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Abstract: The robotic mapping problem, which consists in providing a spatial model of the
environment to a robot, is a research topic with a wide range of applications. One important challenge
of this problem is to obtain a map that is information-rich (i.e., a map that preserves main structures
of the environment and object shapes) yet still has a low memory cost. Point clouds offer a highly
descriptive and information-rich environmental representation; accordingly, many algorithms have
been developed to approximate point clouds and lower the memory cost. In recent years, approaches
using basic and “simple” (i.e., using only planes or spheres) geometric entities for approximating
point clouds have been shown to provide accurate representations at low memory cost. However,
a better approximation can be implemented if more complex geometric entities are used. In the
present paper, a new object-mapping algorithm is introduced for approximating point clouds with
multiple ellipsoids and other quadratic surfaces. We show that this algorithm creates maps that are
rich in information yet low in memory cost and have features suitable for other robotics problems
such as navigation and pose estimation.

Keywords: object mapping; Geometric Algebra; Differential Evolution

1. Introduction

Many algorithms have been developed for the robotic mapping problem [1], which arises when a
robot is provided with a spatial model of the environment. Unlike many 3D reconstruction algorithms
that use interpolation to obtain the best object rendering, the principal aim of robotic mapping is to
create maps that are rich in information and low in memory cost. The environment and objects could
be acquired through 3D sensor like Laser Rangefinder or multiples camera view with algorithms like
Structure from Motion [2]. With these techniques we obtain dense point clouds.

On the one hand, there exist 3D mapping algorithms, e.g., Simultaneous Localization and Mapping
(SLAM), that model key point maps. The principal features of such algorithms are representations
with low memory cost and ease of use. However, the maps are not information-rich; consequently,
such algorithms cannot be used in many applications, such as object manipulation and aerial navigation.
On the other hand, many algorithms create extensive object representations as 3D reconstructions
based on the Radial Basis Function (RBF) [3] or other functions [4], resulting in richer information
maps, albeit at a high memory cost; additionally, such algorithms are difficult to use. Finding a good
balance between representation and memory cost is an important current research topic.

In the last decade, algorithms based on object mapping with geometric entities have become very
popular for many applications [1], such as urban and office environment mapping. Object mapping
refers to algorithms that approximate the volume shape of a point cloud (it is to say approximate a
point cloud) with multiply geometric entities, this is analogous to use curve fitting in a regression
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problem, but we use geometric entities to describe and preserve the volume shapes instead of functions
because there is not dependent variables. The quality of the approximation could be measured using
the mean distance of the points to the geometric entity.

Geometric entities have been used before to approximate point clouds, for instance, we observe
the use of multiplanar representations [5] and spherical and linear representations [6–9]. Each of these
approaches fits the parameters of their geometric entities to obtain the best approximation of sensor
data. However, if more complex entities are used, we can obtain approximations of point clouds
with better accuracy, and using fewer entities than those obtained by using muliltiplanar, spherical or
linear representations.

In this paper, a new object-mapping algorithm is presented. This algorithm is capable of
approximating the point cloud with multiple ellipsoids and other quadratic surfaces such as spheres,
pairs of planes, and pseudocylinders, which allows us to reduce the number of geometric entities used
to represent the objects and complete scenes of the environment, this feature is shown in a controlled
experiment, but to automate this process a hierarchical clustering must be implemented, as discussed
in the future work section.

This algorithm can also be related to Hyperellipsoidal Neurons (HNs) [10] based on Geometric
Algebra (GA) [11], where every neuron is trained with k-means++ [12] and Differential Evolution
(DE) [13] for adapting the point cloud implicit surface.

In the following sections, we show that the multiellipsoidal mapping algorithm is capable of
creating information-rich maps with low memory cost and that the entities obtained with the algorithm
are even capable of deforming into other quadratic surfaces due to their representation in GA as
multivectors. The entities are described in GA; then, the map is suitable for developing new algorithms
that work in this algebra, such as path planning [14], pose estimation [15,16], and other tasks [17].

The paper is organized as follows. In Section 2, we introduce several mathematical and algorithmic
tools used in this paper. Section 3 presents the adaptation strategy of the ellipsoidal surfaces to a
point cloud. In Section 4, we explore various experiments to show the performance of the algorithm.
In Section 5, the differences from object-mapping algorithms based on function approximations are
discussed. Finally, conclusions are presented in Section 6, and in Section 7 we discuss the future work.

2. Mathematical Background

In this section, we introduce the mathematical framework of GA to represent the geometric entities.
We also introduce the basic notions of k-means++ and DE algorithms to optimize the representation.
The notation shown here will be used in the development of the proposed algorithm.

2.1. Geometric Algebra

GAs are Clifford Algebras [11,18] constructed over a bilinear form of the vector space Rp,q,r,
where (p, q, r) is the algebraic signature. This GA is denoted by Gp,q,r and it is an equivalent notation
for C`p,q,r(R). The elements that belong to this algebra are called multivectors. Let us denote by “◦”
the Clifford product, by “•” the inner product and by “∧” the outer product. Then, for two basis
vectors, (1) states the Clifford product behavior, where ei ∧ ej is a bivector or a 2-vector element; all
vectors in Rp,q,r are included in Gp,q,r as 1-vectors (a k-vector describe a multivector span by k basis
vectors). In addition, the properties of the bilinear form shown in (2) are present, where “·” is the
common dot product used in linear algebra, thus Rp,q,r ⊂ Gp,q,r.

ei ◦ ej =


ei ∧ ej if i 6= j

1 if 1 ≤ i = j ≤ p
−1 if p < i = j ≤ q
0 if q < i = j ≤ r

(1)

a ◦ a = a • a = a · a, a ∈ Rp,q,r (2)
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GAs are associative and anticommutative algebras; additionally, due to the generality of the
Clifford product, many properties of other mathematical frameworks are present [11] such as
complex numbers, quaternions, and other Cayley-Dickson algebras, in addition to Pauli matrices and
spinor algebras.

Nevertheless, GAs are not only useful for integrating multiple mathematical frameworks but also
present attractive features for geometric entity representation. In a GA, multivectors by themselves
could represent geometric entities in their inner or outer product representation instead of the
traditional geometric locus. The importance of this feature is that the geometric entities, as well as
their operators, are represented as elements of the same algebra (both are represented as multivectors).

2.2. Hyperconformal Geometric Algebra

The most used GA is perhaps the Conformal Geometric Algebra (CGA) for the 3D case G4,1,
where the algebraic signature is (4, 1, 0), and its extension to n-dimensions Gn+1,1 to represent the
Rn vector space. In this algebra, it is possible to represent points, pairs of points, lines, planes,
circles and spheres. Many algorithms for robotics and machine vision [19], e.g., finding path
planning algorithms [14], pose estimation [15], structure extraction from motion [16], geometric
entity detection [6,7], and robotic mapping algorithms [8,9], have been developed with this algebra.

However, to use more complex geometric entities as algebra elements, other algebras must be used.
The GA G6,3 [20] is a generalization of G4,1, in which such geometric entities like ellipsoids, planes,
pair of planes, pseudocylinders, spheres and others deformed quadratic surfaces can be represented
as multivectors. In [10], G6,3 was extended to any dimension in the so-called Hyperconformal GA
(HGA) with a notation G2n,n for representing the vector space Rn. This algebra is constructed by using
a homogeneous stereographic projection in (3) over every coordinate. Figure 1 describes a graphical
representation of the projection.

Figure 1. Homogeneous stereographic projection.

The null basis are related to (3) by e0 = e+ + e− and e∞ = e+ − e− and they have the property
e2

0 = e2
∞ = 0. Given a three-dimensional space with basis (ex, ey, ez), the previous notation must be

extended. Consider that the stereographic projection is applied in every axis, e.g., the null basis of the
coordinate ex are denoted with e0x and e∞x.

xc = 2
x

x2 + 1
e1 +

x2 − 1
x2 + 1

e+ + e− = xe1 +
1
2

x2e∞ + e0 (3)

Hence, the entities in G6,3 can be calculated using the null basis. Let x = pxex + pyey + pzez be
a point in R3, the its representation in G6,3 is denoted by X as is shown in (4), where ei∞ is the point
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at infinity in the i homogeneous stereographic projection and e0 = 1/3(e0x + e0y + e0z) is the point
at zero.

X = pxex + pyey + pzez +
1
2
(p2

xe∞x + p2
ye∞y + p2

ze∞z) + e0 (4)

In G6,3, H denotes a 1-vector that represents an fixed-axes ellipsoid with center (cx, cy, cz) and
semiaxis (rx, ry, rz), as can be seen in (5), where e∞ = e∞z + e∞y + e∞z.

E =
cx

r2
x

ex +
cy

r2
y

ey +
cz

r2
z

ez +
1
2

(
c2

x
r2

x
+

c2
y

r2
y
+

c2
z

r2
z
− 1

)
e∞ +

1
r2

x
e0x +

1
r2

y
e0y +

1
r2

z
e0z (5)

These notations are different from the ones shown in [20], but already presented in [10].
Other geometric entities are derived from the ellipsoid, as shown in Table 1. In Section 3, this theory is
used to develop the optimization of the ellipsoidal surfaces.

Table 1. Geometric entities that can be represented by a deformed ellipsoid.

Entity Representation

Sphere S = E if rx = ry = rz
Pseudocylinder C = limri→∞ E, i ∈ {x, y, z}
Pair of planes Pp = limri ,rj→∞ E, i, j ∈ {x, y, z} and i 6= j

2.3. k-Means Algorithm

The k-means algorithm is a popular algorithm for clustering and is frequently used in unsupervised
techniques. For a set of points P = {p1, p2, · · · , pn}, the k-means algorithm aims to find the partition
S = {S1, S2, · · · , Sk}with k ≤ n, as shown in (6), where ci is the centroid of the cluster Si.

S = argmin
S

k

∑
i=1

∑
p∈Si

p− c2
i (6)

For this paper, this optimization problem is solved using Lloyd’s algorithm with a variant of
initialization known as k-means++ [12].

2.4. Differential Evolution

DE is an evolutionary algorithm for multivariate functions optimization with many highly
successful applications [13]. DE proposes a set of Candidate Solutions (CS) that compete for the best
performance in the objective function f (·). In Figure 2, the basic DE scheme is described.

Figure 2. Differential Evolution scheme.

A CS is a vector whose elements match the variables in f (·). The population is randomly
initialized inside predefined bounds that limit the search space. Afterwards in the mutation process,
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a donor vector vi is calculated for every CS xi, by randomly selecting three different CSs, {r1, r2, r3}
and applying (7), where F is the mutation factor F ∈ [0, 2].

vi = r1 + F(r2 − r3) (7)

In the recombination process, the CS xi is recombined with the donor vector v in every dimension
j to obtain a new CS ui as is shown in (8), where rand() ∼ U[0, 1], and CR is the crossover rate.

ui(j) =

{
vi(j) if rand() ≤ CR
xi(j) if rand() > CR

(8)

Finally, in the selection process the new CS ui is compared to the actual CS xi, and use (9) (for a
minimization problem) to choose whether to keep the actual solution or replace it with the new one.

xi =

{
ui if f (ui) ≤ f (xi)

xi otherwise
(9)

The mutation, recombination, and selection function for a certain number of iterations is
continuously performed, and ultimately, the CS with the best performance in f (·) is returned.

3. Ellipsoidal Surfaces Optimization

In 2017, we presented the Hyperellipsoidal Neuron (HN) [10], where the neuron represents an
hyperellipsoidal decision surface. The HN is capable of deforming the decision surface into geometric
entities, such as a pair of planes, and spheres and pseudocylinders. In this paper, we use the same
propagation of the HN for representing the ellipsoidal surfaces.

We use the parametrization functions ψ1(·) and ψ2(·) defined in (10) and (11) respectively.

ψ1(x) =
[

x1, · · · , xn, 1,−1
2

x2
1, · · · ,−1

2
x2

n

]T
(10)

ψ2(E) =

[
c1

r2
1

, · · · ,
cn

r2
n

,−1
2

(
c2

1
r2

1
+ · · ·+ c2

n
r2

n
− 1

)
,

1
r2

1
, · · · ,

1
r2

n

]T

(11)

Note that the product ψ1(X)Tψ2(E) is a parameterization in R2n+1 of the the inner product in the
algebra G2n,n, and by the definition of an ellipsoid in the inner product null space, it is possible to
ensure that a point lies on the ellipsoid surface if ψ1(X)Tψ2(E) = 0.

In [10] was presented a training algorithm of HNs for classification. However, the aim of this
paper is not to classify points but to approximate surfaces of cloud points with ellipsoids. Hence,
in what follows, the development of a new training algorithm to solve the problem of obtaining object
maps of environments is presented.

Training Algorithm for 3D Mapping

Two sets of parameters, the center {cx, cy, cz} and the semi-axes {rx, ry, rz}, are adapted to represent
an ellipsoid. Similar to the case of RBF networks, the ellipsoid center is trained with k-means++,
taking the centroid of the cluster as the center of the ellipsoid. Then, for a point cloud with n points
{X1, X2, · · · , Xn}, k clusters {S1, S2, · · · , Sk} and k centroids {c1, c2, · · · , ck} for the ellipsoids are found.

For training the semiaxes, the inner product of each point and ellipsoid ψ1(X)Tψ2(E) is minimized,
consequently the distance between the points and the ellipsoid surface is minimized. Additionally,
the volume of the ellipsoid, defined as V = 4

3 πrxryrz, must be penalized to avoid trivial solutions,
e.g., an ellipsoid contained all of the point cloud or a ellipsoid approximating just one point.
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Finally, the fitness function for the DE algorithm in (12) is designed, where every cluster Si,
calculated by k-means++, is used for adapting the semiaxes {rx, ry, rz} of an ellipsoid with center ci.
The first term penalizes the distance from every point in the cluster to the ellipsoid surface (outside or
inside) by applying the root mean square error (RMSE), and the second term penalizes the density of
each cluster Si by computing the ratio of the volume of the entity to the number of points contained in
Si, i.e., Si.

(rx, ry, rz) = arg min
(rx,ry,rz)

α

√
1
Si

∑
X∈Si

[ψ1(X)Tψ2(E)]
2
+

4(1− α)

3Si
πrxryrz (12)

The free parameter α controls how much the ellipsoid can grow; α and the parameter k control the
granularity of the ellipsoidal map. The granularity refers to the number and size of the ellipsoids that
represent an object.

4. Experiments

To show the capabilities of the proposed algorithm, in this section, the results of experiments
are presented. For all of the following experiments, DE is used with parameter settings: F = 1.2
and CR = 0.7 and a fixed population of 10 particles and 50 iterations. The objective function has the
parameter α = 0.8, that was chosen heuristically for a good granularity balance. The point clouds are
provided by an SRI-500 Laser Rangefinder from Acuity Technologies capable of scanning 800,000 points
per second at distances of up to 500 feet (150 meters approximately).

4.1. Object Mapping

In experiment 1, as shown in Figure 3, the point cloud (left) is composed of 10,916 three-dimensional
points and the multiellipsoidal map (right) contains 150 ellipsoids.

Figure 3. Experiment 1.

Similarly, in experiment 2, shown in Figure 4, a map of a tree of 31,049 points is adapted with
400 ellipsoids. Notably, the ellipsoids that are on the floor of the approximation are projected onto the
2D plane defined by the x and y axes of the figure.
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Figure 4. Experiment 2.

In Figure 5, the results of experiment 3 are shown. This is an example of a person with opened
arms. As can be seen, concave areas are represented accurately by several ellipsoids. The point cloud
has 40,883 points, and the multiellipsoidal map contains only 350 ellipsoids.

Figure 5. Experiment 3.

In experiment 4 in Figure 6, a man is standing with his back toward the observer. The point cloud
is formed by 37,142 points, and the multiellipsoidal map contains 350 ellipsoids.
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Figure 6. Experiment 4.

In Figure 7, another human figure is considered, in this case, a man with open arms sitting in a
chair. The point cloud is formed by 42,272 points, and the multiellipsoidal map has 350 ellipsoids.

Figure 7. Experiment 5.

Summarizing these five experiments, it is observed that a good approximation and representation
of the objects are obtained even when a small number of ellipsoids is used. Table 2 shows the
memory cost. Consider a four-byte floating-point number; then, the memory cost of the cloud point
(three floating-point numbers for each point) and of the multiellipsoidal map (six floating-point
numbers for each ellipsoid) is calculated. Finally, a percentage cost of each map is shown, where it is
easy to observe that an information-rich map with low memory cost has been obtained.
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Table 2. Memory cost of the representation—part 1.

Experiment
Point Cloud Multiellipsoidal Map

Percentage Cost
Points Bytes Ellipsoids Bytes

Experiment 1 10,916 130,992 150 3600 2.7482%
Experiment 2 31,049 372,588 400 9600 2.5765%
Experiment 3 40,883 490,596 350 8400 1.7122%
Experiment 4 37,142 445,704 350 8400 1.8846%
Experiment 5 42,272 507,264 350 8400 1.6559%

4.2. Varying the Number of Ellipsoids

The percentage cost shown in Table 2 depends on the chosen number of ellipsoids (k). To show
how the representation changes with k, consider experiment 6 in Figure 8, where a point cloud of an
office chair is approximated with various numbers of ellipsoids. The number of ellipsoids that are
shown depends on the application.

Figure 8. Experiment 6.

4.3. Ellipsoid Deformation

Table 1 presents the geometric entities that can be obtained when an ellipsoid is deformed using
the GA framework. Figure 9 shows the results of experiment 7, where a trash can is approximated
with two ellipsoids. We use a threshold of four meters for deforming the ellipsoids. It can be observed
that an ellipsoid is deformed into a pseudocylinder for adapting all of the points of the sides of the
trash can; additionally, to represent the floor, another ellipsoid is deformed into a pair of planes.
This representation is very useful for robotic navigation; however, because a partition clustering
technique is used, the ellipsoid size is also controlled by the number of ellipsoids. For a more general
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way of segmenting, it is always possible to choose to change to a hierarchical clustering algorithm
which would allow us to obtain the mentioned deformations of the ellipsoids into pseudo cylinders or
pair of planes.
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Figure 9. Experiment 7.

4.4. Environment Mapping

The multiellipsoidal mapping algorithm presented is useful for mapping not only for objects but
also environments. Figures 10 and 11 presents two experiments that show the proposed algorithm’s
capabilities for mapping environments. In Table 3, the memory cost of representing these environments
is shown.

Figure 10. Experiment 8.
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Figure 11. Experiment 9.

Table 3. Memory cost of the representation—part 2.

Experiment
Point Cloud Multiellipsoidal Map

Percentage Cost
Points Bytes Ellipsoids Bytes

Experiment 8 714,446 8,573,352 8880 213,120 2.4858%
Experiment 9 70,447 845,364 5920 142,080 16.8069%

4.5. Comparison to Spherical Mapping

Multiplanar mapping algorithms have been used for many applications such as urban mapping
and office-like environments representation; however, these algorithms are not suitable to mapping
free form objects. To solve this problem, dense multiplanar representations have been developed [5];
however, another problem then arises because, in such cases, the planes boundaries must be defined.

Spherical mapping [8,9] solves both problems by approximating the cloud point with spheres.
Because the proposed approach is an extension of the spherical mapping, both approaches are
empirically compared to show that ellipsoids can more accurately represent a point cloud.

Let us consider the model error for the point cloud of experiment 1. Let x ∈ Si represent the
points in the cluster Si and d be the closest to x three-dimensional points on the spherical or ellipsoidal
surface. Then, the RMSE defined by (13) is shown, where i is the number of the cluster. Figure 12
shows the ellipsoidal and spherical approximations with k = 100. The spherical mapping is created in
the exactly same way as ellipsoidal, except for adapting only one radius.

ei =

√
∑x∈Si

(d(x)− x)2

Si
(13)

In Figure 13, we present the histograms of error of the ellipsoidal and the spherical approaches.
In the left, the error ei calculated using Equation (13) of each ellipsoid is shown. In the same way, in the
right we have the calculated error for each sphere. In Table 4, their statistical measures are provided.
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Figure 12. Maps of experiment 10.

10 20 30 40 50 60 70 80 90 100

ith Sphere

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

e i

(b) RMSE in Spherical Approximation

10 20 30 40 50 60 70 80 90 100

ith Ellipoid

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

e i

(a) RMSE in Ellipsoidal Approximation

Figure 13. Errors of experiment 10.

Table 4. Errors of ellipsoidal and spherical approximations.

Approximation Mean STD Maximum Minimum Total

Ellipsoidal 0.2079 0.0451 0.3604 0.1351 20.7936
Spherical 0.2258 0.0540 0.4647 0.1475 22.5769
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Note that the multiellipsoidal mapping has a smaller error than the spherical representation due
to the degrees of freedom of the ellipsoid. Hence, in this experiment, it has been empirically shown
that the ellipsoidal mapping represents an improvement in the spherical mapping algorithm.

5. Discussion of Other Mapping Algorithms

In this section, the differences between mapping algorithms based on the approximation of
geometric entities and those based on function approximation are discussed; in particular, the difference
between the approximation of geometric entities represented in GA as multivectors [6–9] and
approximations of functions such as the Gaussian approximation with RBF networks [3] or generalized
distance functions [4].

5.1. The Best Approximation

Regarding the best approximation, the RBF is a successful technique because, in similarity with
the Multi-layer Perceptron, the universal approximation theorem [21] shows that RBF can be used for
approximating any free form object. However, there is no theorem that shows that planes, spheres,
and ellipsoids are in fact universal approximators. Consequently, it is possible to claim that the
approximation of functions will result in the best fit of the point cloud. This is a good property if the
application is point cloud interpolation.

5.2. Compactness and Heuristics

As can be seen, function approximation results in the best approximation; however, because
functions with the domain (−∞, ∞) are considered, such functions have to be bounded, and a heuristic
is needed to determine the plane position (and the points transformation) where the 3D function is
defined. This problem implies that more parameters for the approximation must be used. In contrast,
using geometric entities of GA, self-bounded entities such as spheres and ellipsoids and infinite entities
such as pseudocylinders, planes, and pairs of planes are obtained. Additionally, because all the entities
belong to the same algebra and the geometric locus is defined by their null space, heuristics to fix
the representation are not required. Hence, we conclude that geometric entities are useful for easy
implementation and compactness. We can also argue that the best information compression can be
obtained as shown in Tables 2–4.

5.3. The Best Mathematical Framework

For most robotic applications, obtaining the map is merely an initial step. Hence, it is important
that the map be suitable for subsequent tasks. In the case of functions, it is computationally expensive
to apply a rigid transformation as is needed in many applications. In contrast, geometric entities
represented by multivectors are suitable for such transformations, because the same operators can be
used in every entity. These features make GA suitable to pose estimation [15], movement estimation [16],
navigation over rough terrain [14], computation of inverse kinematics [22], object manipulation [23],
3D reconstruction of buildings [6], and other applications in computer graphics [24]. In conclusion,
the mapping algorithms based on GA offer a suitable framework for algorithms development.

6. Conclusions

In this paper, a new mapping algorithm based in G6,3 GA has been presented, capable of
adapting multiples ellipsoids to obtain an object representation that is more compact than the point
cloud. This multiellipsoidal mapping offers information-rich maps suitable for representation and
approximation at low memory cost. Furthermore, the use of the GA framework allows us to work with
an algebraic representation of ellipsoids that is capable of deforming the ellipsoids by themselves into
other quadratic surfaces, such as spheres, pair of planes and pseudocylinders; this feature is valuable
for robotic mapping.
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As our results show, compared to other object-mapping algorithms like multiplanar mapping [5]
and spherical volume registration [8,9], ellipsoids could adapt better free form objects. In the Section 5,
we discussed that in contrast to mapping algorithms based in RBF [3] or other functions [4], the ellipsoid
is an element of GA G6,3, and is hence easier to manipulate than functions. This property will provide
a better framework for other robotic tasks such as path planning and navigation.

7. Future Work

The proposed algorithm is strongly related to the clustering algorithms that segment the
cloud point to get other quadratic surfaces; a hierarchical clustering methodology is necessary.
This improvement will reduce the number of geometric entities. Consequently, no k parameter
should be found.

The presented algorithm can also be abstracted as a one-layer neural network consisting in
HNs. The extension of this neural network could be trained for on-line capabilities (e.g., trained with
Extended Kalman Filter), this could lead to a dynamic multielliptical mapping algorithm. Furthermore,
the parameters k and α were selected heuristically; for a better understanding of how these parameters
affect the granularity of the mapping algorithm, a new study has to be done.
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