreover, the DA in rabbit serum
was also analyzed with a recovery of 97.8% [53]. A generator–collector approach was established for
selective DA detection in the presence of AA using microwell arrays with the concept based on redox
cycling. Under such experimental conditions, the interfering species is discriminated diffusionally.
The analyte may freely diffuse into the microcavities and be involved in the electrochemical reactions.
However, more theoretical and experimental findings are required to understand the detection
mechanisms in the presence of other neurochemicals, especially EP and norepinephrine [54]. DA
oxidation was conducted on the surface of multilayer graphene nanobelts/glassy carbon electrode
using amperometry in the presence of potential interferents. The amperometry response of the
graphene nanobelt exhibited a sensitivity of 0.95 µA µM−1 for the DA oxidation [55]. As shown
in Figure 4, an electrochemically formed nickel oxide nanoparticle/multiwalled carbon nanotube
(MWCNT) was tested for the simultaneous detection of neurochemicals, and the sensitivity of DA and
EP were calculated to be 3.8 and 3.9 µA µM−1, respectively [56]. Further, the detection was attempted
in real samples such as human cerebrospinal fluid, human serum, and lung fluid spiked with DA and
EP. The experimental measurements revealed that the recovery percentage was in the range between
~97–106%.Appl. Sci. 2018, 8, x FOR PEER REVIEW  6 of 30 
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carbon nanotubes (MWCNTs) and dihexadecylphosphate (DHP) film [56]. Copyright 2014, Royal
Society of Chemistry.

An organic field-effect transistor type (OFET) was developed using platinum nanoparticle-
decorated rGO for the selective detection of dopamine in the presence of non-target molecules such as
AA and UA, as well as tyrosine and phenethylamine [57]. Aside from nanomaterials-based sensors,
an RNA-modified aptamer electrode was explored for the detection of DA in blood serum, as shown
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in Figure 5. The sensitivity and LOD were 67 ± 1 nA µM−1 cm−2 and 62 nM, respectively [58].
The positively charged cysteamine self-assembled monolayer (SAM) discriminated DA from the
negatively charged interference molecules (e.g., AA) on the aptamer, which provided the selectivity
to the fabricated sensors. In the DA detection, the potential interference of AA and UA may be
avoided by the careful design of the electrode and the selection of materials [59]. However, interference
from structurally related neurochemicals (e.g., DA and EP) is challenging to avoid. In such a case,
receptor-incorporated nanomaterials-based sensing strategies need to be developed for the selective
detection of DA.Appl. Sci. 2018, 8, x FOR PEER REVIEW  9 of 30 
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Figure 5. Schematic representation (left panel) of the flow-through wall-jet electrochemical cell (with a
working electrode (WE), a counter electrode (CE), and an Ag/AgCl (0.1 M KCl) reference electrode
(RE)) used for dopamine electroanalysis and the aptamer-modified gold electrode surface. The right
panel image shows the chronoamperometric response of the aptasensor to dopamine, selectively
trapped from the flow of neurotransmitterss over the sensor surface. Following each measurement,
the electrode surface was regenerated in a flow of a blank buffer solution to remove the oxidized
analytes [58]. Copyright 2016, American Chemical Society.

Serotonin or 5-hydroxytryptamine (5-HT) is involved in many biological processes, including
behavior and sensory perception. The concentration of 5-HT in the human brain is 10 mg, where 2% is
present in the central nervous system. Changes in 5-HT concentrations create different neurological
and psychiatric issues. Further, 5-HT levels are directly related to gastrointestinal illness [60]. For all
the above reasons, the detection of 5-HT has great significance in the diagnosis of various diseases and
in elucidating its role in several neurological disorders. As low 5-HT levels in the brain may be an
indicator of depression, its presence in the blood, serum, plasma, and platelets may be considered as
a peripheral biochemical marker for depression [60]. The oxidation of 5-HT involves the transfer of
two electrons to form serotonin quinoneimine. Cesarino et al. fabricated an electrode with platinum
nanoparticles/polypyrrole/MWCNT/silver nanoparticles for the detection of 5-HT and achieved a
detection limit of 0.15 µM using DPV [61]. The synergistic effect of the nanohybrid was responsible for
the sensitive detection of 5-HT. As in the abovementioned work, gold/polypyrrole nanocomposites
were developed for the detection of 5-HT and revealed high sensitivity (0.3316 µA·µM−1) and a low
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detection limit of 33.22 nM [62]. The polymer-incorporated sensing platform assisted to control the
accumulation of 5-HT on the electrode surface for high performance. However, a high concentration
of glucose significantly affected the 5-HT signal by about 30%. Based on Fe3O4-MWCNT-poly
(bromocresol green) film, the electrochemical detection of 5-HT was also achieved using DPV, and
it permitted detection in the concentration range between 0.5 and 100 µM with a detection limit of
0.08 µM [63]. The interference of UA oxidation significantly limited the sensing performance of the
electrode for 5-HT when the UA concentration increased by 20-fold. A polyethylenimine CNT fiber
microelectrode (PEI-CNT MEs) was employed for the oxidation of 5-HT, and a comparison of its
performance with a carbon-fiber microelectrode (CFMEs) is shown in Figure 6. The PEI-CNT MEs
showed high selectivity and a stable response compared with CFMEs. The biofouling by serotonin
and its metabolite interferant 5-hydroxyindoleacetic acid (5-HIAA) decreased the current response
to 50% for CFMEs, whereas no significant current drop was observed with respect to PEI-CNT MEs
(retains 100%) [64]. Thus, these PEI-CNT MEs may be beneficial for the real-time analysis of 5-HT. The
detection of 5-HT can be improved through the incorporation of a selective ion exchange resin capable
of repelling interfering molecules.
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Figure 6. 5-hydroxyindoleacetic acid (5-HIAA) fouling in vitro. One micromolar serotonin was detected
at a polyethylenimine CNT (PEI-CNT) fiber electrode before and 2 h after it was bathed in 10 µM
5-HIAA, while the waveform was applied. The applied waveform was the serotonin waveform (0.2–1.0
to −0.1 to 0.2 at 1000 V·s−1). (A) The cyclic voltammograms (CVs) are similar before and after 5-HIAA
at the PEICNT microelectrodes; (B) For carbon-fiber microelectrodes (CFMEs) after 2 h in 10 µM
5-HIAA, the oxidation peak of serotonin was no longer visible; (C) Bar graphs depicting the change
in peak oxidative current for serotonin prior to and following exposure to 10 µM 5-HIAA for 2 h [64].
Copyright 2014, American Chemical Society.

Norepinephrine (NE) is involved in the elevation of heart rate, blood pressure, pupil dilation,
airway dilation, and the constriction of blood vessels. It also participates in glycogen metabolism
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and plays a major role in the sleep–wake cycle, attention, focus, learning, and memory [65]. Despite
the significant volume of robust mechanistic and clinical trial data supporting the benefits of the
renin–angiotensin–aldosterone system and the beta-adrenergic receptor blockade in adults with systolic
heart failure, it remains unclear whether these mechanisms are also involved in mediating heart failure
in single-ventricle patients [66]. Without such knowledge, further clinical trials of neurohormonal
blockades in single-ventricle patients will remain unappealing [67,68]. The oxidation of norepinephrine
is similar to that of epinephrine, as illustrated in Figure 2C, where a two-electron transfer takes place
to form norepinephrine quinone. Hydrothermally prepared MoO3 nanowires deposited on GCEs
showed an improved response for the oxidation of NE with a response time of 2 s and detection limit of
0.11 µM [69]. From the CV curves, the heterogeneous electron transfer rate constant was calculated to
be 8.03 × 10−4 cm s−1. The improved electrochemical performance was attributed to the high catalytic
activity and one-dimensional (1D) microstructure of the MoO3 nanowires, which allowed for easier
electron transport and increased the overall performance of the sensor. In addition, nanorod-shaped
FeMoO4 was investigated for the electrochemical detection of NE, and the LOD was determined
to be 3.7 nM. These 1D non-noble metal-based nanostructures exhibited high sensing performance
similar to enzyme- and noble metal-based electrochemical sensors [70]. Moreover, the electrochemical
oxidation of NE was demonstrated on carbon paste electrodes with carbon nanotubes (CNT-CPE)
and a molybdenum (vi) complex, which facilitated the electron transfer of NE at the surface of the
electrode, which led to the non-interferent detection of NE with a LOD of 0.039 µA·µM−1 [71]. The
simultaneous detection of NE and acetaminophen was proposed using MnO2-decorated rGO. The
proposed MoO2-rGO simultaneously detected the NE and acetaminophen with detection limits of
2.0 nM and 0.4 µM, respectively [72]. Screen-printed mesoporous carbon was utilized for the oxidation
of NE, and the LOD was determined to be 0.589 nM using the amperometry technique [73]. The
performance of the sensor is directly related to the -surface area of the mesoporous carbon. Further,
various metal and/or metal oxide-decorated carbon-based nanocomposites have been utilized for the
detection of NE in the presence of other neurochemicals [74,75]. However, the selective detection of
NE is still a challenging task due to the mutual interference of other neurotransmitters, especially in
the presence of EP and DA. Again, the use of a selective resin, ion channel, or functional groups could
be a viable strategy to achieve higher selectivity for the detection of NE, as well as EP and DA.

L-Glutamate (L-Glu) is an excitatory transmitter in the vertebrate brain that is expressed in glial
cells, behaves as potential neurotoxin by its overstimulation of its membrane receptors, and participates
in the synthesis of the glutathione antioxidant [76]. Signal processing in the retina is controlled via the
integration of excitatory and inhibitory inputs of retinal neurons [77,78]. The distribution of glutamate
receptor “subtype” retinal neurons has been characterized by immunohistochemical techniques [79].
The oxidation of L-Glu involves an oxidative deamination in which the amine group on the second
carbon is converted to a carbonyl group. This two-electron transfer forms α-ketoglutarate as the
product. A multisite array of two microelectrodes on a ceramic base was fabricated to detect L-Glu
using glutamate oxidase, where the low detection limits (0.98 µM) and excellent linear range from
0 to 200 µM were observed for the in vitro analysis of L-Glu [80]. This approach was also useful for
glucose detection. A ferrocene-incorporated single wall carbon nanotube (SWCNT) was investigated
for the oxidation of L-Glu using CV and amperometry techniques. The ferrocene/SWCNT exhibited a
fast response to attain dynamic equilibrium for each addition of L-Glu from 1 to 7 µM and generated
a steady-state current in amperometry [81]. Dorozhko et al. conducted L-Glu oxidation using a
carbon-containing electrode modified with gold (CCEMG) and showed an analytical signal for L-Glu
with linear behavior in the range from 3.2 × 10−4 to 2.5 × 10−3 M. This enzyme-free detection
method revealed that the potential of the L-Glu oxidation peak was dependent upon the pH [82].
The enzymatic electrochemical detection of L-Glu was performed through the immobilization of
glutamate oxidase (Gluox) onto a carboxylated MWCNT/gold nanoparticle/chitosan complex film
modified on a gold electrode. The optimal response time of the fabricated biosensors was 2 s with
a high sensitivity (155 nA·µM−1·cm−2) and low detection limit (1.6 µM). Further, this biosensor
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showed no potential interference with other biomolecules that were present in blood serum under
physiological conditions [83]. However, these enzymatic biosensors often suffered poor stability, low
conductivity, and the blockage of catalytic sites. To overcome this issue, the design of functional
nanomaterials and electrochemical biosensors needs to be further improved. For instance, core-shell
alloys and multi-dimensional nanocomposites may be designed to enhance the electron transfer rate
and durability of the biosensors.

Nitric oxide (NO) is a gaseous neurotransmitter that is synthesized by three isoforms of
nitric oxide synthase (NOS): NOS-I (neuronal NOS), NOS-II (cytokine inducible NOS), or NOS-III
(endothelial NOS) [84]. Neuronal NO diffuses through cell membranes and functions as a
neuromodulator in the brain. It is involved in various behaviors as it interacts with many signaling
pathways [85]. The electrochemical oxidation of NO may result in nitrite (NO2

−) and nitrate (NO3
−).

A copper (II) chlorophyllin-zinc oxide screen-printed electrode was used for the detection of NO
with a wide linear range of concentration from 200 to 1 mM. The sensor exhibited sensitivity of 96.4
nA·µM−1 with a LOD of 100 nM. This electrode also assisted with the detection of NO metabolites,
such as NO2

− and NO3
−, in human serum samples prior to and following the introduction of a

beet root supplement [86]. An investigation into the electrochemical oxidation of NO was conducted
using platinum–tungsten nanoparticles, rGO, and an ionic liquid (IL), where a sharp peak for the
NO oxidation was observed at a potential of 0.78 V versus Ag/AgCl with CV and DPV [87]. As
shown in Figure 7, the proposed electrochemical sensor exhibited high stability with a low LOD
(0.13 nM) and high sensitivity (3.01 µA·µM−1 cm2). The sensor was investigated in real samples
such as human serum and urine samples and demonstrated exclusive selectivity towards NO [87].
Gold/platinum/reduced graphene oxide was utilized for NO detection, which exhibited a high
sensitivity of 7.35 µA·µM −1 and a LOD of 2.88 nM with negligible interference from other organic
molecules [88]. The noble metal-based nanocomposite was then tested to monitor the release of NO
in cardiac cells. Amperometry was employed to exploit the detection of NO in cardiac and cancer
cells using a hierarchical nanoporous gold (HNG) electrode, where Figure 8 details NO sensing in
live cells [89]. This HNG electrode provided an effective platform for monitoring NO in biological
processes and in bioreactors. The nitrite anion may affect the selectivity of the sensors because it is the
main interference molecule, and its oxidation occurs close to the NO oxidation potential. In addition,
these NO oxidations are typically held at higher over potentials, so the amperometric technique may
not be suitable for NO sensing in the presence of other neurotransmitters. However, dialysis and/or
electrophoresis coupled with amperometric techniques may be utilized for real sample testing. The
miniaturization of these sensors is desirable for the in vivo electrochemical detection of NO.

Acetylcholine (ACh) is a well-known neurotransmitter that mediates the chemical transmission
of neural signals. ACh signaling in the synapses of the central and peripheral nervous system
regulate most biological and physiological functions, such as ligand-gated ion channels and bursting
mode neuronal firing. Imbalances of Ach in both the central and peripheral nervous systems
are associated with different health issues such as Parkinson’s disease, Alzheimer’s disease, and
myasthenia gravis [90]. Ca2+-induced ACh from leukemic cells could be monitored electrochemically,
which may lead to the development of detection kits for Alzheimer’s and Parkinson’s diseases.
In addition, variations in the levels of Ach disrupts behavior, learning, and sleep [91,92]. In the
electrochemical oxidation of ACh, two-electron transfer is involved and leads to choline and acetate as
byproducts. An Au self-assembled monolayer surface was investigated for the acetylcholinesterase
(AChE) activity assay and its inhibitors using electrochemical oxidation. The generated o-Quinones
were used as redox probes [93]. AChE and choline oxidase (ChO) enzymes were covalently bound
to a chitosan/gold/ferric oxide nanocomposite. At a pH of 7.0 and 30 ◦C, the ChO hydrolyzed Ach
and generated H2O2, which was indirectly detected using amperometry with an optimal response
time at 3 s, with a working linear range from 0.005 to 400 µM and detection limit of 0.005 µM for
Ach. This electrode was tested using the blood serum of normal and Alzheimer’s patients [94]. The
enzyme-coated electrode lost 50% of its initial activity over a period of 3 months. Furthermore,
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AchE-MWCNT-Fe3O4 nanoparticles-chitosan was demonstrated for the rapid detection of Ach. The
fabricated electrode exhibited pH- and temperature-dependent sensing performance with a LOD
of 0.6 nM [95]. The detection of ACh was also done using AChE–ChO immobilized polypyrrole-
polyvinlysulphonate-based enzymatic electrodes, where the detection limit of the sensor was 5.0 nM.
In addition, the storage and operational stability were studied for 18 continuous assays and retained
an 83.1% current response. The sensitivity of the developed sensor decreased with the increasing of
the film thickness and the increasing of the enzyme concentration, because the film thickness and
enzyme concentration were proportional to the conductivity of the modified films [96]. The analysis of
neurotransmitters requires that the detection limit be low enough to measure the smallest concentration
that might exist in an organism, as well as a linear range that encapsulates the typical concentrations
that exist in the organism in question. This means that a lower detection limit and a wide linear range
are the most beneficial when comparing different nanomaterials. The disparity between the linear
range and the detection limit of different nanomaterials may be due to the rate at which the electron
transfer takes place, the accessibility of the neurotransmitter on the electrode surface (i.e., whether or
not more molecules can travel into the surface to allow for more oxidation events), or the affinity of the
neurotransmitter to the electrode surface. In addition, different applied potentials may be required
for different nanomaterials, as seen in Table 1. Overall, ACh detection was performed based on the
sensing of enzymatically produced hydrogen peroxide (H2O2). Most of the reported biosensors for
ACh involved multiple steps for the immobilization and functionalization of the electrodes, which
are time consuming and tedious processes. Moreover, the stability of the biosensors was limited due
to the enzyme immobilization, which is sensitive to pH and temperature. Therefore, enzyme-free
nanomaterials-based electrochemical sensors need to be explored for the detection of ACh with high
sensitivity, high stability, and a stable response.

Purines or adenosine 5′-triphosphate (ATP) is an important neurotransmitter, which is present
in peripheral tissues and serves as a neurotransmitter and neuromodulator in the perivascular nerves.
It has a role in physiological and pathophysiological factors such as the age, type, species, size, tone,
pressure, and temperature of the blood vessels. It also combines with NE to become a predominant
neurotransmitter at high blood pressures [97]. The oxidation of ATP follows a simple cleavage of
the bond between the phosphorous and oxygen of the phosphate groups. This cleavage releases two
electrons to form adenosine 5′-diphosphate (ADP). A target-responsive electrochemical aptamer switch
(TREAS) was functionalized on a gold surface that was dually labeled with 3′-SH and 5′ ferrocene for
the detection of ATP among guanosine triphosphate, cytidine triphosphate, and uridine triphosphate
interferents. In SWV, the peak current increased only with the addition of ATP (10–1 mM) at a potential
of 0.26 V [98]. The simultaneous quantification of potassium ions and ATP was carried out using a
nanochannel-based electrochemical method. A Pt–porous aluminum analog of ion channels detected
the concentrations of K+ and ATP in the ranges of 0.05–10.0 mM and 0.0005–1.0 mM, respectively. The
selectivity and stability of these nanochannels were not altered for up to 4 cycles [99]. A direct method
for the detection of ATP was demonstrated using a paper-based system. Chemically prepared graphene
was loaded onto mixed cellulose ester filter paper. After five minutes, the membrane was vacuum
filtered to assemble the graphene, and the excess was rinsed away. Subsequently, these electrodes
were dried and employed for the oxidation of ATP. Cellular ATP analysis was conducted using K562
leukemia cells, human adenocarcinoma HeLa cells, and normal human breast cells. In DPV, the ATP
was detected at a potential of 1.34 V, and the observed linear range was from 0.3 to 450 µM with a
detection limit of 0.08 µM. The oxidation of ATP resulted in irreversible byproducts being adsorbed on
the sensing platform and the reduction of the sensitivity and reproducibility of the sensors [100]. The
biofouling of these electrodes is a major concern and a target for the improvement of these sensors.
The functionalization of the surface with a material that has a lower binding energy for the fouling
agent could aid in the release of the formed intermediates and products. One approach might be the
incorporation of core-shell alloy nanoparticles with a low binding energy for biofouling products.
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Figure 8. (A) SEM images of the hierarchical nanoporous gold (HNG) microwire treated by
electrochemical alloying/dealloying in a mixed electrolyte of benzyl alcohol (BA) and ZnCl2.
(B) Amperometric responses to nitric oxide (NO) released from cardiac cells with the successive
addition of L-arginine in a 0.1 M of PBS solution (a), containing cultured cells (b), or cultured cells
treated with 50 µM of iron (c) or 100 µM of iron (d). Applied potential: 0.80 V. (C) The decreased
percentage of the responses of NO in comparison with that obtained following the first injection of
L-arginine, respectively [89]. Copyright 2017, American Chemical Society.
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Table 1. A list of nanomaterials-based sensing platforms and their performances in the detection of neurotransmitters.

Neuro-Transmitters EC Method Nanomaterials E/(V vs. RHE) Interferent Linear Range
(µM) LOD (µM) Ref

EP

DPV MWCNT-PANI-TiO2 0.821 5-HT and AA 4.9–76.9 0.160 [101]
DPV Polypyrrole nanotubes/Gold nanoparticles 0.914 Glucose, D-fructose, citric acid, UA, AA, DA 35–960 0.298 [102]
CV Graphene 0.655 * AA and UA 1–1000 0.24 [103]

DPV MWCNT 0.782 AA 7.5–48 4.6 [104]
CV TX 100-modified carbon paste electrode 0.810 AA and FA 10–50 1.0 [105]

DA

DPV 2D-hexagonol boron nitride 0.862 AA and UA 3–75 0.65 [42]
DPV Carbon dots 0.885 AA and UA 0.01–30 0.01 [106]
AP Pt3Ni nanoalloys 0.922 Glucose, AA, and UA 0.5–250 0.01 [107]
AP Multilayer graphene nanobelts 0.81 Hydrazine, UA, AA, lactic acid, glucose 2–20 0.58 [55]
CV Multilayered hollow sphere 0.922 None 0.5–2 0.5 [49]

5-HT

DPV Carbon nanofiber 0.910 AA 0.001–1000 0.001 [108]
DPV WO3 nanoparticles 0.985 AA, EP, DA, UA, FA, Glucose 0.01–600 0.001 [109]
SWV MWCNT/ZnO 0.920 AA and UA 0.05–1 0.01 [110]
DPV Poly (bromocresol green)/Fe3O4 0.985 AA, UA, and DA 0.2–100 0.060 [63]
SWV GCE-MWCNT-NiO 0.980 DA and AA 5.98 × 10−3–62.8 0.118 [111]

NE

AP FeMoO4 0.952 UA and AA 0.05–200 0.003 [70]
SWV CTAB-SnO2 0.822 EP 0.1–300 0.006 [112]
SWV MWCNT/ZnO 0.704 AA and UA 0.5–30 0.2 [104]
CV Pd nanoparticles 0.862 AA, UA, and FA 0.5–80 0.1 [113]
AP MoO3 Nanowires 1.01 AA, UA, L-Glu, NH4

+, K+, DA, Na+, Fe3+, Cl- 0.1–200 0.11 [69]

L-Glu

CV GCE/gold −0.061 None 320–2500 0.40 [82]
AP Co3O4/graphene/chitosan/GluOx 1.31 None 4–600 2.0 [114]

CV PpyNPs/PANI/AuE 0.440 Citric acid, AA, cysteine, methionine, lysine,
aspartic acid, glucose, NaCl, glycine 0.02–400 0.1 × 10−3 [115]

AP IrOx −0.078 DA and AA 5–300 0.32 [116]
CV GluOx/cMWCNT/AuNP/CHIT 0.769 AA, bilirubin, urea, UA, triglycerides, glucose 5–500 1.60 [83]

NO

AP PtW/rGO-IL 1.40 None 0.002–1200 0.13 [87]
AP Nanoporous Pt 1.37 None 0.0–8.75 0.001 [117]
AP Pt/MWCNT 0.190 * None 0.40–0.10 0.10 [118]

DPV Au–Pt/rGO 1.35 NO2
− , NO3

− , cysteine, AA, and UA 0.02–10.0 0.003 [88]
AP Gold nanoporous microelectrode 1.42 AA, UA, cysteine, arginine 0.005–200 0.001 [89]

ACh

AP AChE-ChO/PPy-PVS 1.03 AA, UA, EtOH, MeOH, paracetamol, cystine,
cysteine, glucose 0.01–0.1 0.005 [96]

CV Chitosan/gold-coated Fe3O4 0.86 None 0.005–400 0.005 [94]
AP Carbon fiber/AChE 0.584 None 0.3–100 1 [119]
AP Nickel oxide 1.11 None 0.25–5.88 26.7 [120]

SWV AChE/Hpg/Pt 0.910 None 240–1900 10 [121]
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Table 1. Cont.

Neuro-Transmitters EC Method Nanomaterials E/(V vs. RHE) Interferent Linear Range
(µM) LOD (µM) Ref

Purines

DPV B-doped CNTs 1.57 ** None 0.5–8 0.03 [122]
EIS Amino-functionalized MOF OCP AMP, GTP, ADP, IgP 0.001–1000 0.005 [123]
CV SWNTs 0.260 None 10–120 10 [124]
CV Graphene/AuNPs 0.210 None 1.14 × 10−4–31 2.01 × 10−5 [125]
AP Hemin/GO nanosheets 0.636 CTP, UTP, GTP, ADP, AMP 0.5 × 10−3–0.1 0.08 × 10−3 [126]

* Indicates that the reduction peak was used to detect the neurotransmitter. ** Adenosine was detected in this case, while all others in the purine section are ATP.
EC—electrochemical; E—peak potential; V—volts; RHE—reversible hydrogen electrode; LOD—limit of detection; DPV—differential pulse voltammetry; CV—cyclic voltammetry;
AP—amperometry; SWV—squarewave voltammetry, LSV—linear sweep voltammetry; EIS—electrochemical impedance spectroscopy; EP—epinephrine; DA—dopamine;
5-HT—serotonin; NE—norepinephrine; L-Glu—L-glutamate; NO—nitric oxide; ACh—acetylcholine; MWCNT/PANI/TiO2—Multiwalled carbon nanotubes/polyaniline/titanium
dioxide; MWCNT—multiwalled carbon nanotubes; 2D—two dimensional; GCE—glassy carbon electrode; FA—Folic acid; CTAB—cetyltrimethylammonium bromide;
FTO—fluorine-doped tin oxide; rGO—reduced graphene oxide; IL—ionic liquids; PpyNPs/PANI/AuE—polypyrrole nanoparticles/polyaniline-modified gold electrode;
GluOx/cMWCNT/AuNP/CHIT—glutamate oxidase/carboxylated multiwalled carbon nanotubes/gold nanoparticles/chitosan; AChE-ChO/PPy-PVS—acetylcholinesterase-choline
oxidase/polypyrrole/polyvivylsulphonate; MeOH—methanol; EtOH—ethanol; GluOx—glutamate oxidase; AChE/Hpg/Pt—acetylcholine esterase/highly porous gold/platinum;
MOF—metal organic framework; OCP—open circuit potential; SWNT—single walled nanotubes; AMP—adenosine monophosphate; GTP—guanine triphosphate; ADP—adenosine
diphosphate; IgP—imidazole glycerol phosphate; ATP—adenosine triphosphate; GO—graphene oxide; CTP—cytidine triphosphate; and UTP—uridine triphosphate.
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For in vitro analysis, various nanomaterials-based electrochemical sensors and biosensors
have been reported for the measurement of EP, DP, NE, ACh, L-Glu, NO, and ATP, as listed in
Table 1. The developed electrochemical sensors and biosensors showed efficacy in detecting the
neurochemicals either individually or in the presence of multiple neurotransmitters. In general,
multiple neurotransmitters were discriminated by enzyme-modified nanomaterials-based electrodes.
In addition, nanoengineering of sensing platforms with separation techniques, such as micro dialysis,
have been demonstrated for the selective detection of neurotransmitters. A difficult challenge to
overcome is the biofouling of the electrode surface, and it significantly decreases the sensitivity
and stability of the sensors. Future research may focus on the functionalization of nanomaterials
to retard the accumulation of byproducts on the electrode. The selective detection of structurally
related neurochemicals is challenging, and further development is required in nanomaterials-based
electrochemical sensors. The toxicity analysis of nanomaterials and neurochemical oxidation
byproducts are required for the use of the nanomaterials-based electrochemical sensors in direct
clinical applications.

3. In Vivo Analysis of Neurotransmitters

The in vivo electrochemical analysis of neurotransmitters can elucidate their real-time
functionality in the brain and body. This type of analysis might be very useful for the monitoring,
control, and potential manipulation of chemical changes that occur as the result of different diseases
and to facilitate the diagnoses of diseases at their early stages. In this section, we describe the in vivo
analysis of neurotransmitters in several live organisms, such as the chicken, fruit fly, and rat.

The chick is often being used for in vivo analysis to provide prototype information of the brain
and its functions. Raquel et al. attempted to simultaneously detect EP and NE levels in chick brains
using high-performance liquid chromatography coupled with a coulometric detection method. This
study revealed the role of neurotransmitters during the first day after hatching. The EP and NE
presence in the cerebellum in different stages were monitored from the late embryonic period to the
post-hatching period [127].

A carbon nanopipette electrode (CNPE) was employed to detect the presence of DA in
Drosophila melanogaster (fruit fly) [128]. The diameter of the tip was approximately 250 nm and
exposed to different concentrations of DA under in vitro conditions. Subsequently, this electrode was
used to detect the endogenous DA release in Drosophila larvae, which confirmed that the CNPEs could
be used for in vivo neuroscience investigations and inspired researchers to develop sensor implants for
the localized measurement of neurotransmitters. These CNPEs are tunable with different dimensions,
which may facilitate the implantation and monitoring of neurotransmitters in a small organism (e.g.,
Drosophila). The carbon-fiber microelectrode was employed to measure the DA and 5-HT in freely
moving rats using DPV with wireless technologies [129]. In these technologies, Nafion-coated micro
biosensors were surgically affixed within the prefrontal cortex in the brains of the rats; the sensors were
activated to record signals that indicated the presence of DA and 5-HT. Moreover, a wearable, wireless,
electrochemical instrument was developed for the detection of DA. A carbon-fiber microelectrode
was surgically fixed in the caudate–putamen area of the brain in the rats, where fast-scan cyclic
voltammetry (FSCV) was employed to detect DA and measure concentration of about 1 µM with
the duration of 4 s [130]. These sensing strategies represent the possibility of a compact, wearable,
wireless, battery-powered electrochemical device for the real-time monitoring of neurotransmitters
with high sensitivity and low-power consumption. Another in vivo method for the detection of DA was
designed under the consideration of the reduction of biofouling (Figure 9) [131]. The combination of
photochemistry with electrochemical analysis provided a sensing strategy for the selective recognition
of DA with a sensitivity of 0.15 nM. For this method, the author used DA as a sensitizer and target
molecule, where the rationale behind the use of the photoelectrochemical method related to the
prediction that it would provide a self-cleaning ability to the electrode [132]. In Figure 10, DA release
was induced by ACh, which was injected into larval stage Drosophila melanogaster Canton S by pressure
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injection. The current was measured with a carbon-fiber microelectrode using FSCV. The shape of the
voltammogram confirmed the release of DA, while the brain was under the influence of ACh [133].
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Figure 9. In vivo measurements of dopamine release using a PEDOT/Nafion-coated carbon-fiber
microelectrode. Current versus time traces were extracted from the color plot at the peak oxidation
potential for dopamine (~600 mV). The representative cyclic voltammograms were taken from the
vertical white dashed line on the color plots. (A) Dopamine release was electrically evoked by
stimulation (black bar, 40 pulses at 60 Hz, ±150 µA, 2 ms per phase) of the medial forebrain bundle and
monitored in the nucleus accumbens of a Sprague-Dawley rat. (B) Spontaneous transients recorded
in the nucleus accumbens of an isoflurane-anesthetized Sprague-Dawley rat [131]. Copyright 2015,
American Chemical Society.
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Figure 10. Acetylcholine-stimulated dopamine release in a Drosophila melanogaster ventral nerve cord
(VNC). (A) Image showing electrode and stimulating pipet placed in VNC. (B)Acetylcholine (1.8
pmol) stimulated dopamine release measured with fast-scan cyclic voltammetry (FSCV). (C) Evoked
dopamine concentration as a function of the amount of acetylcholine [133]. Copyright 2018, Elsevier.

As shown in Figure 11, the quantification of 5-HT was performed in an embryonic zebrafish
intestine under physiological conditions with the implanted microelectrodes at different sites in the
intestine, where the DPV showed a well-defined peak at 360 mV versus the Ag/AgCl electrode.
The information obtained from this study has been used in the study of development mechanisms
and the control of gastrointestinal functions [134]. Swamy and Venton reported on the development
CNT-modified microelectrodes for the detection of 5-HT with reduced electrode biofouling from
the oxidation byproducts of serotonin. In this work, the effect of nanotubes on the electron transfer
kinetics, electrode response time, electrode fouling, and the in vivo detection of DA and 5-HT were
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studied [135]. It was suggested that a larger electrode with nanotube coatings and slow electrochemical
analysis might not be suitable for the in vivo analysis of neurotransmitters. FSCV and fast-scan
controlled adsorption voltammetry (FSCAV) have been used to detect the presence of serotonin
and its raised levels in the hippocampus of mice [136]. This study demonstrated the detection
of an ambient extracellular serotonin level of 64.9 nM. The obtained electrochemical data was
validated using a pharmacological approach, and interference by DA and NE were avoided. A
poly (3,4-ethylenedioxythiophene)/CNT-modified acupuncture needle was used for the real-time
detection of 5-HT in a rat [137]. Figure 12 shows the insertion of the electrode into the limb of an
intraperitoneal anesthetized rat. During the addition of different concentrations of 5-HT through
microinjection, the amperometric response was recorded at an applied constant potential of 0.5 V.
The modified acupuncture needle served as sensing platform. This detection approach is like spiked
sample analysis. Further research and development is required to monitor and detect the presence of
ultralow concentrations of neurotransmitters.Appl. Sci. 2018, 8, x FOR PEER REVIEW  21 of 30 
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Figure 11. (A) Insertion of the electrochemical microsensor into the intact embryonic intestine
between the posterior swim bladder and the end of the intestine at 5 dpf. The arrowhead indicates
the swim bladder and the arrow shows the point of insertion of the microelectrodes. (B) 5-HT
immunohistochemistry reveals a subset of enteric neurons (arrows), as well as enterochromaffin
cells within the epithelium (arrowheads). Enteric neurons are on the periphery of the intestine between
the thin circular and longitudinal smooth muscle layers. Enterochromaffin cells, which are situated
more toward the basal surface of the epithelium, sense the contents of the lumen (asterisk) using
thin processes. (C) Typical differential pulse voltammogram obtained in vivo with the implanted
microelectrode as shown in (A). The supporting electrolyte was E3 medium [134]. Copyright 2010,
American Chemical Society.
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Figure 12. In vivo monitoring of 5-HT. (A) a photograph of the real-time and in vivo experiment after
the rat was intraperitoneally anesthetized; (B) A zoomed picture; (C) the real-time recording of the
inserted PEDOT/CNT/acupuncture needle in ST 36 upon the repeated injection of 10 µL, 10−5 M of
5-HT. Operating potential, 0.5 V vs. Ag/AgCl [137]. Copyright 2016, Nature.

L-Glu was detected using a Pt microelectrode with an enzyme (GluOx) and Nafion-incorporated
coating where potassium chloride (70 mM and 120 mM) induced release of L-Glu was studied in
the striatum and frontal cortex of the anesthetized rat [138]. The signal durations for low levels
of KCl at the frontal cortex were lower, whereas, for high concentrations, there was an increase in
the signal duration. The in vivo detection of L-Glu and ascorbate was carried out simultaneously
in the striatum of the rats using microsensors [139]. Following the detection of L-Glu after a few
minutes, the current response was decreased due to the uptake of L-Glu from the extracellular space.
The above statement was well analyzed by the addition of glutamate oxidase, which assists brain
cells with the consumption of L-Glu. In such cases, the neurotransmitter may have been consumed
and created deficiencies in localized regimes of the living organism. The in vivo measurements of
Glu in the striatum and prefrontal cortex of freely moving mice proceeded using a ceramic-based
enzyme-coated Pt microelectrode. A microelectrode array (MEA) was surgically fixed to the central
nervous system (CNS) of live rodents 50–100 µm below the surface of the brain. The baseline correction
was done, and the electrode was employed to analyze the injected L-Glu and its effects at 3, 5, and 7
days post-implantation [140]. The enzymatic MEA exhibited fast temporal resolution (less than 1 s),
excellent spatial resolution (micron-scale), and low detection limits (≤200 nM). The dendrimer-attached
Pt/MWCNTs demonstrated selective detection of L-Glu [141]. In the L-Glu analysis, aside from mutual
interference of other neurochemicals, peroxide formation was the most problematic issue that affected
the selectivity in the L-Glu biosensors [142].

A Pt/Ir wire was used to detect NO in tumor-bearing mice to predict the tumor
characteristics [143]. Intratumorally, CV and chronoamperometry were measured for various injected
volumes of NO, which initially exhibited an increase in peak intensity, followed by a gradually
decrease. This is due to the measurement of exogenous NO and its consumption by the tumoral tissue.
Hemin/MWCNT/CFMEs were engineered as a biomimetic sensor to investigate the measurement of
NO in the brain. The developed microsensor exhibited an average sensitivity of 1.72 nA µM−1 with a
LOD of 25 nM [144]. These microsensors allowed the detection of exogenous NO and did not show any
response for AA, DA, and nitrite. This may be due to the low concentration of interference molecules.
In another study, the distribution, release, and modulation of NO in zebrafish embryo intestines were
quantified using CFMEs. The distribution of NO was monitored by DPV at different sites of the
zebrafish, demarcated as (1) anterior, (2) middle, and (3) posterior, where a high level of NO was
detected in the middle segment (3.78 ± 0.64 µM) in comparison with the anterior (1.08 ± 0.41 µM) and
posterior (1.00 ± 0.41 µM). This study revealed the feasibility of the NO detection in the embryos [145].
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Thus, in vivo measurements have been demonstrated for a number of neurotransmitters using
various nanomaterials, showing that (i) monitoring of chemical changes within living tissue can
be achieved; (ii) this may be useful for the diagnosis of diseases; and (iii) there is potential for
control and manipulation of chemical changes within living tissue. The effective in vivo analysis of
neurotransmitters will have significant applications, not only for medical diagnostics and therapeutics,
but also for the investigation of the specific effects of drug molecules in animal models.

4. Summary and Outlook

The clinical sensing of neurotransmitters and nervous system-related biomolecules offers a
greater understanding of the chemical reactions that occur in the brain, which might be employed as a
diagnostic tool for myriad of brain diseases. The combination of nanotechnology and electrochemical
analysis establishes an excellent model for the quantitative analysis of neurotransmitters under both
in vitro and in vivo conditions. Due to the large surface area-to-volume ratio of the nanomaterials
involved, higher populations of molecules may be entrapped, which may directly contribute to
the more sensitive detection of neurotransmitters. There have been a number of nanomaterials
developed, which have been proven to possess good sensitivity and enhanced stability for in vitro
detection. However, their selectivity should be improved for real-time analysis or in animal models
due to biofouling and interferent molecules. In these cases, the use of membrane-based sensors or
combinations of micro dialysis might be involved. Over the last two decades, substantial efforts have
been invested toward in vivo electrochemistry. Particularly, advances in nanoscience and technology
have contributed significantly to the development of real-time sensors. Today, electrochemical
techniques are widely used in the fabrication of nanomaterials, as well as for sensing purposes,
due to their fast response, cost effectiveness, and spatially resolved neurochemical measurements in
different biological systems. Although current technologies are suitable for in vitro analysis, further
development of electrochemical sensors are critical for the in vivo monitoring of neurotransmitters
in order to better understand the nervous system. Ongoing research in the design of advanced
nanomaterials-based in vivo electrochemical sensors with high selectivity, sensitivity, and durability
may present exciting new avenues in neuroscience. The understanding of the brain, CNS, and
peripheral nervous system would provide unprecedented insights into the neurochemical basis of
behavior and disease.
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