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Featured Application: It should be mentioned that the exceptional properties of SPPs, such as,
subwavelength confinement and strong field enhancement give rise to a wide range of innovative
applications. For example, owing to the excitation of SPPs, resolution of the so-called “superlens”
has reached as high as 30 nm. The former opens the wide avenues for optical microscopy in
terms of overcoming the diffraction limit. Alternatively, the resolution can be even higher in
plasmonics-assisted spectroscopy, such as surface-enhanced Raman spectroscopy (SERS). The
Raman signal can be considerably amplified by SERS approach. Doing so, the vibrational
information of single molecules can be probed and recorded by employing the strong local field
enhancement of plasmonic composites and the chemical mechanism including charge transfer
between the species and the metal surface. Tip-enhanced Raman spectroscopy (TERS) may stand
for the further resolution improvement. Based on the study on TERS-based spectral imaging with
extraordinary sub-molecular spatial resolution, one can definitely resolve the inner structure and
surface configuration of a single molecule.

Abstract: Composites designed by employing metal/dielectric composites coupled to the components
of the incident electromagnetic (EM) fields are named metamaterials (MMs), and they display
features not observed in nature. This type of artificial media has attracted great interest, resulting
in groundbreaking theory that bridges the gap between EM and photonic phenomena. Practical
applications of MMs have been delayed due to the high losses related to the use of metallic
composites, on top of the challenges in manufacturing nanoscale, three-dimensional structures.
Novel materials—for instance, graphene or transparent-conducting oxides (TCOs), employed for the
production of multilayered MMs—can significantly suppress undesirable losses. It is worthwhile
noting that three-layered nanocomposites enable an increase in the frequency range of the surface
wave. This work analyzes recent progress in the physics of multilayered MMs. We deliver an outline
of key notions, such as effective medium approximation, and present multilayered MMs based on the
three-layered structure. An overview of graphene multilayered MMs reveals their ability to support
Ferrell–Berreman (FB) modes. We also describe the tunable properties of the multilayered MMs.

Keywords: hyperbolic metamaterial; transparent conducting oxides; graphene; surface plasmon
polaritons

1. Introduction

At the turn of the century, a new field of research emerged that was a hybrid of physics, electrical
engineering, and materials science. The study of metamaterials (MMs) addresses the rational design
and arrangement of a material’s building blocks to attain physical properties that may go significantly
beyond those of its original constituent materials. Most often, the concept of MMs is associated with
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electromagnetic (EM) wave propagation, where the engineering of resonant subwavelength structures
allows for the precise control of effective wave properties. It is this advanced functionality that enables
the realization of unique wave phenomena, such as the focusing of light below the diffraction limit or
EM cloaking of objects—concepts that have captured the imagination of researchers and the general
public alike. Importantly, the element of functionality is an integral part of the MM concept.

Recently, propagation of EM waves on two-dimensional interfaces has stimulated tremendous
interest [1,2]. Surface plasmonic polariton (SPP) [3–6] attracts lots of attention in the scientific
community. SPPs have provided a fertile ground for new applications in many fields [7–14]. During
last several decades, it has been demonstrated that it is possible to control SPPs in an unprecedented
way by nanostructuring the metal surface. Hyperbolic MMs [15] have stimulated increasing interest
because of the capability of supporting large wavenumbers. Their unusual properties opened wide
avenues for many fascinating applications, such as hyperlenses for biosensing [9]. The potential
biosensing applications are achievable with the novel high-frequency cut-off SPPs in hyperbolic
graphene-dielectric multilayered metamaterials. For infrared frequencies, infrared plasmonic MMs
were designed by C. Wu et al. Moreover, their use has been suggested as a biosensing platform [16]. It is
worthwhile to note that hyperbolic MMs have already been treated from the perspective of supporting
photonic modes with unbounded k-vectors in [17]. Herein, we take a step forward by investigating
various types of modes supported by multilayered structures, for example, Ferrell–Berreman (FB) and
others. The former is achievable by employing the tunability properties of the graphene used as a
building block of the multilayered composite. The experimental realization of a multilayered structure
of alternating graphene and Al2O3 layers has been reported in [18]. However, the former study does
not offer an overview of the tuning possibilities.

Our present discussion of multilayered MMs is divided into three parts. In the first part,
fundamental physical notions that underlie graphene-dielectric multilayered MMs are discussed.
Moreover, the realization of the dispersion characteristics of the SPPs, their theoretical implications,
and their specific characteristics are reviewed. In addition, the concept of FB modes is introduced. In
Section 4, the extension of the frequency region of the SPPs is discussed in terms of the inclusion of a
third additional layer. Particular emphasis is placed on the topological structures. Finally, Section 5
discusses the possibility of the inclusion of transparent-conducting oxide (TCO) layers in multilayered
MMs, specifically paying attention to the new kinds of the SPPs.

2. Multilayered MM-Based Effective Medium Approach

Herein, it is aimed to derive the effective medium permittivities for an anisotropic multilayered
MM. The technique is based on the generalized Maxwell Garnett method [19], which seeks to derive
analytical formulas describing the material in different directions, i.e. parallel (ε‖) and perpendicular
(ε⊥). Based on the mentioned methodology, a sufficiently dilute material is considered such that a
hierarchy of macroscopic and microscopic fields can be assumed. The schematic view of a structure
composed of metallic and dielectric layers making a multilayered MM is outlined in Figure 1.
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The permittivities of the metallic and dielectric layers are εm and εd, correspondingly. Additionally,
the fill ratio of the total width of metal in the composite to the overall width of the MM can be defined
as follows:

ρ =
dm

dm + dd
(1)

where dm is summation of the widths of metallic sheets in the composite and dd is summation of the
widths of the dielectric sheets.

2.1. Effective Parallel Permittivity

Herein, an analytical formula expressing the parallel permittivity component characterizing the
structure under consideration is derived. It is worthwhile mentioning that:

→
D = εe f f

→
E (2)

where εeff is the effective permittivity. It is a well-known fact that the tangential component of the
electric field should be continuous across a boundary of two different media. Thus, it follows:

E||m = E||d = E|| (3)

where E||m is assigned as the electric field in the metallic layers, E||d is the electric field in the dielectric
sheets, and E|| is the electric field of the subwavelength MM. The overall displacement might be found
by averaging the displacement field components arising from the metallic and dielectric building
blocks:

D|| = ρD||m + (1− ρ)D||d (4)

Rearranging the above equation, the following equation is obtained:

ε
||
e f f E|| = ρεmE|| + (1− ρ)εdE|| (5)

One can conclude with the final equation, as follows:

ε || = ρεm + (1− ρ)εd (6)

2.2. Effective Perpendicular Permittivity

It is specifically known that the normal component of the electric displacement vector at a
boundary should be continuous. The former is outlined by the following expression:

D⊥m = D⊥d = D⊥ (7)

It is also known that a superposition of the electric field components generated by the sheets
dramatically affects the total magnitude of the electric field. Consequently, it can be defined by:

E⊥ = ρE⊥m + (1− ρ)E⊥d (8)

where E⊥m is the perpendicular component of the electric field in the metallic area, E⊥d is the
perpendicular component of the electric field in the dielectric area, and E⊥ is the total electric field
in the MM. The boundary condition from Equation (7) and Maxwell’s equation [20] can be used.
Moreover, it is of particular importance to substitute them into Equation (8). If the common electric
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field components are cancelled out, and everything is solved for ε⊥, it is possible to derive the analytic
formula for the perpendicular permittivity of the multilayered MM:

ε⊥ =
εmεd

ρεd + (1− ρ)εm
(9)

3. Two-Layered MMs for Surface Plasmon Polariton Guiding

Figure 2 is a schematic view of a hyperbolic multilayered MM consisting of periodically changing
graphene and dielectric layers.
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Figure 2. A schematic diagram of the boundary surface separating two different infinite multilayered
MMs designed by a stack of periodically changing graphene and dielectric layers. Here, dielectric and
graphene sheets are denoted by indexes “1, 2”, correspondingly.

The effective-medium theory [21] can be applied if the width of any sheet is much smaller than the
wavelength of radiation. This approach allows us to describe the optical response in such a structure.

Herein, we present the dispersion branches calculated after carrying out the homogenization of
two MMs. The dispersion pattern for the case ε1 = ε3, ε2 = ε4 and d1 6= d2 6= d3 6= d4 is presented in
Figure 3. Figure 3 demonstrates that the SPPs branch at the interface separating MMs with d1 = 0.35 nm,
d2 = 10 nm, d3 = 0.25 nm, and d4 = 10.1 nm. Moreover, the dispersion diagrams of SPPs, characterized
by the effective properties outlined in [21], are displayed in Figure 3.

The tunability feature of the frequency ranges of SPPs is the main outcome of changing the Fermi
energy. It is worthwhile noting that the decrease of the Fermi energy µ causes movement of the
dispersion diagrams to lower frequency ranges. On the contrary, the increase of the Fermi energy µ

will stimulate their movement to higher frequencies. As illustrated in Figure 3, the smallest asymptotic
frequency is achievable in the case of the smallest Fermi energy. The presented controllability feature
provides possibilities to engineer the SPPs by the Fermi energy of the graphene layers. Consequently,
special phase-matching tools, such as a grating or prism coupling [22], near-field excitation [23],
and end-fire coupling [24], are needed for their excitation via three-dimensional beams [3].

Because of the graphene being treated as lossless, β is complex resulting in a finite propagation
length, presented in Figure 3b.

The next case to deal with, i.e. ε1 = ε3, ε2 6= ε4 and d1 6= d2 6= d3 6= d4, is studied by sketching
four modes in Figure 4 at the interface of the MMs with ε4 = 2.25. As it follows from Figure 4, the
case µ = 0.5 eV is characterized by the smallest asymptotic frequency. It is worthwhile noting, that
Re(β) 6= 0 allows for the quasi-bound [21], leaky region of the dispersion equation.
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Figure 3. The dispersion of SPPs (a); propagation lengths (b) and absorption (c) at different Fermi
energy, where number of graphene layers, i.e. N = 1, dd = 10 nm, ε1 = ε3, ε2 = ε4 and d1 6= d2 6= d3 6= d4

and the blue line in (a) denotes the free space light line.
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Following the previous instances, the transverse magnetic (TM) mode dispersion plots are used
to deal with the case of ε1 = ε3, ε2 6= ε4 and d1 = d3, d2 = d4. Four various modes are presented
in Figure 5. The outcome of tuning the fill ratios is examined as displayed in Figure 5. Firstly, it is
worth discussing how the dielectric thickness dd impacts the dispersion branch (see Figure 5a). It is
found that an increase of dd causes a shift of the upper limit to higher frequencies. Moreover, one
can manipulate the frequency range for SPPs by tuning the number of graphene sheets, as shown in
Figure 5c.

It should be mentioned that, following [25], it is of particular importance to omit negative values
of the electrical length and absorption in Figure 3b,c, Figure 4b,c and Figure 5b,d–f. The effect of
absorption control was considered in [26]. It was proposed to tune and enhance the absorption of
thin dye-doped polymeric films by metallic and lamellar metal-dielectric hyperbolic metamaterial
substrates. Herein, by employing graphene as a building block of the hyperbolic metamaterial,
we achieve a higher level of tunability by changing the Fermi energy. Additionally, the sketched graphs
represent clear evidence of the existing SPPs propagating for a long distance. The former is possible
because the real part of β is very low within this spectral range. It is of particular importance to
mention that the same case appears when dealing with the boundary separating the MM and isotropic
medium [27].Appl. Sci. 2018, 8, x FOR PEER REVIEW  7 of 17 
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Figure 5. The dependences of dispersion of SPPs, propagation lengths, and absorption on (a,b,e) the
thickness of dielectric dd and (c,d,f) number of graphene layers. Herein, the number of graphene layers,
i.e., N = 1, µ = 0.5 eV in (a,b,e) and dd = 10 nm, µ = 0.5 eV in (c,d,f).

The imaginary parts of the wavevector (i.e., absorption) are demonstrated in Figures 3c, 4c
and 5e,f. The absorption resonances allow for the rich phenomenon, i.e., behavior of the simple
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multilayered MMs as directive and monochromatic thermal sources [28] without possessing any
periodic corrugation.

We used a modal analysis to demonstrate that the bulk absorption in MMs arises because of
the excitation of leaky bulk polaritons named FB modes [29–31]. It is worthwhile noting that the
interaction of the bulk plasmon with free space light at frequencies close to the metal epsilon-near-zero
(ENZ) [32] is possible. This method has been addressed by Ferrell for metallic foils in [33], and by
Berreman for polar dielectric films in [34]. Radiative excitations called FB modes are possible due
to the application of the multilayered MMs with graphene layers. It should be noted that these FB
modes differ from SPPs, possibly due to the usage of metal foils. The former occurs because of energy
propagating along the surfaces of the metal in cases of SPP modes. With respect to Figures 3a and
4a,c, particular attention should be paid to FB modes existing at energies close to the ENZ of the
hyperbolic MM to the left of the light line. A specific example of a three-layered MM and its dispersion
engineering, allowing the development of new devices, are studied in detail in the next section.

4. Three-Layered MMs for Surface Plasmon Polariton Guiding

Figure 6 illustrates a diagram of dielectric/graphene/dielectric multilayered MM.
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It should be mentioned that the MM under study is described by effective permittivity tensor
as follows:

ε = ε0

 ε || 0 0
0 ε || 0
0 0 ε⊥

 (10)

in the principal-axis coordinate system. The principal values of the tensor are obtained in [35,36] by
means of the theoretical approach provided in Section 2:

ε || = fgεg + f1ε1 +
(
1− fg − f1

)
ε2 (11)

ε⊥ = εgε1ε2/
(

fgε1ε2 + f1εgε2 +
(
1− fg − f1

)
εgε1

)
(12)

where fg = dg/L and f1 = d1/L, L = d1 + d2 + dg represent the graphene and first dielectric filling
ratios, respectively, dg is the thickness of the graphene layer, d1 is the thickness of the first dielectric
sheet, d2 is the thickness of the second dielectric layer, ε1 is the permittivity of the first dielectric, and ε2

is the permittivity of the second dielectric.
For the different cases presented in Figure 7, dispersion relations are obtained as follows

β = k

√√√√ ε1ε2εg
(
ε1 − ε2 − ε1 f1 + ε2 f1 + ε2 fg − εg fg

)
ε2

1εg − ε2
2εg − ε2

1εg f1 + ε2
2εg f1 + ε2

1ε2 fg − ε2
1εg fg − ε2ε2

g fg + ε2
2εg fg

(13)
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β = k

√√√√ ε1ε2εg
(
ε1 f1 − ε2 f1 − ε2 fg + εg fg

)
f1ε2

1εg − fgε1ε2
2 + fgε1ε2

g − f1ε2
2εg

(14)

β = k

√
ε1εg

ε1 + εg
(15)

β = k

√
ε2εg

ε2 + εg
(16)
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Figure 7. Schematic of graphene-dielectric multilayered MM. The figures correspond to (a) Equation
(13), (b) Equation (14), (c) Equation (15), (d) Equation (16).

In consequence, a surprising result is obtained: the thicknesses of the layers (Figure 7c,d) do not
affect the dispersion of a (single) boundary mode, and it agrees with the dispersion of a conventional
SPP at a metal–dielectric boundary. It can be concluded that the systems displayed in Figure 7c,d can
support topological properties.

Herein, we present dispersion diagrams calculated after carrying out the homogenization of two
MMs. Thus, Figure 8 shows the dispersion branches of different cases of the multilayered MM. The
dispersion branches of spoof SPPs at the MM interface with dg = 0.35 nm are shown in Figure 8. It
should be noted that the case displayed in Figure 8a (ε1 = 18.8) corresponds to Equation (15). Thus,
it can be concluded that the usage of the three-layered MM allows for the rich phenomenon, i.e.,
broadening of the frequency range of the SPP’s existence by approximately 800 THz. The dispersion
curve computed for the three-layered MM case has special features deserving of attention, besides the
fact that the graph resembles behavior of a traditional metal SPP and multilayered MMs [21].

For SPPs supported by the multilayered MM under study, the horizontal asymptote appears
when β approaches infinity. Based on the dispersion equation [21], the corresponding condition is
as follows:

εL
||ε

L
⊥ −

(
εR
)2

= 0 (17)

In other words, the position of horizontal asymptotes is determined by Equation (17). It is also
concluded that εL

|| must share the same sign with εL
⊥. It is worthwhile noting that εR will drastically

affect the curve type.
Equation (17) holds only when both εL

|| and εL
⊥ are negative when

(
εR)2 is larger than limω→∞ε ||ε⊥.

The former scenario matches band 2 in Figure 9. Consequently, the dispersion branch possesses only
one horizontal asymptote resembling the metal SPP case. The dispersion branch under such constraints
bears a close resemblance to a metal and multilayered MM SPP [21] (see Figure 8).

Similar to ωsp for metal, the upper bound for SPP is marked by the location of the lowest
horizontal asymptote. ωupper denotes the upper bound frequency, aiming to separate the upper bound
of multilayered SPPs and that of metal SPPs (i.e., ωsp). One can easily prove that it is possible to excite
multilayered SPPs at any frequency lower than ωupper in band 2.
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The dispersion curve (Figure 8) is obtained following the hypothesis of the EM field decaying
exponentially in the z direction. It should be noted that not all modes with a certain frequency below
ωupper is SPP in this study. The former takes place even though the dispersion curve displayed in
Figure 10 resembles the behavior of conventional metal SPP. One should be assured that both kL

z
and kR

z are imaginary when aiming to obtain the multilayered SPPs. It can be concluded, based on
Figure 10, that the two cut-off points, ωlower and ωupper cut the frequency range into three regions.
One may define ωupper as the frequency of the lowest horizontal asymptote in the dispersion branch.
It is worthwhile noting that ωlower, which is lower than ωupper, is the frequency where kL

z and kR
z are

converted from real to imaginary.
The imaginary part of kL

z in a multilayered MM is negligible, while the real part exists as indicated
in Figure 10, in region 1. The former proves the possibilities of the EM wave propagating into the
material, resulting in a little damping. Region 1 is ended by frequency ωlower. The same frequency
begins region 2. kL

z possesses a negligible real part and relatively large imaginary part in region 2. The
former describes the evanescence of the field is in this region. The imaginary part of kL

z disappears and
the real part of kL

z occurs if ωupper is lower than the frequency (in region 3). The wavevector component
kR

z in the dielectric is shown in the right figure in Figure 10. In the same way, the wave can propagate
into the dielectric in areas 1 and 3, however, it is bounded to the boundary in area 2.

The SPPs can be controlled by tuning the Fermi energy. The former is in line with the dependence
of ε⊥ on the Fermi energy [21]. It is worthwhile noting that the decreases in the Fermi energy µ will
cause a shift of the dispersion curves to higher wavelengths or lower frequencies. On the contrary,
they will be shifted to higher frequencies because of the increases in the Fermi energy µ. The smallest
asymptotic frequency is attained in the case of the smallest Fermi energy, as indicated in Figure 9. The
former tunability property enables the SPP to be modified by the Fermi energy of the graphene layers.Appl. Sci. 2018, 8, x FOR PEER REVIEW  11 of 17 
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Figure 8. The impact of (a) ε1, (b) Fermi energy µ, (c) graphene filling ratio, f g, and (d) dielectric filling
ratio f 1 on the dispersion diagrams of the SPPs. f g = 0.1, f a = 0.5 in (a). f g = 0.1, f a = 0.1 in (b). µ = 1.5 eV
in (a,c,d).
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Considering the next case, i.e., ε1 6= const, in Figure 8a, three modes are represented at the interface
of MM with ε2 = 18.8. As displayed in Figure 8a, the smallest asymptotic frequency matches the case
ε1 = 18.8. Also, Re(β) 6= 0 allows for the presence of the quasi-bound [37], leaky range of the dispersion
equation. Consequently, β does not approach infinity as the surface plasmon frequency is attained.

The dispersion curves of the TM modes are computed while aiming to address the case f g 6= const
and f 1 6= const. In Figure 8c,d, eight different branches are presented. One should consider the impact
of the fill ratios of the dielectric and graphene layer, as sketched in Figure 8c,d. First, the impact of the
width of the graphene f g on the dispersion branch (see Figure 8c) should be discussed. It is found that
the decrease of f g causes a shift of the upper limit to higher frequencies. Additionally, one can control
the frequency range of SPPs by changing the dielectric filling ratio, as demonstrated in Figure 8d.
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Figure 10. Each component of wavevector, when εR = 18.8. The components of β (a) and k in both
multilayered MMs (b) and free space (c).

We will address the tunable hyperbolic MM made of TCO-dielectric multilayered MMs in the
next section, aiming to obtain a new type of SPP.
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5. Tunable Hyperbolic MM Made of TCO-Dielectric Multilayered MMs

The proposed MM is displayed in Figure 11. Herein, dTCO and dd are the widths of the TCO and
dielectric sheets, correspondingly. A TCO/PbS MM is considered, aiming to study the dispersive
properties of SPPs. It is assumed that εd = 18.8 for PbS sheets, and εTCO is computed by means of the
parameters outlined in [38].
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Figure 11. Interface of multilayered MM made of periodically changing transparent-conducting oxide
(TCO) and dielectric layers. The MM/dielectric (εR = 1 or εR = 2.25) and MM/TCO boundaries
are investigated.

For the instance of the anisotropic material, the EM wave dispersions can be sketched for
MM/dielectric and the MM/TCO instances. Let us concentrate on a semi-infinite AZO (Aluminum
Zinc Oxide)/PbS MM example while tackling the numerical calculations. Moreover, a homogenization
of the MM matching the MM/dielectric and MM/TCO boundaries is considered. Sketching the
branches of the permittivities (ε⊥ and ε ||) and the dielectric constant (εR) allows us to consider the
optical properties. Moreover, we consider different frequency ranges, distinguishing them based on
the properties of and relation among ε⊥, ε ||, and εR [39].

(1) ε⊥ > εR > ε || and ε || < 0 (cyan);

(2) ε⊥ > εR > ε || (green);

(3) ε || > εR > ε⊥ and ε⊥ < 0 (gray);

(4) εR > ε || > ε⊥ and ε⊥ < 0 (magenta) and

(5) ε⊥ < ε || < 0 (orange).

It is worthwhile mentioning that the effective parameters will dramatically influence the SPPs,
as outlined in [39]. The TCO filling ratio, f TCO, is used here as the main mechanism controlling the
effective optical parameters. Figures 12 and 13 display characteristic dispersion branches, considering
different TCO filling factors. Different branch colors are applied, aiming to distinguish various
frequency ranges. One can distinguish three SPPs fitting three different ranges in the case of fTCO = 0.3
and MM/dielectric boundary. Moreover, two kinds of SPPs are observed in the instance of the
MM/TCO boundary. For the MM/TCO case, the upper waves are in the gray region. The fTCO = 0.5,
0.7, 0.9 cases are associated with three exceptional cases. In the case of fTCO = 0.5, two types of SPPs
appear in two color ranges, i.e., cyan and gray for the MM/dielectric and MM/TCO boundaries. The
upper short branches in the case of fTCO = 0.7, lying in the gray range, are presented in Figures 12
and 13. The other SPPs belong to the orange range. The supplementary SSPs belonging to the magenta
range are observed with respect to a MM/dielectric boundary. A dark-magenta color displays an
extension approach for the magenta region in the case of εR = 2.25. One may observe two kinds of
SPPs belonging to the orange and cyan ranges for the MM/TCO instance and three types of SPPs
lying in the cyan, orange, and gray ranges for the MM/dielectric case with a filling factor fTCO = 0.9.
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It should be underlined that one SPP occurs in the cyan range for different TCO filling factors in the
MM/dielectric case. The former is outlined in Figure 12. It is of importance that the case εR = ε ITO
opens the gateway for possible applications, as the SPP always occurs in the cyan range for different
filling factors (Figure 13).

Following the essential condition for the presence of the Dyakonov-like SPP (DSW) [35], the SPP
in the green resembles the behavior of a DSW. Thus, it is important to address DSW [40], or the
Dyakonov defined in [35]. Furthermore, the frequency region of the DSW can be extended by using
the εR = 2.25 material at the right-hand side of the boundary (Figure 12). The dark-green color [39] is
applied, seeking to outline the former extension. Particularly, the extension of the gray region [39] is
probable because of the usage of ITO (Indium Tin Oxide) instead of GZO (ZnO:Ga) at the right-hand
side of the boundary [39]. The SPP in the orange range is similar to the traditional SPP. The former
happens because of the negative principal values of the effective permittivity in the orange range.
Thus, this SPP should be associated with an SPP of a traditional type. The others are novel kinds
of SPPs. Therefore, all the SPPs belong to the five different types, located in the five color ranges in
Figure 12, correspondingly. In the instance of the AZO/PbS MM and air/dielectric boundary, five
types of SPPs appear, and only three are found for the AZO/PbS MM and TCO interface.
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Figure 12. SPP dispersion for different TCO filling factors, i.e., fTCO = 0.3 in (a), fTCO = 0.5 in (b),
fTCO = 0.7 in (c), and fTCO = 0.9 in (d), matching the MM/dielectric boundary.

Unavoidably, a traditional-like SPP is characterized by an ordinary dispersion for the
MM/dielectric boundary, occurring to the right of the light line. Altogether, the degradation of
the dispersion in the orange range might be observed in the instance of the MM/TCO boundary. One
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can manipulate the dispersion features controlling the TCO filling factor in the MM realization. It
should be noted that for a low TCO filling factor, in the case of the MM/TCO boundary, two kinds
of the modes always exist, while for higher TCO filling factors, modes in the gray range disappear
(Figure 13d).
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Figure 13. SPP dispersion for different TCO filling factors, i.e., fTCO = 0.3 in (a), fTCO = 0.5 in (b),
fTCO = 0.7 in (c), and fTCO = 0.9 in (d), matching the MM/TCO boundary.

It should be mentioned that the complex mode diagrams (Figures 12 and 13), which match either
the MM/dielectric or MM/TCO boundary, appear due to the confinement of SPPs in the direction
perpendicular to the wave propagation. The origin of these EM SPPs is caused by the coupling of the
EM fields to the oscillations of the conductor’s electron plasma.

6. Conclusions

6.1. Two-Layered MMs for Surface Plasmon Polariton Guiding

To conclude, we have presented a research approach to describe the dispersion of hyperbolic
MMs. The aim of these studies is to mitigate the problem under consideration, offering tuning
possibilities of the hyperbolic features. The former is tremendously needed from the perspective of
device applications. In this regard, we presented a multilayered MM. In the light of the present work,
we have outlined the tunable features of the effective permittivity of the graphene-based MMs. Three
significant outcomes should be outlined, in view of the obtained results. Firstly, compared with the
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dispersion equation in the instance of ε1 = ε3, ε2 = ε4, and d1 6= d2 6= d3 6= d4, the quasibound, leaky
part of the dispersion equation is narrowed for the case ε1 = ε3, ε2 6= ε4 and d1 6= d2 6= d3 6= d4.
Secondly, one may control the perpendicular component of effective permittivity by manipulating the
Fermi energy, the width of dielectric, and the number of graphene sheets in the MMs. Thirdly, one can
engineer the frequency range of the SPP by changing the Fermi energy of graphene and the fill ratio of
the dielectric or graphene layers in the unit cell of the MMs.

6.2. Tunable Hyperbolic MM Made of TCO-Dielectric Multilayered MMs

SPPs in a TCO-dielectric MM have been studied. Like graphene-dielectric MM [21],
a TCO-dielectric MM support traditional-like SPPs possessing various diagrams matching two various
boundaries. Based on theoretical considerations [40], the dispersion equations of SPPs were obtained.
Five types of SPPs, among which three types are novel SPP types, one is DSW, and another is the
traditional-like SPP, are foreseen. The existence of these SPPs is impacted by the features of the principal
values of the effective permittivity. It should be noted that the presented (new) types of SPPs appear
due to the principal values of the effective pemittivity being functions of frequency. Additionally, SPPs
with a dispersion coinciding with the dispersion of a surface plasmon at the interface of two isotropic
media are foreseen to match the MM boundary if the material at the right-hand side is the same as that
used in the MM.

6.3. Three-Layered MMs for Surface Plasmon Polariton Guiding

SPP supported by graphene/dielectric multilayered MMs was studied theoretically. It is
concluded that SPP can be supported by a three-layered MM. Also, one can easily manipulate the
characteristics of the multilayered SPPs by manipulating the structural parameters. Thus, the active
materials can be included into the MM design, which might open wide avenues for future devices.

The dielectric permittivity should be smaller than the absolute value of Re(εm), aiming to fulfill the
EM boundary condition and statements of continuity [41] in the case of a traditional metal SPP. If not,
the SPP mode would be cut off. The property of anisotropic material is represented by multilayered
MMs if the case is considered from the effective medium perspective. Further, it is shown in Figure 9
that one may deal with multilayered MMs as with anisotropic metal near the upper bound of its SPP
frequency region (in band 2). The Re(ε⊥) is far from zero, while Re

(
ε ||

)
is much closer to zero within

band 2 of Figure 9, compared with Re(εm) of pure metal.
The effective permittivity is caused by the interaction of the EM field with the free electrons

in graphene sheets and the SPP mode coupling and resonance in multilayered MM. Consequently,
the SPP frequency region is extended due to the SPP mode coupling and resonance in the multilayered
MMs, characterized by anisotropic permittivity.

It is worthwhile noting that the multilayered SPPs could also be excited by means of the evanescent
EM field generated by a prism or waveguide. Extended frequency range, lower propagation loss,
and controllable features are possible due to the changes of the graphene/dielectric ratio, and these
properties might open a gateway for possible applications in biosensor and active SPP devices.

Herein, we have theoretically considered the SPP guided by dielectric/graphene/dielectric
multilayered MMs. One may conclude that an SPP can propagate when the MM is at the frequency
where a conventional metal SPP cannot occur, as in the case of high permittivity of dielectric on metal.
In addition to the variance of a high frequency cut-off point in comparison with metal SPPs, it was
observed that a low cut-off frequency, below which SPP could not be supported by the MM, exists.

These outstanding properties open wide avenues for the usage of an SPP mode for some potential
applications, which are impossible for metal SPPs. In addition to the characteristics of the multilayered
SPPs being easily controlled by tuning the composite parameters, the active materials can also be
incorporated into the MM. This described feature might also create new possibilities for future devices.
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