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Featured Application: The results provide a useful guideline for manipulation of novel vector
structure beams by using twist phases and customized correlation functions, and promote
important potential applications, ranging from beam shaping, optical tweezers, optical imaging,
and free space optical communications.

Abstract: Recently, partially coherent beams with twist phases have attracted growing interest
due to their nontrivial dynamic characteristics. In this work, the propagation characteristics of a
twisted cosine-Gaussian correlated radially polarized beam such as the spectral intensity, the spectral
degree of coherence, the degree of polarization, the state of polarization, and the spectral change
are investigated in detail. Due to the presence of the twisted phase, the beam spot, the degree of
coherence, and the state of polarization experience rotation during transmission, but the degree of
polarization is not twisted. Meanwhile, although their rotation speeds closely depend on the value
of the twist factor, they all undergo a rotation of π/2 when they reach the focal plane. Furthermore,
the effect of the twist phase on the spectral change is similar to the coherence, which is achieved by
modulating the spectral density distribution during transmission. The twist phase opens up a useful
guideline for manipulation of novel vector structure beams and enriches potential applications in the
field of beam shaping, optical tweezers, optical imaging, and free space optical communications.

Keywords: partially coherent; radially polarized; twist phase; state of polarization

1. Introduction

It is well-known that the coherence properties play an important role in determining the
spatial behaviors of light beams under propagation [1–10]. For instance, there is a Fourier reciprocal
relationship between the initial coherence and the far field intensity distribution [1,2]. Also, it has
been proven that the source coherence can apparently influence the evolution behaviors of the degree
of polarization and state of polarization of light beams after propagation, even in free space [7,8].
These results contradict the common belief that polarization is propagation invariant. However,
most of the studies concerning the spatial coherence sources are restricted to the so-called Schell-model
(SM) correlations, where the spectral degree of coherences obey Gaussian distributions [1–3]. In recent
years, based on the nonnegative definiteness criteria of the cross-spectral density (CSD), Gori and
Santarsiero proposed a sufficient condition for devising genuine correlation functions and quickly
extended to the vector cases [11,12]. Manipulation of nontrivial correlation structures to produce
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prescribed structure beams with tailored intensity, polarization, and phase, and to explore novel spatial
behaviors has seen a rapid growth of interest due to their important applications in optical imaging,
optical tweezers, free-space optical communications, laser radar, and remote sensing [13–33].

In previous decades, much prominence has been given to radially polarized beams because
of their nontrivial properties and potential applications such as lithography, display technologies,
optical trapping, optical data storage, and confocal microscopy [34–42]. A partially coherent radially
polarized beam was introduced as a natural extension of a coherent cylindrical vector beam. Paraxial
and non-paraxial properties of partially coherent radially polarized beams have been investigated in
detail [43–49]. Statistical properties of partially coherent radially polarized beams in random media
such as a turbulent atmosphere and ocean turbulence have been studied [50,51]. It is demonstrated
that partially coherent radially polarized beams are more effective at resisting signal distortion caused
by turbulence than general linearly polarized partially coherent beams. Moreover, by manipulating
the correlation structures of source beams, the ability to generate tunable partially coherent radially
polarized array beams was demonstrated [22–26].

In 1993, Simon and Mukunda proposed that a partially coherent beam has the ability to carry a
new type of phase-twist phase, and this was later generated experimentally by Friberg et al. [52,53].
Recently, on the basis of the nonnegative constraint of the CSD, Gori et al. introduced a new method to
design twisted sources endowed with circular or rectangular symmetry [54,55]. Due to the existence
of the twist phase, twisted partially coherent beams not only have the ability to carry orbital angular
momentum, but also have better anti-turbulence self-repairing capabilities, which can find applications
in optical tweezers, optical imaging, and optical communications [56–64]. Besides, owing to their
nontrivial angular momentum mechanical properties, twisted partially coherent beams are receiving
increasing attention [65,66]. In this paper, our aim is to study the focusing properties of a new class
of partially coherent radially polarized beams with a nontrivial cosine-Gaussian correlation function
and a twisted phase. The effects of the twist phase on the spectral intensity, the spectral degree of
coherence, the degree of polarization, the state of polarization, and the spectral change are investigated
in detail. The results yield a useful guideline for manipulation of novel vector structure beams by using
twist phases and customized correlation functions, and promote important potential applications,
ranging from beam shaping, optical tweezers, optical imaging, and free space optical communications.

2. Theory

It is known that the vector electric field of a radially polarized beam can be described as the
coherent superposition of TEM01 Laguerre–Gaussian modes oriented along the x axis and a TEM10

oriented along the y axis at z = 0 [43–48].
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where r = (x2 + y2)
1/2 denotes the transversal distance from the beam center and w0 is the transverse

beam size. For a vector partially coherent beam in space-frequency domain, the second-order
correlation properties of a fluctuating light beam can be completely described by the CSD matrix
W(r1, r2) with elements W(r1, r2) =
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E∗α(r1)Eβ(r2

〉
, α, β ∈ {x, y}. r1 and r2 denote two arbitrary

points with position vectors in the source plane. For brevity, we omit the explicit dependence of the
considered quantities on frequency ω. The asterisk denotes the complex conjugate and the angular
brackets represent average over the statistical ensemble. For a partially coherent radially polarized
beam, the elements of the CSD matrix are described as [46]:
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where g denotes the degree of coherence.
It is important to note that the coherence structure is independent of spectral density profile.

So, one can independently modulate the coherence function without affecting the spectral density of
random sources [54]. Here, let us consider the coherence function of the initial beam to have a twisted
cosine-Gaussian correlated (CGC) function [25,54]:

gαβ(r1, r2) = exp
[
− (r1−r2)

2

2δ2
0

]
cos
[

n
√

π(x1−x2)
δ0

]
cos
[

n
√

π(y1−y2)
δ0

]
exp[−ikµ(x1y2 − x2y1)], (3)

where δ0 denotes coherence parameter, n is a positive beam order parameter, and µ represents
the twist phase. When n = 0, a twisted CGC radially polarized beam reduces to a conventional
Schell-model (SM) radially polarized beam [44–48]. Using Mercer’s expansion, it is proven that the
realizability condition for generation of such twisted random source coincides with SM sources. As a
new class of twisted non-uniformly correlated vector beams, a possible experimental approach for
generating twisted CGC radially polarized beams can be achieved by using a spatial light modulator
and an astigmatic optical lens system [20,25,53]. In [25], we have demonstrated an experiment for
generating a CGC correlated radially polarized beam. One may further produce a twisted CGC radially
polarized beam by passing a CGC correlated radially polarized beam through an astigmatic optical
lens system [53].

Within the framework of paraxial approximation, the elements of the CSD matrix of a twisted
CGC radially polarized beam through an ABCD optical system can be written as [2]:
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On substituting Equations (2) and (3) into Equation (4), after some algebra the elements of the
CSD matrix of a twisted CGC radially polarized beam in the output plane turn out to be:
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On the basis of the CSD matrix of an electromagnetic beam, there are three important fundamental
statistical characteristics that can be defined as:

the spectral density
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In Equations (9)–(11), Tr represents the trace and Det denotes the determinant. It should be
noted that there is another definition of the spectral DOC for electromagnetic beams introduced by
Tervo et al., which is also widely used [9].

3. Numerical Results

Now, we numerically analyze the focusing properties of a twisted CGC radially polarized beam
with the help of the theoretical results derived above. Let us consider the source beam passes through
a thin lens with focal length f and then arrives at the receiver plane. The ray matrix of such optical
system reads as:(

A B
C D

)
=

(
1 z
0 1

)(
1 0
−1/ f 1

)(
1 f
0 1

)
=

(
1− z/ f f
−1/ f 0

)
. (12)

The global parameters used in the following calculations are set as λ = 632.8 nm, w0 = 1 mm,
δ0 = 0.2 mm, µ = 0.001 mm−1, and f = 150 mm, unless different values are specified. In Figure 1,
we depict the normalized spectral density distribution and the corresponding cross line of a twisted
CGC radially polarized beam focused by a thin lens at several propagation distances for different
values of n. For the case of n 6= 0, it is shown that the spectral density gradually decomposes into a
four-beamlets array distribution, and the distance between each beamlet grows as the beam order n
increases. Moreover, one clearly sees that the spectral density distribution of a twisted CGC radially
polarized beam in the focal plane is significantly different from that in the absence of the twist phase.
As expected, for a CGC radially polarized beam without the twist phase, there is a Fourier-like relation
between the spectral density in the focal plane and the initial correlation function [25]. However,
for a twisted CGC radially polarized beam, this genuine reciprocal relationship disappears due to the
existence of the twist phase, see Figure 1a3,b3,c3. The reason for this is that the twist phase leads to a
beam astigmatism during diffraction, which causes a focal shift.
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Figure 1. Normalized spectral density distribution and the corresponding cross line of a focused
twisted cosine-Gaussian correlated (CGC) radially polarized beam at different propagating distances
for different values of n. For (a1–a3), (b1–b3), (c1–c3) µ = 0.001 mm−1; (a4,b4,c4) µ = 0 mm−1.

In order to study the spectral density distribution of polarization components Wxx

(
r
′
, r
′
)

and Wyy

(
r
′
, r
′
)

, Figure 2 plots the normalized polarized spectral density components and the
corresponding cross lines at several propagation distances with n = 2. It is clearly seen that the spectral
density not only splits during spreading, but also each spectral density component undergoes a rotation
of π/2 within the focal length. In addition, for a CGC radially polarized beam, see Figure 2b4,c4,
one finds that the two orthogonal spectral density components have the same distribution in the
focal plane.

Figure 3 shows the modulus of the spectral DOC and the corresponding cross line at different
propagating distances for different values of n. One finds that the array structure of the spectral DOC
becomes more complex with the growth of the order parameter n. Similar to the spectral density,
it is clearly seen that the spectral DOC rotates during the spreading and also experience a rotation of
π/2 when they reach the focal plane. At the same time, it is found that the rotation speed depends
only on the twist phase, see Figure 3b1–b3,c1–c3. In addition, due to the existence of the twist phase,
the Fourier reciprocal relationship between the spectral DOC in the focal plane and the initial spectral
intensity no longer exists. Thus, the spectral DOC of a twisted CGC radially polarized beam in the
focal plane is quite different from that without the twist phase [25].
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µ = 0.001 mm−1; (a4,b4,c4) µ = 0 mm−1.
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Figure 4 illustrates the effect of the twist phase on the spectral DOC. As is seen from Figure 4,
the rotation speed is nonlinear and closely depends on the value of the twist factor. However, when they
reach the focal plane, they all undergo a rotation of π/2, regardless of the value of the twist phase.
Furthermore, it is of interest to see that the spectral DOC spot becomes larger as the twist factor
increases due to the beam divergence caused by the twist phase.
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In order to learn more about the vector properties, in Figure 5 the behaviors of the DOP of a
focused twisted CGC radially polarized beam at different propagation distances for different values of
n is plotted. It has been shown that the on-axis DOP singularity of an SM radially polarized beam is
propagation invariant [51]. However, for a twisted SM radially polarized beam, it is interesting to see
from Figure 5a1–a3 that a similar on-axis DOP singularity disappears due to the existence of a twisted
phase. In addition, quite different from the spectral density and the spectral DOC, a striking feature
can be seen in which the twist phase does not lead to a rotation of the DOP.

Figure 6 illustrates the DOP and the corresponding cross line of a focused twisted CGC radially
polarized beam at different propagation distances for different values of the twist phase. It is seen that
the complex DOP structure gradually degenerates and becomes more uniform. This is because the
astigmatism gradually increases with the increase of twist factor.
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polarized beam at different propagation distances for different values of the twist phase with n = 1.
For (a1–a3) µ = 0.0005 mm−1; (b1–b3) µ = 0.001 mm−1; (c1–c3) µ = 0.002 mm−1; (a4,b4,c4)
µ = 0 mm−1.

Next, let us further evaluate the effects of the twist phase on the state of polarization (SOP). It is
well known that the CSD matrix can be represented as a sum of a completely polarized beam and a
completely unpolarized beam [2]. For a partially coherent beam, the polarization ellipse is a parameter
characterizing the fully polarized portion of the beam. By using the CSD matrix, one can conveniently
determine the polarization ellipse, including the major and minor semiaxes of the polarization ellipse,
and the orientation angle [8]. The orientation angle ϕ is given by the following formula:

ϕ
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′
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, (−π/2 ≤ ϕ ≤ π/2), (13)

and the major and minor semiaxes of the polarization ellipse take the following form:
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Then, the degree of ellipticity ε characterizing the shape of the polarization ellipse of an
electromagnetic beam is defined by:

ε = A−
(

r
′
, r
′
)

/A+

(
r
′
, r
′
)

, 0 ≤ ε ≤ 1. (15)

On submitting from Equations (5)–(8) into Equations (13)–(15), we numerically investigated
the behaviors of the SOP in Figure 7 of a focused twisted CGC radially polarized beam at different
propagation distances for different values of n. Owing to the twisted phase, it is of interest to find
from Figure 7a1–a4 that the initial radially polarized structure gradually evolves into an azimuthally
polarized structure in the focal plane. Moreover, similar to the spectral DOC, one finds that the SOP
experiences a rotation of π/2 with the focal length, regardless of the value of order n. In addition,
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for the case of n 6= 0, the SOP splits with the splitting of the spectral intensity, which is the same as
that in absence of the twist phase [25,26].

Figure 8 shows the dependence of the SOP on the twist phase. Similar to the spectral density and
the spectral DOC, it is seen that although the twist speed of the SOP closely depends on the value of
the twist phase, the SOP always rotates π/2 within the focal length compared to that without twist
factor. Therefore, it is worthwhile to manipulate novel complex vector beams by taking advantage of
the twist phase and tailored coherence structure.
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Figure 8. The SOP and the corresponding cross line of focused twisted CGC radially polarized beam
at different propagation distances for different values of the twist phase with n = 2. For (a1–a4)
µ = 0.0005 mm−1; (b1–b4) µ = 0.001 mm−1; (c1–c4) µ = 0.002 mm−1.
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Finally, we concentrate our attention on the spectral properties of a focused polychromatic twisted
CGC radially polarized beam. It is well known that the correlation-induced spectral change (also
called the “Wolf effect”) is an important feature of partially coherent beams. It was demonstrated
that Wolf effect has important applications in optical signal processing, information encoding and
exchange [5,6,67–70]. Since the spectral change is closely related to the coherence and polarization, it is
meaningful to study the spectral shift of a twisted nontrivial CGC radially polarized beam. Here, let us
assume that the initial spectrum is a Lorentz type with ω0 being the central frequency and Γ0 being the
half-width at half-maximum, and ω is the angular frequency. Then the elements of the CSD matrix of
a focused polychromatic twisted CGC radially polarized beam in the output plane are given as:
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Now, we numerically investigate the relative spectral changes of a polychromatic twisted CGC
radially polarized beam focused by a thin lens. The spectral shift ∆ω is the difference between the peak
frequency ωmax of the spectrum after propagation and the central frequency ω0 of the source spectrum.
A positive value of ∆ω means a blueshift, while a negative value denotes a redshift. The relative
spectral shift can be defined as:

γ = (ωmax −ω0)/ω0. (19)

The parameters are set as ω0 = 3.6× 1015 and Γ0 = 1× 1014. Figure 9 shows the relative spectral
shift γ of a focused polychromatic twisted CGC radially polarized beam versus the propagation
distance z. For a polychromatic partially coherent radially polarized beam without the twist phase,
a study showed that an on-axis blueshift can be found before and after the focus [47]. However,
for a polychromatic twisted radially polarized beam, the on-axis spectral shift is always redshifted,
with the minimum redshift occurring in the focal plane, see Figure 9e. With the increase of the beam
order n, the blueshift appears and the maximum blueshift occurs in the focal plane. In addition,
one also finds that the maximum redshift occurs off-axis in the focal plane and grows rapidly as the
off-axis distance y increases. In order to learn more about the effect of the twist phase on spectral
shift, Figure 9b–d plots the relative spectral shift of a focused polychromatic twisted CGC radially
polarized beam versus the propagation distance for different values of the twist phase. One finds that
the maximum value of redshift and blueshift are significantly reduced as the twist phase increases.
The direct reason is that the divergence of the beam increases with the growth of the twist phase. As a
result, the spectral density distribution becomes more uniform, leading to a gradual decrease in the
difference in spectral shift. This is similar to the correlation-induced spectral change [2,5]. Moreover,
different from a polychromatic radially polarized SM beam [47], one finds from Figure 9f that there is
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a bimodal blueshift observed near the focal plane for a polychromatic CGC radially polarized beam
with n = 1. It is important to note that the effect of the twist phase on the spectral change is similar to
the coherence, which is achieved by modulating the spectral density distribution upon propagation.
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relative spectral shift with x = 0, y = 0.

4. Conclusions

As a summary, we have studied the focusing properties of a new class of twisted cosine-Gaussian
correlated radially polarized beam. It is shown that the twist phase leads to an astigmatism of the light
beam, thereby affecting the various statistical properties of the beam during spreading. Because of
the twisted phase, the beam spot, the degree of coherence, and the state of polarization experience
rotation during transmission, but the degree of polarization is not twisted. Meanwhile, although the
rotation speed is nonlinear and closely depends on the value of the twist factor, they all undergo a
rotation of π/2 when they reach the focal plane. In addition, it turns out that the effect of the twist
phase on the spectral change is essentially similar to coherence, which is achieved by modulating
the spectral density distribution during transmission. These results provide a useful guideline for
the adjustable twist phase to generate novel partially coherent vector beams and promote important
potential applications in the field of beam shaping, optical tweezers, optical imaging, and free space
optical communications.
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63. Wang, F.; Cai, Y.; Eyyuboğlu, H.T.; Baykal, Y. Twist phase-induced reduction in scintillation of a partially
coherent beam in turbulent atmosphere. Opt. Lett. 2015, 40, 4504–4507. [CrossRef] [PubMed]

64. Wang, J.; Wang, H.; Zhu, S.; Li, Z. Second-order moments of a twisted Gaussian Schell-model beam in
anisotropic turbulence. J. Opt. Soc. Am. A 2018, 35, 1173–1179. [CrossRef] [PubMed]

65. Serna, J.; Movilla, J.M. Orbital angular momentum of partially coherent beams. Opt. Lett. 2001, 26, 405–407.
[CrossRef] [PubMed]

66. Cai, Y.; Zhu, S. Orbital angular moment of a partially coherent beam propagating through an astigmatic
ABCD optical system with loss or gain. Opt. Lett. 2014, 39, 1968–1971. [CrossRef] [PubMed]

67. Kandpal, H.C.; Vaishya, J.S.; Joshi, K.C. Wolf shift and its application in spectroradiometry. Opt. Commun.
1989, 73, 169–172. [CrossRef]

68. James, D.F.; Kandpal, H.C.; Wolf, E. A new method for determining the angular separation of double stars.
Astrophys. J. 1995, 445, 406–410. [CrossRef]

69. Zhu, S.; Zhao, C.; Chen, Y.; Cai, Y. Experimental generation of a polychromatic partially coherent dark hollow
beam. Optik 2013, 124, 5271–5273. [CrossRef]

70. Zhu, S.; Li, Z. Theoretical and experimental studies of the spectral changes of a focused polychromatic
partially coherent flat-topped beam. Appl. Phys. B 2015, 118, 481–487. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1364/OE.24.011626
http://www.ncbi.nlm.nih.gov/pubmed/27410089
http://dx.doi.org/10.1364/JOSAA.10.000095
http://dx.doi.org/10.1364/JOSAA.11.001818
http://dx.doi.org/10.1364/OL.40.004504
http://www.ncbi.nlm.nih.gov/pubmed/26421567
http://dx.doi.org/10.1364/OL.43.000595
http://www.ncbi.nlm.nih.gov/pubmed/29400849
http://dx.doi.org/10.1080/09500349414551331
http://dx.doi.org/10.1088/0963-9659/5/3/010
http://dx.doi.org/10.1103/PhysRevE.64.036618
http://www.ncbi.nlm.nih.gov/pubmed/11580473
http://dx.doi.org/10.1364/OL.27.000216
http://www.ncbi.nlm.nih.gov/pubmed/18007758
http://dx.doi.org/10.1007/s00340-010-3906-0
http://dx.doi.org/10.1364/OE.17.021472
http://www.ncbi.nlm.nih.gov/pubmed/19997388
http://dx.doi.org/10.1364/OE.18.024661
http://www.ncbi.nlm.nih.gov/pubmed/21164812
http://dx.doi.org/10.1364/OL.37.000184
http://www.ncbi.nlm.nih.gov/pubmed/22854461
http://dx.doi.org/10.1364/JOSAA.35.001173
http://www.ncbi.nlm.nih.gov/pubmed/30110310
http://dx.doi.org/10.1364/OL.26.000405
http://www.ncbi.nlm.nih.gov/pubmed/18040335
http://dx.doi.org/10.1364/OL.39.001968
http://www.ncbi.nlm.nih.gov/pubmed/24686651
http://dx.doi.org/10.1016/0030-4018(89)90077-1
http://dx.doi.org/10.1086/175705
http://dx.doi.org/10.1016/j.ijleo.2013.03.084
http://dx.doi.org/10.1007/s00340-015-6016-1
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Theory 
	Numerical Results 
	Conclusions 
	References

