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Abstract: This study aims to assess the dynamic stall of the wind turbine blade undergoing pitch
oscillation (PO) and oscillating freestream (OF), respectively. Firstly, a thin-airfoil theoretical analysis
was performed to differentiate between these two dynamic effects. During upstroke, PO results in a
positive effective airfoil camber, while OF has an additional negative effective airfoil camber, and yet
in contrast during downstroke, PO decreases the effective camber, while OF increases the effective
camber. Secondly, the equivalence relation between PO and OF is investigated by numerically
solving the unsteady Reynolds-averaged Navier-Stokes equations. The difference between PO and
OF mainly exists in the linear part of the aerodynamic loads. Because the difference is great at high
reduced frequencies or angle of attack (AOA) amplitudes, PO and OF should be treated separately
for dynamic stall from different aerodynamic sources. Thirdly, the Beddoes-Leishman dynamic
model coupled with Bak’s rotational stall delay model was used to predict the yawed responses of
the blade section. The obtained results show different aerodynamic responses between PO and OF,
although consideration of rotational augmentation can greatly improve the accuracy of the lift and
drag coefficients. To improve the understanding and coupling modeling of rotational augmentation
and dynamic stall, an extended analysis of the coupled effect was performed as well.

Keywords: dynamic stall; pitch oscillation; oscillating freestream; rotational augmentation;
wind turbine

1. Introductions

Horizontal axis wind turbines (HAWTs) often experience unsteady air loads, to which wind
turbine failures, reduced machine life, and increased operating maintenance are all directly linked.
However, deep understanding and accurate prediction of the unsteady blade air loads and rotor
performance face many challenges [1], among which ‘dynamic stall’ is of particular significance.
Dynamic stall is characterized by the shedding and passage of a strong vortical disturbance over the
suction surface, inducing a highly nonlinear fluctuating pressure field [2]. The unsteady effects on
HAWTs can be classified into two categories according to different aerodynamic sources. One is blade
motion, such as blade pitching, elastic bending, and flapping. The other is varying flow field structure
induced by atmospheric turbulence, wind shear, wind gust, yawed inflow, tower shadow, interactions
among rotors in a wind farm, and so on. These sources ultimately act on the local angle of attack
(AOA) and velocity field at the blade-section level, hence producing unsteady loads on the blades.

In the 1980s, McCroskey [2] and Carr [3] conducted a comprehensive review on the main physical
features of dynamic stall of helicopter rotors. Then, Butterfield [4] verified the great effect of dynamic
stall on HAWT performance. In order to consider dynamic stall in engineering, several empirical and
semi-empirical models have been developed for rotor air load prediction and rotor design analysis.
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These models often contain simplified representation of the essential physics using sets of linear
and non-linear equations for the lift, drag, and pitching moment [5–7]. Leishman and Beddoes [6]
developed the well-known Beddoes-Leishman (B-L) model based on proper considerations of flow
mechanisms. An apparent advantage of the B-L model is that it yields good results with relatively few
empirical coefficients, most of which can be derived from the static airfoil data. Despite the original
application to helicopters (compressible flow), the B-L model has been introduced into wind turbines
with several modifications [8–11]. Another promising method is the computational fluid dynamics
(CFD) simulation achieved by numerically solving the Navier-Stokes equations with a suitable
turbulence model. CFD methods have a very good capability of predicting both two-dimensional
(2D) and three-dimensional (3D) dynamic stall events [12,13]. Ekaterinaris and Platzer [14] provided
a comprehensive review on the computational prediction of dynamic stall. For Reynolds-averaged
Navier-Stokes simulations (RANS), they found that the SST k-ω eddy viscosity model [15] performs
better than any other two-equation models. However, their results are not yet satisfactory in the
stalled regime and during flow reattachment. In this regard, they further found that the accurate
prediction of transition from a laminar-to-turbulent boundary layer is a key element of improved
hysteresis predictions.

As is well known, most of the information concerning dynamic stall is obtained by sinusoidal
pitch oscillation about the quarter-chord axis, because this motion is considered to be adequate to
represent the characteristics of dynamic stall. However, other types of motion, such as plunging
oscillation, fore-aft motion, and oscillating freestream, can make a big difference in the dynamic-stall
process [3,16]. In terms of relative motion, the blade motion and flow field variation may be further
subdivided into the following three pairs (Figure 1):

• Firstly, the blade sections experience a time-varying tangential velocity (Figure 1a) under yawed
inflow or in-plane gusts; as a counterpart, the blade sections undergo a fore-aft motion with
edgewise vibration (Figure 1b).

• Secondly, unsteady inflow will cause a time-varying velocity component perpendicular to the
rotor plane (Figure 1c); as a counterpart, the blade sections undergo a plunge motion during
flapwise vibration (Figure 1d).

• Thirdly, a periodic AOA change (i.e., oscillating freestream, OF) results from the superposition
of rotational velocity and the in-plane freestream velocity component (Figure 1e) under yawed
inflow; as a counterpart, pitch oscillation (PO) occurs and affects the effective AOA under blade
pitching or elastic bending (Figure 1f).

Van der Wall and Leishman [16] clarified the difference in the nature of the first pair, time-varying
tangential velocity and fore-aft motion; the latter leads to a uniform perturbation velocity across the
airfoil chord, while the former produces a perturbation velocity gradient across the chord. When the
reduced frequency is low, both of them may be considered almost identical, which, however, is invalid
for high reduced frequencies. Similarly, it can be speculated that time-varying freestream velocity will
bring about a different effect on perturbation velocity from that of the plunging motion. For the third
pair, Karbasian et al. [17] stated that OF can be referred to as PO. However, the equivalence relation
between PO and OF still remains open from the point of view of Van der Wall and Leishman [16].
Practically, PO is generally used to conduct experimental studies and establish the engineering models.
In order to improve the wind turbine unsteady aerodynamic prediction, it is necessary to clarify the
relation between PO and OF.
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Figure 1. Schematic of different unsteady aerodynamic sources from a blade-section view. The left 
comes from varying flow field structures, and the right comes from the blade motion. The dashed line 
denotes the rotor plane. (a) Time-varying tangential velocity; (b) Fore-aft motion; (c) Time-varying 
normal velocity; (d) Plunge motion; (e) Oscillating freestream; (f) Pitch oscillation.  

To investigate the dynamic stall of the blade sections under PO and OF, the problem of dynamic 
stall must be considered as fully 3D due to the rotational effect [1]. During the last few decades, both 
dynamic stall and rotational effects have captured significant attention but have been studied 
independently. The rotational effects play an important role in the boundary layer development due 
to the centrifugal and Coriolis forces. The centrifugal force results in radial flow, thinning the 
boundary layer of the blade. On the other hand, the Coriolis force adds a chordwise positive pressure 
gradient, flattening the separated zone and delaying the flow separation. Because the gross output 
power and sectional lift are clearly elevated with flow separation delayed, the rotational effect is also 
called a rotational augmentation. Several stall delay models have been developed to correct the 2D 
airfoil data by Snel et al. [18], Chaviaropoulos and Hansen [19], Du and Selig[20], Raj [21], Bak et al. 
[22], Corrigan and Schillings [23], and Lindenburg [24]. Breton et al. [25] evaluated these existing 
models on the Phase VI rotor with a prescribed wake vortex code and discussed their deficiencies 
and strengths. The 3D rotational effect is relatively strong on small-scaled stall-controlled HAWTs, 
and almost all of the correction models are established on the studies of stall-controlled HAWT 
aerodynamics. However, Zahle et al. [26] and Bangga et al. [27] noted that rotational augmentation 
is still prominent in the root region of a 10 MW modern pitch-controlled HAWT. Bangga et al. [28] 
also observed the unsteady effects on rotational augmented blade loads under a turbulent inflow.  

A comparative analysis of the dynamic stall under PO and OF on the NREL S809 airfoil [29] and 
the Phase VI rotor [30] is presented in this paper. Firstly, the quasi-steady thin-airfoil theory is used 
to clarify the difference between PO and OF in the induced perturbation velocity across the chord. 
Secondly, the unsteady RANS method is used to assess the equivalence relation between PO and OF. 
The turbulence is modeled by the SST k-ω eddy viscosity model [15] incorporated with the γ-Reθ 
transition model [31]. Thirdly, the classical B-L model is used to predict the yawed response of the 
Phase VI rotor under PO and OF. Bak’s rotational stall delay model is incorporated into the dynamic 
stall model to consider rotational augmentation. The inverse BEM method is used to obtain the 
sectional AOAs and relative velocities from the experimental data. These extracted AOAs and 
velocities are then used to isolate the 3D rotational effect from the 3D unsteady aerodynamic data. 
All the predicted results agree well with the corresponding experimental data. It is found that PO 
and OF have an opposite effect on the effective airfoil camber. Therefore, it is necessary to separately 
consider the effects of PO and OF.  
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Figure 1. Schematic of different unsteady aerodynamic sources from a blade-section view. The left
comes from varying flow field structures, and the right comes from the blade motion. The dashed line
denotes the rotor plane. (a) Time-varying tangential velocity; (b) Fore-aft motion; (c) Time-varying
normal velocity; (d) Plunge motion; (e) Oscillating freestream; (f) Pitch oscillation.

To investigate the dynamic stall of the blade sections under PO and OF, the problem of dynamic
stall must be considered as fully 3D due to the rotational effect [1]. During the last few decades,
both dynamic stall and rotational effects have captured significant attention but have been studied
independently. The rotational effects play an important role in the boundary layer development due to
the centrifugal and Coriolis forces. The centrifugal force results in radial flow, thinning the boundary
layer of the blade. On the other hand, the Coriolis force adds a chordwise positive pressure gradient,
flattening the separated zone and delaying the flow separation. Because the gross output power and
sectional lift are clearly elevated with flow separation delayed, the rotational effect is also called a
rotational augmentation. Several stall delay models have been developed to correct the 2D airfoil
data by Snel et al. [18], Chaviaropoulos and Hansen [19], Du and Selig [20], Raj [21], Bak et al. [22],
Corrigan and Schillings [23], and Lindenburg [24]. Breton et al. [25] evaluated these existing models on
the Phase VI rotor with a prescribed wake vortex code and discussed their deficiencies and strengths.
The 3D rotational effect is relatively strong on small-scaled stall-controlled HAWTs, and almost all of
the correction models are established on the studies of stall-controlled HAWT aerodynamics. However,
Zahle et al. [26] and Bangga et al. [27] noted that rotational augmentation is still prominent in the root
region of a 10 MW modern pitch-controlled HAWT. Bangga et al. [28] also observed the unsteady
effects on rotational augmented blade loads under a turbulent inflow.

A comparative analysis of the dynamic stall under PO and OF on the NREL S809 airfoil [29]
and the Phase VI rotor [30] is presented in this paper. Firstly, the quasi-steady thin-airfoil theory is
used to clarify the difference between PO and OF in the induced perturbation velocity across the
chord. Secondly, the unsteady RANS method is used to assess the equivalence relation between PO
and OF. The turbulence is modeled by the SST k-ω eddy viscosity model [15] incorporated with the
γ-Reθ transition model [31]. Thirdly, the classical B-L model is used to predict the yawed response
of the Phase VI rotor under PO and OF. Bak’s rotational stall delay model is incorporated into the
dynamic stall model to consider rotational augmentation. The inverse BEM method is used to obtain
the sectional AOAs and relative velocities from the experimental data. These extracted AOAs and
velocities are then used to isolate the 3D rotational effect from the 3D unsteady aerodynamic data.
All the predicted results agree well with the corresponding experimental data. It is found that PO
and OF have an opposite effect on the effective airfoil camber. Therefore, it is necessary to separately
consider the effects of PO and OF.
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2. Methodology

The research objects are the Phase VI rotor and its basic airfoil, the NREL S809 airfoil. Here, PO
denotes the sinusoidal pitch of the airfoil about the quarter-chord at a constant freestream velocity
(Figure 1f), while OF denotes the sinusoidal change in the direction of inflow velocity at a constant
magnitude to the stationary airfoil (Figure 1e). What is satisfied for both PO and OF is the same
instantaneous angle between the freestream velocity and the chord as follows:

α(t) = αm + Asin(2πft) (1)

where αm, A, and f are the mean AOA, the AOA amplitude, and the frequency of oscillation,
respectively. The reduced frequency is often defined as k = πfc/V with V being the freestream velocity
and c the chord length.

2.1. Thin-Airfoil Theoretical Analysis

Allowing for a simple analysis of the flow mechanism, the airfoil is simplified as a flat plate with
its camber and thickness neglected here, and then, a quantitative comparison can be made with the
quasi-steady thin-airfoil theory. The governing equation for thin-airfoil theory is Laplace’s equation.
The idea is to place a vortex sheet singularity of unknown strength on the airfoil [32]. The strength of
this vortex sheet is determined by satisfying the flow tangency on the camber line in conjunction with
the Kutta condition at the trailing edge. Formulated in Fourier series, the general form of pressure
distribution on the airfoil is as follows:

∆Cp(α, θ) = 4

[
A0

(
1 + cos θ

sin θ

)
+

∞

∑
n=1

An sin nθ

]
(2)

where α is the AOA, and θ = cos−1(1− 2x/c) (x is the chordwise location with the leading edge denoted
by x = 0). The coefficients A0 and An are given by following equations:

A0 = α− 1
π

∫ π
0

dy
dx dθ

An = 2
π

∫ π
0

dy
dx cos nθ dθ

(3)

where y(x) describes the camber line of the airfoil. Integrating Equation (2) along the chord, we can
obtain the lift coefficient, Cl = 2π(A0 + 0.5A1), and the pitching moment coefficient about the
quarter-chord axis, Cm0.25 = −0.25π(A1 − A2). For PO, the pitch-rate term produces a linear variation
in normal perturbation velocity [5], w(x) = − .

α(x − 0.25c) (where
.
α is the pitch rate and positive during

upstroke) so that the induced camber is a parabolic arc (Figure 2). For OF, the normal perturbation
velocity can be formulated as w(x) = Vα(t) − Vα(t−x/V). Because the quasi-steady condition means a
low frequency, this formula can be linearized as w(x) =

.
αx. Then, the term of dy/dx in Equation (3)

can be replaced with w(x)/V. Hence, the lift coefficients are given by Cl = 2π(α +
.
αc/2V) under

PO and Cl = 2π(α − 3
.
αc/4V) under OF, indicating an additional effective AOA, αeq =

.
αc/2V and

αeq = −3
.
αc/4V, respectively.

In short, PO and OF have an opposite effect on the effective airfoil camber. During upstroke,
PO increases the effective camber, while OF decreases the effective camber. During downstroke,
PO decreases the effective camber, while OF increases the effective camber. Therefore, the lift under PO
is higher during upstroke and lower during downstroke compared with the lift under OF. Notice that
this effect is directly related to the pitch rate

.
α = 2πfAcos(2πft). Consequently, the difference between

PO and OF is negligible at low variation frequencies and substantial at high ones.
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2.2. Numerical Modeling

For predictions of the dynamic stall, the commercial program ANSYS/FLUENT 16.0 (ANSYS,
Inc., Canonsburg, PA, USA) [33] was used to solve the unsteady Reynolds-averaged Navier-Stokes
equations. The mesh around airfoil geometry is generated in a structured O-type configuration to
assure the wall orthogonality (Figure 3). The computational domain is exactly square. The first layer
spacing off the wall is 10−5 c; this setting can ensure that the viscous sublayer is directly resolved with
y+ less than 1. There are 48 normal layers in the boundary layer mesh, with the growth rate being
1.08. After a proper grid independence study, the total size of the computational mesh is set to be
51,090 with 245 wrap-around points and 206 normal layers. A far-field distance of 20 c away from
the airfoil is sufficient. The left, upper, and lower sides are all inlet boundary with velocity imposed.
The right side is outlet boundary with pressure imposed (Figure 3). To simulate the dynamic stall
under PO, the sliding-mesh method [33] was used. Therefore, the computational zone was divided into
two subdomains, a rotating region (inner) and a stationary region (outer). These two regions interact
by a circular sliding interface; this control circle of the sliding interface is 1.2 c in radius (Figure 3).
To simulate the dynamic stall under OF, a user-defined function was implemented on the velocity inlet
boundaries. The typical Reynolds number of 1 × 106 was selected in numerical simulations.

In order to obtain a good resolution, the third-order Monotone Upstream-Centered Schemes for
Conservation Laws (MUSCL) convection scheme [33] is used for spatial discretization of the whole set
of RANS and turbulence equations. This scheme was conceived of from the original MUSCL [34] by
blending a central differencing scheme and a second-order upwind scheme. The second-order implicit
scheme [33] is used for time differencing. Although it is theoretically valid that implicit methods are
unconditionally stable with respect to the time step, nonlinearity effects would become prominent
and oscillatory solutions may occur when the time step is increased. An operational cell convective
courant number between 5 and 10 for viscous turbomachinery flows with an implicit scheme provides
the best error damping properties [35]. On these bases, the number of inner iterations per time step is
chosen to be 40 in this study to ensure the cell convective courant number is less than 10.

The pressure-based Coupled algorithm [33] is employed to handle the pressure-velocity coupling.
Originally, the PISO algorithm [33] was preferable for transient problems, because it was derived from
the SIMPLE algorithm [33] specifically for unsteady calculations. The PISO algorithm can yield accurate
results with lower computational costs than the SIMPLE algorithm when time steps are sufficiently
small. Both the SIMPLE and PISO algorithms, however, are known to converge slowly because the
momentum equation and pressure-correction equation are solved separately. In the Coupled algorithm,
the Navier-Stokes equations are directly solved through an implicit discretization of pressure in the
momentum equations, with benefits in terms of robustness and convergence, especially with large
time steps or with a poor-quality mesh. Balduzzi et al. [35] found that the obtained results with the
Coupled algorithm are much closer to the experimental data than the SIMPLE and PISO algorithms.
The lower sensitivity to the temporal discretization leads to the choice of the Coupled algorithm as the
preferable and more robust formulation for the pressure-velocity coupling.

Because the incorporation of the transitional flow effects is a key element for an improved
prediction of dynamic stall [14], the turbulence in the boundary layer is modeled by the four-equation
SST k-ω eddy viscosity model [15] incorporated with the γ-Reθ transition model [31].
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2.3. Beddoes-Leishman Semi-Empirical Model

The classical B-L dynamic stall model [6] is capable of effectively assessing the unsteady loads
with the flow physical features considered, and therefore, is fully implemented in the present work,
including the leading-edge separation effect. Pereira et al. [10] have proven that it is unrealistic to
disregard the leading-edge separation, because the wind turbine airfoils are thick. The main features
and formulae of the B-L dynamic stall model may be summarized as follows.

2.3.1. Unsteady Attached Flow

Unsteady effects in attached flow conditions are simulated by the superposition of indicial
aerodynamic responses for time step changes in the AOA. For a step change in the AOA, the normal
force and pitching moment coefficients can be written as follows:

∆Cn = Cc
n + Cnc

n
∆Cm = Cc

m + Cnc
m

(4)

where the superscripts c and nc denote the circulatory part and non-circulatory part of the aerodynamic
loads, respectively. The indicial response can be approximated empirically in terms of the exponential
function. Hence, the circulatory loading is as follows:

Cc
n = Cnααc

e = Cnα(α(s)− X(s)−Y(s)) (5)

where Cnα is the normal force slope, and the non-dimensional time s represents the distance travelled at
the relative velocity by the airfoil in semi-chords; that is, s = 2Vt/c. X(s) and Y(s) are deficiency functions
written in a special finite difference approximation to Duhamel’s integral as given by the following:

X(s) = X(s− ∆s) exp(−b1∆s) + A1∆α exp(−b1∆s/2)
Y(s) = Y(s− ∆s) exp(−b2∆s) + A2∆α exp(−b2∆s/2)

(6)

Here, A1, A2, b1, and b2 are the coefficients of the indicial functions and are a function of the airfoil
and the Mach number. Then, the circulatory pitching moment coefficient is given by the following:
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Cc
m = (0.25− xac/c)Cc

n (7)

where xac is the position of the airfoil aerodynamic center measured from the leading edge. A similar
recurrence relation is used for the non-circulatory part of the air loads, Cnc

n and Cnc
m (see [6] for details).

2.3.2. Unsteady Separated Flow

The non-linear effects of the trailing-edge separation are implemented using a Kirchhoff flow
model. The movement of the unsteady flow separation point position is related to the static separation
position via a deficiency function. The onset of the leading-edge separation, and hence the dynamic
stall, is identified using a criterion based on the attainment of a critical local leading-edge pressure,
which is further related to the normal force.

Under unsteady conditions, there is a lag in the leading-edge pressure with the increasing AOA,
which can be expressed as a first-order lag as given by the following:

C′n = Cp
n − Dp (8)

where
Cp

n = Cc
n + Cnc

n

Dp(s) = Dp(s− ∆s) exp
(
−∆s/Tp

)
+
[
Cp

n(s)− Cp
n(s− ∆s)

]
exp

(
−∆s/2Tp

) (9)

The constant Tp can be determined empirically from unsteady airfoil data. The effective AOA
α f = C′n/Cnα + α0 after incorporating the unsteady pressure response is used to obtain the effective
flow separation point f ′. In this study, f ′ is determined by look-up-table interpolation from the static
airfoil data. The additional effects of a boundary layer response are considered as a first-order lag as
given by the following:

f ′′ = f ′ − D f (10)

where
D f (s) = D f (s− ∆s) exp

(
−∆s/Tf

)
+
[

f ′(s)− f ′(s− ∆s)
]

exp
(
−∆s/2Tf

)
. (11)

The constant Tf can be determined empirically from unsteady airfoil data. Then, the non-linear
normal force coefficient is obtained by the Kirchhoff flow theory

C f
n = Cnα

(
1 +

√
f ′′

2

)2

(α− α0) (12)

where α0 is the zero-lift AOA. Afterwards, the chordwise force coefficient is obtained by Gupa and
Leishman’s approximation [11] as given by the following:

C f
t =

{
Cnα

√
f ′′ α sin αC′n ≤ Cn1

K1 + Cnα

√
f ′′ f ′′Φα sin α C′n > Cn1

(13)

where Cn1 is the critical normal force value and the leading-edge separation is initiated when C′n > Cn1.
The parameter K1 and Φ are obtained from the static test data [11]. The pitching moment coefficient is
obtained by fitting the ratio Cm/Cn in a least-square method from the static airfoil data as given by
the following:

C f
m = Cm0 + [k0 + k1(1− f ′′ ) + k2 sin(π f ′′ µ)]C f

n (14)

where Cm0 is the zero-lift pitching moment coefficient. The values of k0, k1, k2, and µ can be adjusted
for different airfoils.
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2.3.3. Vortex Force

The induced vortex force and the associated pitching moment are represented empirically in a
time-dependent manner during dynamic stall. The total accumulated vortex normal force coefficient
under unsteady conditions is given by the following:

Cv
n = Cv

n(s− ∆s) exp(−∆s/Tv) + [Cv(s)− Cv(s− ∆s)] exp(−∆s/2Tv) (15)

where

Cv(s) = Cc
n(s)

1 +

(
1 +

√
f ′′

2

)2
. (16)

Tv is the vortex time decay constant. The center of pressure on the airfoil also varies with the
chordwise position of the shedding vortex and will achieve a maximum value when the vortex reaches
the trailing edge after a non-dimensional time period Tvl. A general representation of the center of
pressure behavior (aft of the quarter-chord) is empirically formulated as follows:

(CP)v = 0.25
(

1− cos
πTv

Tvl

)
(17)

where Tv denotes the non-dimensional vortex time, 0 ≤ Tv ≤ 2Tvl (i.e., Tv = 0 at the onset of dynamic
stall and Tv = Tvl when the vortex reaches the trailing edge). Thus, the increment in the pitching
moment about the quarter-chord due to dynamic stall is given by the following:

Cv
m = −(CP)v·C

v
n . (18)

The total unsteady air loads on the airfoil is then obtained by superposition as follows:

Cn = C f
n + Cnc

n + Cv
n

Ct = C f
t + (Cnc

n + Cv
n) sin αc

e

Cm = Cc
m + Cnc

m + C f
m + Cv

m

(19)

Apart from dynamic stall, rotational augmentation is of crucial importance for wind turbine
aerodynamic performance prediction. The rotational stall delay model of Bak et al. [22] is implemented.
This model was developed on the difference in chordwise pressure distribution between the rotating
blade section and the static airfoil. Although the obtained lift and drag coefficients were generally
good, the modeled pitching moment coefficient indicated a poor agreement with the measurements,
because the center of pressure was often underpredicted at large AOAs. Thus, a simple modification
that the integrated location is changed from 0.25 to 0.1 was made to the pitching moment coefficient
when fully separated flow occurs. Figure 4 implies an acceptable performance of this modification.
It is generally acknowledged that the rotational augmentation is relatively apparent in separated flow;
therefore, rotational augmentation mainly affects the nonlinear air loads.

To incorporate the rotational stall delay model into the dynamic stall model, the static airfoil data
are corrected by Bak’s model firstly. Then, the static separation point is obtained from the Kirchhoff
formulation (Equation (12)). The dynamic separation point is calculated by a first-order lag of the
static separation point (Equation (10)), while the nonlinear normal force is reconstructed by Equation
(12). Afterwards, the chordal force coefficient is obtained by Equation (13), with an increment added to
consider the rotational augmentation. Finally, the nonlinear pitching moment coefficient is obtained
by Equation (14), and a rotational increment is added as well. According to the recommendations of
Pereira et al. [10] and Gupa et al. [11], the set of corresponding empirical time constants, Tp, Tf, Tv, Tvl,
is as follows: 1.7, 8.0, 1.0, and 7.0, where Tp and Tf are related to the first-order lag of the leading-edge
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separation and trailing-edge separation, respectively, and both Tv and Tvl are the non-dimensional
time constants related to the movement of the dynamic vortex.
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Figure 4. Three-dimensional (3D) corrected airfoil characteristics of different radial locations compared
to two-dimensional (2D) measurements and measured 3D data.

The difference between PO and OF is addressed in the circulatory part of unsteady linear air loads,
based on the thin-airfoil theory. To obtain input conditions, the sectional velocity components are
extracted from the yawed measurements with the inverse BEM method [22,24,36–38]. This method has
widely been used to determine the local AOA with the pre-determined local forces used to calculate
the local induction factors and hence the induced velocities. In the inverse BEM method, Prandtl’s tip
correction is used to consider the tip loss effect.

3. Results and Discussion

3.1. Time-Varying Sectional Incident Velocity under Yawed Inflow

Schepers [39] provided a detailed discussion on two aerodynamic effects under yawed inflow.
One is the skewed wake effect, inducing an unbalanced axial velocity, producing asymmetric air loads,
and then resulting in yawing stability. The other is the advancing and retreating blade effect, making
the in-plane tangential velocity vary with the azimuth. Figure 5 provides the definitions of yaw angle
and azimuth angle. Here, the blade azimuth is defined as zero at the 6-o’clock position, where the
rotor is assumed to rotate clockwise. Figure 6 indicates the variations of the local AOA and relative
velocity at different blade spanwise locations. These variations can be approximately formulated in
trigonometric functions due to the rotational periodicity. It can be found that the spanwise location
strongly influences the mean AOA and the AOA amplitude; the highest unsteadiness can be observed
on the inboard blade despite a low velocity magnitude. Therefore, dynamic stall is often severe at
inboard sections, where the rotational augmentation has manifested.
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Figure 6. The variation of the angle of attack (AOA) and relative velocity with the azimuth at different
spans. Wind speed is 13 m/s, and yaw angle is 30◦. (a) AOA; (b) Relative velocity.

3.2. Validations of Numerical Modeling Methods

The pitch-oscillation case in the deep stall regime is selected for analyses of the grid independence
and time step independence, where αm = 14◦, A = 10◦, and k = 0.078. Different grid resolutions
are obtained by changing the numbers of wrap-around points on the airfoil and normal layers;
then, three types of grids are generated with total numbers of 37,850, 51,090, and 70,525, respectively.
Three different time steps of 0.002 s, 0.001 s, and 0.0005 s are used with the steps per cycle being 273,
546, and 1092, respectively. However, there is no clear difference in the lift coefficient among the test
cases. The streamwise velocity profile is used to estimate the capability of capturing flow structures;
this velocity profile is at mid-chord at the phase angle of 90◦ (i.e., φ = 90◦, where φ = 2πft). The coarsen
grid and large time step can yield clear deviation (Figure 7). Finally, the grid in the size of 51,090 and
the time step of 0.001 s are chosen as the computational settings.

In light stall, the numerical results agree well with the experimental data [40] as shown in Figure 8.
An improvement over Karbasian, Esfahani, and Barati’s CFD results [17] can be observed due to the
consideration of the transition effect. The B-L model shows a reasonable representation of unsteady
aerodynamics. Because of a lack of measurements under OF, the CFD results are compared with
those of Gharali et al. in the same conditions [41]. First and foremost, it is necessary to clarify the
determination of the AOA under OF. In steady flow, the AOA is defined as the angle between the
chord and freestream velocity, and this instantaneous AOA (denoted as ‘inflow angle’) is assured at
same value for both motions in the computations. Actually, the true AOA (denoted as ‘local angle’)
is different, because the relative velocity direction to the airfoil can be influenced by the freestream
time lag and flow disturbance of the airfoil. To obtain the local angle and compare it with the inflow
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angle, we extract the unsteady relative velocity vector at the location of 3 c before the airfoil stagnation
point (Figure 9). An apparent lag between the two types of AOAs can be observed during downstroke.
The variation amplitude of the local angle becomes slightly larger. Both the trend and the shape of the
hysteresis loop agree well with the results of Gharali et al. [41], as shown in Figure 10. A notable feature
is that the hysteresis loop is more apparent with respect to the inflow angle than to the local angle.
To avoid ambiguity, the phase angle will replace the AOA as an independent variable afterwards.
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φ = 90◦. Sn is a normal distance away from the mid-chord, and ue is the streamwise velocity of external
flow. (a) Effect of grid resolution; (b) Effect of time steps.
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Figure 8. Comparison of aerodynamic coefficients under pitch oscillation. αm = 8◦, A = 10◦, and k = 0.026.
(a) The lift coefficient; (b) The drag coefficient; (c) The pitching moment coefficient.
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Figure 10. Comparison of aerodynamic coefficients under oscillating freestream. αm = 8◦, A = 10◦ and
k = 0.026. (a) The lift coefficient; (b) The drag coefficient; (c) The pitching moment coefficient.

3.3. Equivalence Analysis between Pitch Oscillation and Oscillating Freestream

The aforementioned theoretical analysis indicates an opposite effect of PO and OF on the effective
airfoil camber. Figure 11 shows the variations of the lift and the drag coefficients along one cycle.
Notice that the difference in the nonlinear air loads (where φ is from 30◦ to 180◦) is relatively negligible.
A clear difference in the linear lift coefficient can be observed with a higher value under PO during
upstroke and a higher value under OF during downstroke; the CFD results agree well with the
thin-airfoil theory. From the vorticity contours in Figure 12, flow is attached to the airfoil and there is
no obvious difference between the two motions from φ = 270◦ to φ = 360◦. When the AOA reaches the
maximum at φ = 90◦, the flow separation is apparent under both PO and OF. The separated flow under
PO is more persistent. In contrast, the vortex under OF rolls up and then sheds into wake. Despite
a great difference in separated flow structure between the two motions, the associated aerodynamic
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loads do not show great differences. The possible reason is that the pressure distribution under PO
possesses a sharp leading-edge suction peak, while the pressure distribution under OF experiences
an elevated pressure on the suction side due to the separated vortex. These two factors may lead to
an almost equal value in calculation. Figure 13 shows the unsteady pressure variations at different
chordwise locations at αm = 2◦, A = 8◦, and k = 0.078. It is obvious that there is a stronger suction peak
under PO than under OF. However, the pressure coefficient under OF decreases with a time lag.Appl. Sci. 2018, 8, x FOR PEER REVIEW  13 of 20 
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Figure 11. Comparison of lift coefficient and drag coefficient between pitch oscillation and oscillating
freestream. αm = 8◦, A = 10◦, and k = 0.026. (a) The lift coefficient; (b) The drag coefficient.
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Figure 12. Vorticity contours of pitch oscillation and oscillating freestream at different phase angles.
αm = 8◦, A = 10◦ and k = 0.026.

Because the difference between the two motions focuses on the linear part of the aerodynamic
loads, the unsteady aerodynamic effect only at the low AOA is assessed. The mean AOA,
AOA amplitude, and oscillation frequency are chosen as parameters to evaluate the difference.
The deviation of the normal coefficient along one cycle between the two motions is defined as follows:
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Dev. =
max(|Cn,PO(∅)− Cn,OF(∅)|)

Cn,qs
(20)

where Cn,qs is the quasi-steady normal coefficient at the mean AOA. Figure 14 indicates that the
oscillation frequency f and the AOA amplitude A affect the deviation more strongly than the mean
AOA. From the thin-airfoil theory, the key is the pitch rate

.
α = 2πfAcos(2πft). Because f and A are

factors of the pitch rate, the deviation becomes great when f and A are high. Under yawed inflow,
the oscillation frequency is directly determined by the rotor speed, and the AOA amplitude is seriously
affected by the yaw angle. Consequently, it is necessary to consider the effects of PO and OF separately.
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Figure 13. Comparison of unsteady pressures at different chordwise locations on the upper surface
between pitch oscillation and oscillating freestream. αm = 2◦, A = 8◦, and k = 0.078. The same locations
are in a same color.
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3.4. Comparison of Dynamic Stall in Yawed Condition between the Two Motions

The 30% span of the Phase VI blade is investigated due to the manifest dynamic stall on the
inboard blade. The wind speed is 10 m/s, and the yaw angle is 10◦ and 30◦, respectively (the cases
of S1000100 and S1000300 in NREL UAE Phase VI [30]). The B-L dynamic stall model incorporated
with Bak’s rotational stall delay model shows a good agreement with the experimental data for the
yaw angle of 10◦, as shown in Figure 15. A noticeable difference in both the lift coefficient and drag
coefficient between the 2D and 3D results is observed, manifesting the 3D rotational effect.Appl. Sci. 2018, 8, x FOR PEER REVIEW  15 of 20 
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Figure 15. Validation of the corrected Beddoes-Leishman (B-L) dynamic stall model in lift coefficient
and drag coefficient. The wind speed is 10 m/s, the yaw angle is 10◦, and radial location is 30% span.
(a) The lift coefficient; (b) The drag coefficient.

Figure 16 shows the aerodynamic force coefficients and pitching moment coefficient varying with
azimuthal angle at the yaw angles of 10◦ and 30◦, respectively. The calculated results are generally in
a good agreement with the experimental data. When the yaw angle increases, the 3D dynamic stall
becomes more intense with the high lift coefficient, but trends of air load variations are consistent.
The difference between PO and OF is moderate. As aforementioned, in 2D cases, the aerodynamic
coefficients under PO are higher during upstroke and lower during downstroke. A slight improvement
can be observed in the prediction under OF; the possible reason is that dynamic stall under yawed
inflow is essentially a velocity-varying problem without pitch motion and fore–aft motion. Notice that
prediction of the pitching moment coefficients is quite poor in both amplitudes and trends. Given that
the pitching moment depends not merely on the integrated normal force but also on the location of the
center of pressure, it is somewhat not surprising that the predicted pitching moment is unsatisfactory
under the dynamic condition, because 3D effects have an influence on the normal force and on the
movement of the center of pressure, which depends on appropriate coupling of the dynamic stall
and the 3D rotational stall delay models. This problem may be solved only if deep understanding
and accurate modeling of both the dynamic stall and the 3D stall delay are achieved. Nevertheless,
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the results from the B-L dynamic stall model show a different effect between PO and OF when their
different additional camber effects are included.
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Figure 16. Effect of the yaw angle on the aerodynamic coefficients. The wind speed is 10 m/s, and the
radial location is 30% span. (a) 10◦ yaw angle, and (b) 30◦ yaw angle.

3.5. Effect of Rotational Augmentation on the Dynamic Stall of the Inboard Blade

Because the rotational effect greatly suppresses the flow separation, the lift and nose-down
pitching moment coefficients are increased. However, it is unclear whether the rotational stall delay
effect under steady conditions is consistent with its performance under unsteady conditions. To provide
an insight into the coupled effect of the rotational augmentation and dynamic stall, an extended analysis
is conducted. As rotational augmentation is often isolated by making comparisons between 2D flow
and 3D rotational flow [42], our strategy is to isolate the rotational augmentation by comparing the
CFD results under an equivalent planer motion with yawed experimental data; the former contains
only dynamic stall and the latter is coupled with rotational augmentation. The equivalent planer
motion of a rotating blade section is obtained by the 2D time-varying incident velocity (2D TVIV,
Figure 1a,c), including variations of the sectional AOA and the relative velocity magnitude.

Figure 17 shows the hysteresis loops of the aerodynamic coefficients at the 30% span. Because
both the mean AOA and the AOA amplitude are low, the aerodynamic forces are generally attached to
the unsteady linear part with almost no stall. Rotational augmentation apparently elevates the lift and
drag coefficients, as under steady conditions. The value is even higher than the steady experimental
data under axial inflow, meaning that the separation is more delayed in 3D rotational unsteady flow
than in 3D rotational steady flow. Hence, both rotational augmentation and unsteady effects lead to a
delayed flow separation and the elevated lift coefficient at a low yaw angle.
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Figure 17. Hysteresis loops of the lift, drag and pitching moment coefficients at 30% spanwise location.
The wind speed is 10 m/s, and the yaw angle is 10◦. Steady Exp. (i.e., experimental) (3D) denotes the
experimental data under axial inflow, while Unsteady Exp. (3D) denotes the experimental data under
yawed inflow. (a) The lift coefficient; (b) The drag coefficient; (c) The pitching moment coefficient.

When the yaw angle is high, the air load variation is more severe with the large AOA amplitude.
In comparison with Figure 17, Figure 18 shows hysteresis loops of the aerodynamic coefficients at
30◦ yaw angle at 30% span. It is rather remarkable that the 2D and 3D hysteresis loops of the lift
coefficient are in the opposite direction. The 3D lift coefficient is even lower than the 2D value with
the AOA increasing, meaning no rotational augmentation effect in the lift force. However, when the
AOA decreases, the rotational augmentation dramatically advances the reattachment and results in a
flattened hysteresis loop in an anticlockwise direction. In other words, the rotational augmentation
effectively pushes the reattachment point rearward and reduces the hysteresis of the air loads on
the downwind side (where the AOA is decreasing) (Figure 5b). Because of the unsteady effects,
the unsteady 3D experimental data shows an apparent increase in the lift coefficient over the steady
3D experimental data. However, the 3D drag and pitching moment coefficients slightly vary around
the steady data. With the AOA decreasing, the hysteresis loop under 2D TVIV indicates a notable
additional fluctuation from secondary vortices in the pitching moment coefficient. In short, at a high
yaw angle, the rotational augmentation is minor on the upwind side and effectively reduces the
hysteresis on the downwind side, while unsteady effects greatly delay the flow separation and elevate
the lift coefficient along the whole cycle.
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4. Conclusions 

Dynamic stall is very common on HAWTs, resulting from many aerodynamic sources. Dynamic 
stall plays an important role in unsteady air loads. The accurate prediction of dynamic stall is 
extremely important for structural analysis. This study provides a comparative analysis of dynamic 
stall under pitch oscillation (PO) and oscillating freestream (OF) on wind turbine airfoil and blade, 
using the quasi-steady thin-airfoil theory, CFD method, and Beddoes-Leishman dynamic stall 
engineering model. 

From the quasi-steady thin-airfoil theory, PO and OF have an opposite effect on the effective 
airfoil camber and the associated lift coefficient. The CFD results show that the difference between 
PO and OF mainly exists in the linear part of the aerodynamic loads. The deviation between these 
two motions is greatly influenced by the reduced frequency and the AOA amplitude. For the yawed 
response predictions, the Beddoes-Leishman dynamic stall model coupled with a rotational stall 
delay model also show a different effect between PO and OF. In addition, the effect of the rotational 
augmentation on the unsteady air loads is assessed. At a low yaw angle, the rotational augmentation 
apparently elevated the lift and drag coefficients along the whole cycle, as under steady conditions. 
At a high yaw angle, however, the rotational augmentation apparently flattens the hysteresis loop 
and its effect during which the AOA dynamically decreasing is more obvious than when the AOA is 
dynamically increasing. 

It may be concluded from this work that dynamic stall behaviors under PO and OF are different 
at certain conditions and should separately be modeled in engineering. 
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Figure 18. Hysteresis loops of the lift, drag, and pitching moment coefficients at 30◦ yaw angle.
The wind speed is 10 m/s, and the spanwise location is 30%. (a) The lift coefficient; (b) The drag
coefficient; (c) The pitching moment coefficient.

4. Conclusions

Dynamic stall is very common on HAWTs, resulting from many aerodynamic sources. Dynamic
stall plays an important role in unsteady air loads. The accurate prediction of dynamic stall is extremely
important for structural analysis. This study provides a comparative analysis of dynamic stall under
pitch oscillation (PO) and oscillating freestream (OF) on wind turbine airfoil and blade, using the
quasi-steady thin-airfoil theory, CFD method, and Beddoes-Leishman dynamic stall engineering model.

From the quasi-steady thin-airfoil theory, PO and OF have an opposite effect on the effective
airfoil camber and the associated lift coefficient. The CFD results show that the difference between
PO and OF mainly exists in the linear part of the aerodynamic loads. The deviation between these
two motions is greatly influenced by the reduced frequency and the AOA amplitude. For the yawed
response predictions, the Beddoes-Leishman dynamic stall model coupled with a rotational stall
delay model also show a different effect between PO and OF. In addition, the effect of the rotational
augmentation on the unsteady air loads is assessed. At a low yaw angle, the rotational augmentation
apparently elevated the lift and drag coefficients along the whole cycle, as under steady conditions.
At a high yaw angle, however, the rotational augmentation apparently flattens the hysteresis loop
and its effect during which the AOA dynamically decreasing is more obvious than when the AOA is
dynamically increasing.

It may be concluded from this work that dynamic stall behaviors under PO and OF are different
at certain conditions and should separately be modeled in engineering.
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