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Abstract: This article addresses trajectory tracking between two non-identical systems with chaotic
properties. To study trajectory tracking, we used the Rossler chaotic and resistive-capacitive-inductance
shunted Josephson junction (RCLs-JJ) model in a similar phase space. In order to achieve goal tracking,
two stages were required to approximate target tracking. The first stage utilizes the active control
technique to transfer the output signal from the RCLs-JJ system into a quasi-Rossler system.
Next, the RCLs-JJ system employs the proposed iterative learning control scheme in which the control
signals are from the drive system to trace the trajectory of the Rossler system. The numerical results
demonstrate the validity of the proposed method and the tracking system is asymptotically stable.

Keywords: trajectory; chaos; resistive–capacitive–inductance shunted Josephson Junction (RCLs-JJ);
Iterative Learning Control (ILC)

1. Introduction

Chaotic phenomena in semi-conductor devices found in the radio-frequency-base (rf-base)
resistive-capacitive shunted Josephson Junction (RCs-JJ) were described by Kautz and Monaco [1] in
the numerical study of three system parameters. Many studies have exhibited the chaotic behavior
in superconducting resistive-capacitive-inductance Josephson Junction (RCLs-JJ) systems [2–4].
The properties of RCLs-JJ including the homo-clinic, hetero-clinic, and super-harmonic bifurcations
have been investigated to be excited by these varying parameters [5]. The damped pendulum equation
describes the junction behavior and demonstrates the chaotic strange attractor in the phase space [6].
Synchronization is a significant topic, which was based on studying the tracking trajectory in chaotic
systems. A non-linear controller by utilizing the back-stepping technique has been investigated
to control bifurcation in the RCLs-JJ system [7]. The chaos synchronization between two identical
RCLs-JJ systems has been examined in which a number of different techniques to design the controller
such as using active control [8], utilizing a common chaos to drive RCLs-JJ system approaching
synchronization [9], applying the back-stepping [10–13], and using the time-delay feedback control [14],
respectively. In other studies, the controller design or controller rule is directly determined by the
Lyapunov function [11,12] and the RCLs-J junctions array synchronization [12].

Recently, the reconstruction of chaotic systems is similar to chaotic synchronization where the chaotic
system was reconstructed from the unknown input [15–17]. The chaotic systems synchronization utilized
unknown inputs observed in the Takagi-Sugeno (T-S) fuzzy model [15]. The Takagi-Sugeno (T-S) fuzzy
model with unknown inputs applied the Lyapunov function and the Linear Matrix Inequalities (LMI)
constraint approaching a zero synchronization error in secure communication [16]. The evolutionary
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algorithms based on the measured data without any internal partial knowledge to reconstruct chaotic
systems and demonstrates the numerical results in Reference [17].

In many studies, synchronization systems in the state space model for superconductor devices
were described in identical RCLs-Josephson junction systems. Classical non-identical system
synchronization is not meant to handle a superconducting system. Accordingly, many trajectory
tracking studies have rarely been directly based on the RCLs-JJ system and classical chaotic systems
together. This article focuses on the trajectory tracking between two non-identical systems in which
one of the systems is the classical chaos system of the Rossler and the other is the RCLs-JJ model
in state space representing a mesoscopic system. In this research, two stages tracking the trajectory
method uses the RCLs-JJ system in the state space model to trace the trajectory of the Rossler system.
The first tracking stage utilizes the active control technique [18] to transfer the RCLs-JJ system into
the quasi-Rossler system. In the next stage, the proposed iterative learning control law approaches
the trajectory of the Rossler system by correcting the repetition tolerance from the preceded output
information between the quasi-Rossler system and the Rossler system [12]. The RCLs-JJ system
becomes the quasi-Rossler system and employs the iterative learning control (ILC) procedure to control
signals from the Rossler system to trace the trajectory of the drive system. However, most ILC research
update rules are designed based on the linear ILC law. The varying reference input [19] is very different
from the chaotic signals, which are unexpected. Nevertheless, chaotic systems are unpredictable and
can be synchronized [20,21] by designing a controller. The challenges involve extracting the message
embedded within the chaotic signal from the normal signal of the regular system such as a digital
encoding system. A chaotic signal cannot implement the code by the obvious method. The chaotic
synchronization should lead to a secure communication system by using a synchronized chaotic
electronic circuit [22].

In this study, the chaotic tracking trajectory that utilized the ILC method based on the Josephson
junction chaos can also employ other methods such as a backstepping controller [7], an active control [8],
a common chaos driving by Rossler [9], and LMI [16] and we examine the results. This article provides
two main contributions. The first is a real-time feedforward procedure that uses iterative learning to
modify the trajectory error between systems for tracking two non-identical systems. A few studies have
been published on two different chaotic systems directly tracking or synchronizing. However, reports
are especially rare for Josephson Junction systems and classical chaotic systems. Another contribution
is the utility of the synchronization or minimum tracking error leads to the secure communication
system by applying the Josephson Junction systems into quantum chaotic systems to deliver the
message in the communication system.

The organization of this paper is explained. The next section describes the Rossler Chaotic and
RCL-Shunted Josephson Junction system. Section 3 outlines the simulation results and provides an
example to demonstrate the proposed learning control law in the RCLs-JJ system to trace the path of
the Rossler system. Lastly, this paper highlights the future applications and conclusions in Section 4.

2. Rossler Chaotic and RCL-Shunted Josephson Junction System

2.1. System Description and Transformation

The Rossler chaotic system has an initial condition X0, which is the drive system in a general form.

.
X = AX + b =

 0 −1 −1
1 a 0
0 0 x1 − c


 x1

x2

x3

+

 0
0
b

 (1)

X =
[

x1, x2, x3

]T
is the state vector. The RCLs-JJ can be expressed by Equation (2) with initial

conditions Y0 = [0 0 0]T. .
Y = BY + bψ(y1) + U(k) (2)
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where Y =
[

y1 y2 y3

]T
and

B =

 0 1 0
0 − g(y2)

βC
1

βC

0 1
βL

− 1
βL

, b =

 0
1

βC

0

, ψ(y1(t)) = iN − sin(y1). (3)

where g(y2) is given by

g(y2) =

{
0.366 as |y2| > 2.9
0.061 as |y2| ≤ 2.9,

(4)

k in Equation (2) is the iterative number that uses the iterative learning control law (ILC) as shown in
the equation below.

U(k) =
[

va vb vc

]T
+
[

u(k)
1 u(k)

2 u(k)
3

]T
(5)

The ILC rule is a sequence of the control input signal for the response system as
{

U(k)
}

k=1,2,···
.

Equations (1) and (2) are nearly non-identical nonlinear systems, which is seen by their trajectory
in Figure 1.
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Figure 1. The time response of the Rossler system and the resistive–capacitive–inductance shunted the
Josephson Junction (RCLs-JJ) system.

Figure 1 displays the time response of the state of two distinct systems known as the Rossler and
the RCLs-JJ systems with different initial states. The trajectory error between the systems in each state
should be enormous in Figure 1. The nonlinear system in Equation (2) should be transferred to the
quasi-Rossler system to track the trajectory of the system in Equation (1). Therefore, the active control
technique [23,24] is utilized in Equation (2).
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According to the active control technique, the description of the system in Equation (2) and the
dynamic transformation between the drive in Equation (1) and the response system in Equation (2) is
shown in the equation below.

z =

 za

zb
zc

 =

 y1 − x1

y2 − x2

y3 − x3

 (6)

.
z =


.
za
.
zb.
zc

 =


.
y1 −

.
x1

.
y2 −

.
x2

.
y3 −

.
x3


=


zb + 2x2 + x3

−1
βC

g(y2)zb +
1

βC
zc +

1
βC

[iN − sin(y1)]− x1 −
(

a + g(y2)
βC

)
x2 − x3

βC
1

βL
zb − 1

βL
zc +

1
βL
(x2 − x3)− x1x3 − cx3 − b

+

 va

vb
vc


(7)

where
[

va vb vc

]T
is the active control function that eliminates the terms that have no zi for i = a,

b, c. As a result, the active control function can be determined by the equation below. va

vb
vc

 =


−2x2 − x3

−1
βC

[iN − sin(y1)] + x1 +
(

a + g(y2)
βC

)
x2 +

x3
βC

−1
βL

(x2 − x3) + x1x3 + cx3 + b

+

 wa

wb
wc

 (8)

where
[

wa wb wc

]T
is the error term in the active control procedure. Substituting Equation (8)

into (7), Equation (7) was transformed into the formula below.

.
z =


.
za
.
zb.
zc

 =

 zb
−1
βC

g(y2)zb − 1
βC

zc
1

βL
zb − 1

βL
zc

+

 wa

wb
wc

 (9)

The matrix form of Equation (8) can be rewritten as the formula below.

.
z =


.
za
.
zb.
zc

 = A

 za

zb
zc

+

 wa

wb
wc

 (10)

Suppose the matrix A has eigenvalues (λa, λb,λc) = (−1,−1,−1). Then the characteristic
equations of A are demonstrated by the equation below. −1 −1 0

0 −1 + 1
βC

g(y2)
1

βC

0 −1
βL

−1 + 1
βL


 za

zb
zc

 =

 wa

wb
wc

 (11)

The solution of
[

wa wb wc

]T
is shown below.

 wa

wb
wc

 =


−za − zb

−
(

1− 1
βC

g(y2)
)

zb +
1

βC
zc

−1
βL

zb −
(

1− 1
βL

)
zc

 (12)
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Equation (9) used Equation (12) to become
[ .

za
.
zb

.
zc

]T
=
[
−za −zb −zc

]T
. By substituting

Equations (12) and (8) into the RCLs-Josephson Junction system in Equation (2) with an iterative learning
control rule and changing the variable x to variable y, the system became the formula below.

.
Y =

 −y2 − y3 − za

y1 + ay2 − zb
y1x3 − cy3 − zc

+ U(k) =

 0 −1 −1
1 a 0
0 0 y1 − c


 y1

y2

y3

+

 0
0
b

−
 za

zb
zc

+

 u(k)
1

u(k)
2

u(k)
3

 (13)

After the active control procedure, the RCLs-JJ system becomes a quasi-Rossler chaotic system so
that the trajectory tracing between different systems traces the trajectory under identical systems.

2.2. Trajectory Tracking between Systems via the Iterative Learning Control

The RCLs-JJ system has now became the quasi-Rossler chaotical system. The ILC procedure and
control signal from the drive system utilizes the response system to track the drive system. When an
appropriated

{
U(k)

}
k=1,2,···

is found and the iteration number k is sufficient, the tracked error dynamic

system should be equal to zero, that is
.
e(k)(t) = lim

k→∞

∣∣∣ .
X(t)−

.
Y(t)

∣∣∣ = 0. The tracking trajectory has

changed to two similar systems.
In many studies, the synchronization between identical systems employ the control signal from

the drive system [25–27]. Accordingly, The RCLs-JJ system in Equation (2) uses the control signals
from the drive system, x1 and x3, which can be rewritten as the equation below.

.
Y =


.
y1.
y2.
y3

 =

 x2
1

βC
[iN − g(y2)x2 − sin(y1)− x3]

1
βL
(x2 − x3)

+ U(k) (14)

The control signals from the Rossler system of Equation (14) are similar to the quasi-Ross system
in Equation (13) and the iterative learning control law U(k), which is defined by error dynamics.
The dynamic error system between the Rossler system in Equation (1) and the quasi-Rossler system in
Equation (13) can be exhibited by the formula below.

.
e =

 −e1 − e2

e1 + ae2

x3e1 − ce3

 −

 za

zb
zc

+

 u(k)
1

u(k)
2

u(k)
3


=

 0 −1 −1
1 a 0
0 0 −c


 e1

e2

e3

+ M
(
xi, yj

)
G(e)−

 za

zb
zc

+

 u(k)
1

u(k)
2

u(k)
3


(15)

The ILC rule u(k) is outlined in References [16,21].

u(k) = B2∆(k) + B1u(k−1) (16)

where the matrix B1 = (M)m ∗ (realeig(B2))
−n with 0 ≤ m ≤ 1, and 1 ≤ n < k. B2 is the coefficient

matrix of ∆(k) =
[

e1 e2 e3

]T
in Equation (15) and realeig(B2) is the real part of eigenvalue of B2.

When the zi=a,b,c = ej=1,2,3, the term M
(

xi, yj
)
G(e) in Equation (14) can absorb the

[
za zb zc

]T
to

choose the appropriate matrix M. By induction, the expansion of u(k) in Equation (16) can be written
as the equation below.

u(k) = (B1)
ku(0) + (B1)

k−1B2∆(1) + (B1)
k−2B2∆(2) + · · ·+ B1B2∆(k−1) + B2∆(k) (17)
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2.3. Lyapunov Stability of Systems

Equation (7) may be the dynamical error system in the active control procedure.
Therefore, the Lyapunov function is defined by the equation below.

V =
1
2

(
s1za

2 + s2zb
2 + s3zc

2
)

(18)

where sj=1,2,3 are constant such that
.

V < 0.

Theorem 1. The Lyapunov function in the active control procedure, which is used to transfer the RCLs-JJ
system in Equation (2) to the quasi-Rossler system in Equation (13), can be defined by Equation (18).

Proof. Equation (18) should prove the first derivative is negative and the dynamic system is stable at
the equilibrium (0, 0, 0). The first derivative of the Lyapunov function is shown below.

.
V =

(
s1

.
zaza + s2

.
zbzb + s3

.
zczc

)
(19)

Substituting Equation (12) into Equation (9),
[ .

za
.
zb

.
zc

]T
=

[
−za −zb −zc

]T
,

and taking s1 = s2 = s3 = 1, the following formula is found.

.
V = −

(
za

2 + zb
2 + zc

2
)
≤ 0 (20)

�

Theorem 2. Based on the u(k)in Equation (16), the Lyapunov function is defined in the iterative control stage
to trace the trajectory of the Rossler system below.

V =
1
2

(
r1e1

2 + r2e2
2 + r3e3

2
)

(21)

Proof. Let u(k−1) be defined as the formula below.

u(k−1) = B2∆(k−1) + M
(
xi, yj

)
G(e) (22)

Applying −u(k−1) to Equation (15), we obtain the error dynamics as
.
e =

[
−za −zb −zc

]T
.

Let zi=a,b,c = ej=1,2,3 and rj=1,2,3= 1. The Lyapunov function is outlined below.

.
V = −

(
e1

2 + e2
2 + e3

2
)
≤ 0 (23)

This implies that Equation (15) employs the iterative learning control law, which is asymptotically
stable at equilibrium.

The Lyapunov function is generally a function of the trajectory error or the synchronization error.
The error norm can be extended to be a cost function having the lowest cost when the trajectory
between systems is close to each other [28–30]. The cost function in this work is defined by the
formula below.

CF =
∣∣∣∣∣∣e1

2 + e2
2 + e3

2
∣∣∣∣∣∣ (24)

�
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3. Results and Discussion

To verify the proposed iterative learning control law, we utilize an example to demonstrate the
tracing error and trajectory between the Rossler dynamical system in Equation (1) with an initial state
(x10, x20, x30) = (0.2, 0.4, 0.1) and the RCLs-JJ system in Equation (2) with an initial state (y10, y20, y30) =
(0, 0, 0), respectively.

3.1. Deciding Iterative Control Learning Law

The Rossler system in Equation (1) is given by the formula below.

.
X = AX + a =

 0 −1 −1
1 0.2 0
0 0 x3 − 5.7


 x1

x2

x3

+

 0
0

0.2

, x0 =

 0.2
0.4
0.1

. (25)

The RCLs-JJ model in Equation (2) is given by the formula below.

.
Y = BY + bψ(y1) + U(k), Y0 =

 0
0
0

 (26)

where the parameters in Equation (25) have been defined in Equations (3) and (4) in which the values
of entries in matrix B are βL = 2.6, βc = 0.707, iN = 1.132, and ψ(y1) = 1.132 − sin(y1). The U(k)

of the system in Equation (25) is the ILC rule in Equation (5). The u(k) defined in Equation (16)
minimizes the tracking error between the Rossler system and the RCLs-JJ system. The matrix M

(
xi, yj

)
in Equation (15) and B2 of Equation (16) can alternate respectively as the equation below.

M
(

xi, yj
)
=

 1 0 0
0 1 0
x1 0 1

 and B2 =

 0 1 1
−1 −0.2 0
−1 0 5.7

 (27)

where the x1 is from Rossler system and matrix B2 is the decomposition of matrix A in Equation (1).
The time interval of the simulation range is from 0 to 300 s and the minimum time step is 0.01 s.
This article utilized the program of the Euler method and figures in MATLAB to investigate trajectory
tracking by using the ILC law in Equation (17). In the active control procedure, we use the Simulink in
MATLAB to transfer the RCLs-JJ system to the Rossler system.

3.2. Exhibiting Simulation Results and Discussion

Figure 2 displays two distinct phase portraits of the two systems known as the Rossler and
RCLs-JJ systems with different initial states. The chaotic behavior of the Rossler system for each phase
portrait is displayed in Figure 2a–c. The phase portrait behaviors of the RCLs-JJ system is shown in
Figure 2d–f. The chaotic behavior of the RCLs-JJ system is clear only in Figure 2e and the others are
not chaos. The challenge is how to find the controller approach in the minimum trajectory error.

The first stage overcomes the non-identical trajectory between the two systems and employs
the active control to change the RCLs-JJ system into a quasi-Rossler system from Equation (6) to
Equation (13). The phases of two systems after utilizing the active control technique are exhibited in
Figure 3a–c.

The new phase portraits of the RCLs-JJ system are almost completely different from the original
phase portraits and are now closer to the Rossler system. Therefore, the new system is called a
quasi-Rossler system. The time response of each component of the two systems indicated in Figure 3d–f
in the paths of Rossler and RCLs-JJ systems, respectively, are distant from each other.
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Figure 2. Original phase portrait of the Rossoler system with [ x10 x20 x30 ]T = [ 0.2 0.4 0.1 ]T

in the left column, (a) the Rossoler system x1, x2, (b) the Rossoler system x2, x3, and (c) the Rossoler
system x1, x3, and the original phase portrait of the RCL-shunted Josephson Junction system with an
initial condition at the original in the right column, (d) the RCLs-JJ system y1, y2, (e) the RCLs-JJ system
y2, y3, and (f) the RCLs-JJ system y1, y3.
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Figure 3. After applying the active control procedure to (a–c), the phase portrait of the Rossler (xi-blue)
and RCLs-JJ system (yj-red) and (c–f) time response of the system is stated in the Rossler (xi-blue)
system and the RCLs-JJ system (yj-black). (a) Phase portrait x1 (y1), x2 (y2); (b) Phase portrait x2 (y2), x3

(y3); (c) Phase portrait x1 (y1), x3 (y3); (d)Time response of state x1-blue, y1-black; (e) Time response of
state x2-blue, y2-black; (f) Time response of state x3-blue, y3-black.

Figure 4 demonstrates the tracking error between the Rossler and the quasi-Rossler systems, which
transfers from the RCLs-JJ system. The vibration of the tracking error has many large amplitudes in
the second (y2-x2) and third (y3-x3) components at the specific moment.

Figure 5 demonstrates the phase portrait of the x1 (y1) and x2 (y2) by utilizing the ILC update
law to track the trajectory. The two trajectories almost overlap, which validates the tracking error
phenomena in Figure 6.

The tracking errors oscillation in Figure 6 are between 0.1408 and −0.1959 for the first tracking
error, between 0.1434 and −0.4217 for the second, and between 0.4784 and −0.8344 for the third
tracking error, respectively.
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Figure 6. The tracking error between the Rossler and the RCLs-JJ systems utilizing the ILC update rule.

Figure 7 exhibits the tracking error after using the ILC law. The third ingredient varies
the most when comparing to subfigures in Figure 1. The lager vibration will always occur at a
particular moment ti because the tracking error between two systems became larger at same moments.
Comparing Figures 4 and 6, the tracking errors are successfully suppressed between 0.2 and −0.2 for
the first two components and the fault of the third component between 0.5 and −0.8 by applying the
proposed ILC update law. The error rate is asymptotically stable.

Figure 8 shows the cost function after utilizing the ILC procedure defined by the tracking error
norm, which is bounded and less than one. The cost function is created by Figure 4 after applying the
divergent active control procedure. The trajectories of the two systems is near each other.
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4. Conclusions

This article proposed a learning control law to trace the trajectory between two non-identical
nonlinear systems and successfully used a two-stage approach of combining an active control technique
and an iterative learning control update law to significantly inhibit and improve the tracking errors in
the numerical results. The simulation example helped infer the trajectory tracking process and assert the
proposed ILC rule. In this research, the ILC tracking method has been applied to the Josephson junction
chaos. Many studies providing other methods such as the backstepping controller [7], the active
control [8], common chaos driving by Rossler [9], and LMI [16] should show similar demonstrations.

Future studies should provide a feedforward procedure in a real-time iterative learning process to
modify the trajectory error between non-identical systems and apply synchronization or the minimum
tracking error procedure into a secure system in quantum communication. The real-time iterative
learning procedure would use signal tracking in the deep learning procedure.

Author Contributions: C.-K.C. conceived and designed the simulation. C.-K.C. performed the simulation.
C.-K.C. analyzed the data. C.-K.C. and P.C.-P.C. wrote the paper.

Funding: This research received no external funding.

Acknowledgments: This work is administratively supported by the group of Professor Paul C.-P Chao.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kautz, R.L.; Monaco, R. Survey of chaos in the rf-biased Josephson junction. J. Appl. Phys. 1985, 57, 875.
[CrossRef]

2. Whan, C.B.; Lobb, C.J. Complex dynamical behavior in RCL-shunted Josephson tunnel junctions.
Phys. Rev. E 1996, 53, 405–413. [CrossRef]

3. Dana, S.K.; Sengupta, D.C.; Edoh, K.D. Chaotic Dynamics in Josephson Junction. IEEE Trans. Circuits Syst.
Fundam. Theor. Appl. 2001, 48, 1057–7122. [CrossRef]

4. Hu, Y.T.; Zhou, T.G.; Gu, J.; Yan, S.L.; Fang, L.; Zhao, X.-J. Study on chaotic behaviors of RCLSJ model
Josephson junctions. J. Phys. Conf. Ser. 2008, 96, 012035. [CrossRef]

5. Yuan, S.L.; Jing, Z.J. Bifurcations of periodic solutions and chaos in Josephson system with Parametric
Excitation. Acta. Math. Appl. Sin. Engl. Ser. 2015, 31, 335–368. [CrossRef]

6. Huberman, B.A.; Crutchfield, J.P.; Packard, N.H. Noise phenomena in Josephson junctions. Appl. Phys. Lett.
1980, 37, 750–752. [CrossRef]

7. Harb, A.M.; Harb, B.A. Controlling Chaos in Josephson-Junction Using Nonlinear Backstepping Controller.
IEEE Trans. Appl. Supercond. 2006, 16, 1988–1998. [CrossRef]

8. Ucar, A.; Lonngren, K.E.; Bai, E.W. Chaos synchronization in RCL-shunted Josephson junction via active
control. Chaos Solitons Fractals 2007, 31, 105–111. [CrossRef]

9. Feng, Y.L.; Shen, K.E. Chaos synchronization in RCL-shunted Josephson junctions via a common chaos
driving. Eur. Phys. J. B 2008, 61, 105. [CrossRef]

10. Vincenta, U.E.; Ucarb, A.; Laoyea, J.A.; Kareema, S.O. Control and synchronization of chaos in RCL-shunted
Josephson junction using backstepping design. Physica C 2008, 468, 374–382. [CrossRef]

11. Zribi, M.; Khachab, N.; Boufarsan, M. Synchronization of two RCL shunted Josephson Junctions.
In Proceedings of the 2011 International Conference on Microelectronics (ICM), Hammamet, Tunisia,
19–22 December 2011. [CrossRef]

12. Lu, C.; Liu, A.; Ling, M.; Dong, E. Synchronization of chaos in RCL-shunted Josephson junctions array.
Chin. Autom. Congr. 2015, 1956–1961. [CrossRef]

13. Njah, A.N.; Ojo, K.S.; Adebayo, G.A.; Obawole, A.O. Generalized control and synchronization of chaos in
RCL-shunted Josephson junction using backstepping design. Physica C 2010, 470, 558–564. [CrossRef]

14. Xu, S.Y.; Tang, Y.; Sun, H.D.; Zhou, Z.G.; Yang, Y. Characterizing the anticipating chaotic synchronization of
RCL-shunted Josephson junctions. Int. J. Non-Linear Mech. 2012, 47, 1124–1131. [CrossRef]

15. Chadli, M.; Zekinka, L.; Yousset, T. Unknown inputs observer design for fuzzy systems with application to
chaotic system reconstruction. Comput. Math. Appl. 2013, 66, 147–154. [CrossRef]

http://dx.doi.org/10.1063/1.334687
http://dx.doi.org/10.1103/PhysRevE.53.405
http://dx.doi.org/10.1109/81.940189
http://dx.doi.org/10.1088/1742-6596/96/1/012035
http://dx.doi.org/10.1007/s10255-014-0447-z
http://dx.doi.org/10.1063/1.92020
http://dx.doi.org/10.1109/TASC.2006.881811
http://dx.doi.org/10.1016/j.chaos.2005.09.035
http://dx.doi.org/10.1140/epjb/e2008-00037-9
http://dx.doi.org/10.1016/j.physc.2007.11.012
http://dx.doi.org/10.1109/ICM.2011.6177393
http://dx.doi.org/10.1109/CAC.2015.7382825
http://dx.doi.org/10.1016/j.physc.2010.05.009
http://dx.doi.org/10.1016/j.ijnonlinmec.2011.09.006
http://dx.doi.org/10.1016/j.camwa.2013.01.018


Appl. Sci. 2018, 8, 1285 14 of 14

16. Chadli, M.; Zekinka, L. Chaos synchronization of unknown inputs Takagi-Sugeno fuzzy: Application to
secure communications. Comput. Math. Appl. 2014, 68, 2142–2147. [CrossRef]

17. Zekinka, L.; Chadli, M.; Davendra, D.; Senkerik, R.; Jasek, R. An investigation on evolutionary reconstruction
of continuous chaotic systems. Math. Comput. Model. 2013, 57, 2–15. [CrossRef]

18. Ho, M.C.; Hung, Y.C. Synchronization of two different systems by using generalized active control.
Phys. Lett. A 2002, 301, 424–428. [CrossRef]

19. Moore, K.L. Iterative Learning Control for Deterministic System; Springer: New York, NY, USA, 1992; pp. 63–78.
20. Werndl, C. What Are the New Implications of Chaos for Unpredictability. Br. J. Philos. Sci. 2009, 60, 195–220.

[CrossRef]
21. Doebeli, M.; Ispolatov, I. Chaos and Unpredictability in Evolution. Evolution 2014, 68, 1365–1373. [CrossRef]
22. Schuster, H.G. Handbook of Chaos Control; John Wiley & Sons: Hoboken, NJ, USA, 2006; pp. 303–324,

ISBN 9783527607457.
23. Li, Z.G.; Wen, C.Y.; Soh, Y.C. Analysis and Design of Impulsive Control System. IEEE Trans. Autom. Control

2001, 46, 894–897. [CrossRef]
24. Zhang, W.X.; Giu, Z.J.; Wang, K.H. Impulsive Control for Synchronization of Lorenz Chaotic System. J. Softw.

Eng. Appl. 2012, 5, 23–25. [CrossRef]
25. Boccaletti, S.; Kurths, J.; Osipov, G.; Valladares, D.l.; Zhou, C.S. The synchronization of chaotic system.

Phys. Rep. 2002, 366, 1–101. [CrossRef]
26. Cheng, C.K.; Kuo, H.H.; Hou, Y.Y.; Chuan, C.C.; Liao, T.L. Robust chaos Synchronizing of noise-perturbed

chaotic systems with multiple time-delay. Phys. A 2002, 387, 3093–3102. [CrossRef]
27. Cheng, C.K.; Chao, P.C.-P. Chaotic Synchronizing Systems with Zero Time Delay and Free Couple via

Iterative Learning Control. Appl. Sci. 2018, 8, 177. [CrossRef]
28. Sarasolaa, C.; Torrealdeab, F.J.; d’Anjoub, A.; Grañab, M. Cost of synchronizing different chaotic systems.

Math. Comput. Simul. 2002, 58, 309–327. [CrossRef]
29. Sorrentino, F. Adaptive coupling for achieving stable synchronization of chaos. Phys. Rev. E 2009, 80, 056206.

[CrossRef] [PubMed]
30. Jafari, S.; Sprott, U.C.; Pham, V.-T. A New Cost Function for Parameter Estimation of Chaotic Systems Using

Return Maps as Fingerprints, International. Int. J. Bifurc. Chaos 2014, 24, 1450134. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.camwa.2013.01.013
http://dx.doi.org/10.1016/j.mcm.2011.06.034
http://dx.doi.org/10.1016/S0375-9601(02)00987-8
http://dx.doi.org/10.1093/bjps/axn053
http://dx.doi.org/10.1111/evo.12354
http://dx.doi.org/10.1109/9.928590
http://dx.doi.org/10.4236/jsea.2012.512B005
http://dx.doi.org/10.1016/S0370-1573(02)00137-0
http://dx.doi.org/10.1016/j.physa.2008.02.010
http://dx.doi.org/10.3390/app8020177
http://dx.doi.org/10.1016/S0378-4754(01)00375-5
http://dx.doi.org/10.1103/PhysRevE.80.056206
http://www.ncbi.nlm.nih.gov/pubmed/20365059
http://dx.doi.org/10.1142/S021812741450134X
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Rossler Chaotic and RCL-Shunted Josephson Junction System 
	System Description and Transformation 
	Trajectory Tracking between Systems via the Iterative Learning Control 
	Lyapunov Stability of Systems 

	Results and Discussion 
	Deciding Iterative Control Learning Law 
	Exhibiting Simulation Results and Discussion 

	Conclusions 
	References

