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Abstract: Fracture mechanics is one of the most important approaches to structural safety analysis.
Modeling the fracture process zone (FPZ) is critical to understand the nonlinear cracking behavior
of heterogeneous quasi-brittle materials such as concrete. In this work, a nonlinear extended scaled
boundary finite element method (X-SBFEM) was developed incorporating the cohesive fracture
behavior of concrete. This newly developed model consists of an iterative procedure to accurately
model the traction distribution within the FPZ accounting for the cohesive interactions between crack
surfaces. Numerical validations were conducted on both of the concrete beam and dam structures
with various loading conditions. The results show that the proposed nonlinear X-SBFEM is capable of
modeling the nonlinear fracture propagation process considering the effect of cohesive interactions,
thereby yielding higher precisions than the linear X-SBFEM approach.

Keywords: elastoplastic behavior; extended scaled boundary finite element method (X-SBFEM);
stress intensity factors; fracture process zone (FPZ)

1. Introduction

With the development of numerical analysis technology, structural fracture mechanics is
an important approach to structural safety evaluation. Fracture process zone (FPZ) is defined as
the intermediate space between cracked and uncracked portions of concrete [1]. Different from real
cracks, the FPZ can still transmit stress, and the stress, σ, that FPZ transmits decreases with increasing
crack open displacement, w. When the crack open displacement reaches a certain critical value, wc,
the surface force of the crack surface becomes zero, as illustrated in Figure 1. The FPZ consists of
microcracks, which are minute individual cracks; this gives rises to the cohesive tractions ahead of the
crack tip, which comes from the aggregate interlocking and surface friction. Therefore, a nonlinear
fracture-mechanics-based method needs to be applied to account for the effect of cohesive tractions
during the fracture propagations.
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Figure 1. Fracture process zone (FPZ) in concrete. 

Two main approaches are often taken to model the FPZ, which are: the smeared crack models 
and the discrete crack models. The smeared crack models proposed by Rashid [2] are based on the 
continuum approach, where the computational mesh of the FPZ remains constant while the fracture 
propagation is modeled by the growth of a number of parallel cracks smeared over the elements 
within the FPZ. Using this approach, Bhattacharjee et al. [3] and Calayir et al. [4] successfully carried 
out dynamic cracking analyses of the Koyna gravity dam under the influence of nonorthogonal 
cracks. Cai et al. [5] also follow a similar approach incorporating the linear or bilinear softening 
dispersion crack models to predict the crack response of concrete gravity dams. The damage-based 
fracture mechanics was also developed sharing the similar concept by Bazant [6]. These methods 
have shown tremendous success in modeling concrete fractures under complex loading and 
boundary conditions. However, the strong mesh dependency often causes complications in 
determining the characteristic length scale, fracture strength, and fracture toughness to accurately 
describe the fracturing propagation process. The smeared crack models mainly combine with damage 
mechanics for crack propagation studies. 

On the other hand, the discrete crack model proposed by Dugdale [7] and Barenblatt [8] utilizes 
a predefined fracture path as a part of the computational domain boundary, which reduces the mesh 
dependency comparing to the smeared crack model. Hillerborg et al. [9] firstly implemented the 
cohesive zone model (CZM) to describe the FPZ based on the discrete crack approach. Following this 
approach, numerous scholars have improved and implemented the cohesive zone method to model 
the fracture propagation process (Skrikerud et al. [10], Ayari et al. [11], Xie et al. and Yang et al. [12–
14]). Among these improvements, the scaled boundary element method (SBFEM) was developed to 
model the complex fracture growth in terms of fracture branching and coalescing under complex 
loading conditions. However, the SBFEM fails to capture the nonlinearity brought by the cohesive 
interactions within the FPZ. Therefore, the mesoscale and atomic-scale-inserted CZMs were 
developed to model the FPZ [15–18]. However, the predetermined fracture paths often cause 
computational complexities and inaccuracies. 

Recently, the extended scaled boundary finite element method (X-SBFEM) based on the level set 
method was developed on the basis of both the SBFEM [19,20] and the extended finite elements 
(XFEM) [21,22]. Capitalizing on the advantages of both methods, X-SBFEM [23,24] can make full use 
of XFEM to describe the discontinuous displacement field and SBFEM to solve the problem of the 
stress singularity with higher precision. Simulating the crack body section using XFEM and the crack 
tip using SBFEM, the method finally establishes the total equilibrium equation of the crack body and 
solves the equation, thereby overcoming the disadvantages of XFEM, such as obtaining the analytical 
form of the displacement and the stress asymptotic fields of the crack tip in advance and constructing 
the complex enhanced functions, which can express nonsmooth behaviors near the crack tip. In some 
special circumstances, the enrichment functions are discontinuous or have nonpolynomial forms to 
specially address the issue when the stiffness matrix is constructed using numerical integration. 

Currently, the application of X-SBFEM in fractures [23] based on linear elastic fracture mechanics 
(LEFM) mainly focuses on the linear fracture. Due to the complexity of the three-dimensional analysis 
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Two main approaches are often taken to model the FPZ, which are: the smeared crack models
and the discrete crack models. The smeared crack models proposed by Rashid [2] are based on the
continuum approach, where the computational mesh of the FPZ remains constant while the fracture
propagation is modeled by the growth of a number of parallel cracks smeared over the elements
within the FPZ. Using this approach, Bhattacharjee et al. [3] and Calayir et al. [4] successfully carried
out dynamic cracking analyses of the Koyna gravity dam under the influence of nonorthogonal
cracks. Cai et al. [5] also follow a similar approach incorporating the linear or bilinear softening
dispersion crack models to predict the crack response of concrete gravity dams. The damage-based
fracture mechanics was also developed sharing the similar concept by Bazant [6]. These methods have
shown tremendous success in modeling concrete fractures under complex loading and boundary
conditions. However, the strong mesh dependency often causes complications in determining
the characteristic length scale, fracture strength, and fracture toughness to accurately describe the
fracturing propagation process. The smeared crack models mainly combine with damage mechanics
for crack propagation studies.

On the other hand, the discrete crack model proposed by Dugdale [7] and Barenblatt [8] utilizes
a predefined fracture path as a part of the computational domain boundary, which reduces the mesh
dependency comparing to the smeared crack model. Hillerborg et al. [9] firstly implemented the
cohesive zone model (CZM) to describe the FPZ based on the discrete crack approach. Following this
approach, numerous scholars have improved and implemented the cohesive zone method to model
the fracture propagation process (Skrikerud et al. [10], Ayari et al. [11], Xie et al. and Yang et al. [12–14]).
Among these improvements, the scaled boundary element method (SBFEM) was developed to model
the complex fracture growth in terms of fracture branching and coalescing under complex loading
conditions. However, the SBFEM fails to capture the nonlinearity brought by the cohesive interactions
within the FPZ. Therefore, the mesoscale and atomic-scale-inserted CZMs were developed to model
the FPZ [15–18]. However, the predetermined fracture paths often cause computational complexities
and inaccuracies.

Recently, the extended scaled boundary finite element method (X-SBFEM) based on the level
set method was developed on the basis of both the SBFEM [19,20] and the extended finite elements
(XFEM) [21,22]. Capitalizing on the advantages of both methods, X-SBFEM [23,24] can make full use
of XFEM to describe the discontinuous displacement field and SBFEM to solve the problem of the
stress singularity with higher precision. Simulating the crack body section using XFEM and the crack
tip using SBFEM, the method finally establishes the total equilibrium equation of the crack body and
solves the equation, thereby overcoming the disadvantages of XFEM, such as obtaining the analytical
form of the displacement and the stress asymptotic fields of the crack tip in advance and constructing
the complex enhanced functions, which can express nonsmooth behaviors near the crack tip. In some
special circumstances, the enrichment functions are discontinuous or have nonpolynomial forms to
specially address the issue when the stiffness matrix is constructed using numerical integration.
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Currently, the application of X-SBFEM in fractures [23] based on linear elastic fracture mechanics
(LEFM) mainly focuses on the linear fracture. Due to the complexity of the three-dimensional analysis
model, the theoretical researches of fracture mechanics still focus on the state of the two-dimensional
analysis model. Therefore, based on the X-SBFEM algorithm, this paper introduces a nonlinear
crack model which adopts the linear superposition of iterative methods to incorporate the cohesive
interactions within the FPZ. The proposed approach was then implemented to model mixed-mode
fracture of concrete beam and gravity dam structures. The results show improvements comparing to
other methods. Close agreements were found between the numerical and experimental results.

The contents of this paper are arranged as follows. In Section 2, we explain the principle of
X-SBFEM. In Section 3, a nonlinear crack model with iterative method for cohesive interactions in
the FPZ is introduced and a flowchart for solving the cohesion is given. In Section 4, four numerical
simulations (a three-point bending beam, a four-point shear beam, an experimental concrete gravity
dam with single crack expansion, and a static cohesive crack propagation simulation of Koyna Dam)
are modeled to validate the nonlinear model. In Section 5, we conclude that this paper has developed
the X-SBFEM with the nonlinear model to improve the modeling of crack propagation.

2. Extended Scaled Boundary Finite Element Method

The core content of X-SBFEM based on the level set method focuses on the simulation of the
nonsmooth behavior near the crack tip using semianalytical SBFEM in the form of super-elements
and the simulation of the crack body using XFEM. The key lies in the way the algorithm addresses
the boundary conditions at the joint. Figure 2 below shows the topological relationship in the model
domain including a crack based on X-SBFEM.
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2.1. Extended Finite Element Method

Based on the partition of unity methods simulating the crack body by XFEM, the general formula
of a displacement field [25,26] is

uh(x) = ∑
I∈Nfem

NI(x)qI + ∑
J∈Ne

NJ(x)ϑ(x)aJ (1)
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where Nfem and Ne respectively represent a node in a general element and an enriched node in
an internal split crack. Correspondingly, qI is a normal degree-of-freedom, aJ is a generalized
degree-of-freedom related to ϑ (as shown in the square node in Figure 2), and ϑ(x) is the Heaviside
step function.

The equilibrium equation is[
Ke

aa Ke
ab

Ke
ba Ke

bb

]{
qI
aJ

}
=

{
Pa

Pb

}
Pb =

x

Ω/Γd

(H·N)T ·pvdΩ +
∫

Γt
(H·N)T ·tdΓ +

∫
Γd
(H·N)T ·pdΓ (2)

where Ke
aa and Ke

bb represent the stress matrix respectively related to a normal degree-of-freedom
and a generalized degree-of-freedom. Moreover, Ke

ab and Ke
ba are the coupling matrices, and Pa

and Pb are the equivalent nodal forces in accordance to general degrees-of-freedom and generalized
degrees-of-freedom, respectively.

Ke
aa =

x

Ω/Γd

BTDBdΩ (3)

Ke
ab = (Ke

ba)
T =

x

Ω/Γd

BTD(HB)dΩ (4)

Ke
bb =

x

Ω/Γd

(HB)TD(HB)dΩ (5)

Pa =
x

Ω/Γd

NT ·pvdΩ +
∫

Γt
NT ·tdΓ (6)

Pb =
x

Ω/Γd

(H·N)T ·pvdΩ +
∫

Γt
(H·N)T ·tdΓ +

∫
Γd
(H·N)T ·pdΓ (7)

where Γd and Γt respectively represent the crack face and the force interface. Moreover, pv and t
respectively represent the body force in computational domain and the surface force on the force
interface.

According to the advantage of the description of discontinuous displacement field description,
XFEM is used to simulate the main body of the crack.

2.2. Scaled Boundary Finite Element Method

X-SBFEM is used to simulate the crack tip for the high efficiency and high precision of stress
singular field simulations. As shown in Figure 3, there are side-face forces at the face of the
super-element at the crack tip in the case of SBFEM. Without taking the body force into account,
the displacement field and the stress field given by the SBFEM are [21]

{u(ξ, η)} = [N(η)]{u(ξ)} =
n

∑
i=1

ciξ
λi [N(λ)]{ϕi} (8)

{σ(ξ, η)} = [D][L][N(η)]{u(ξ)} = [D]
[
B1(η)

]
{u(ξ)},ξ +

1
ξ
[D]
[
B2(η)

]
{u(ξ)} (9)

where N(η) is the interpolation shape function for one-dimensional line elements and {ϕi} and λi
are the displacement modes and the eigenvalues, respectively. Furthermore, [B1(η)] and [B2(η)] are
determined by the geometric shape of the boundary of the element. The formulas calculated by the
virtual work principle are

{P} = [K]{uh} =
[
E0
]
[Φ][λ][Φ]−1 +

[
E1
]T
{uh} (10)
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[
E0
]
ξ2{u(ξ)},ξξ +

([
E0
]
+
[
E1
]T
−
[
E1
])
{u(ξ)},ξ −

[
E2
]
{u(ξ)} = 0 (11)

where {P} is the equivalent boundary nodal force and
[
E0], [E1], and

[
E2] are the coefficient matrices
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Equation (11) is a second-order homogeneous ordinary differential equation and its solution is

{u(ξ)} = [ϕ]ξλ{c} =
n

∑
i=1

ciξ
λi ϕi (12)

where ci is the weight of this mode.
Substitute Equation (12) into Equation (10) and get a quadratic eigenvalue problem.

[λ2
i

[
E0
]
+ λi

([
E1
]T
−
[
E1
])
−
[
E2
]
]ϕi = 0 (13)

Substitute Equation (12) into Equation (10) and get the equivalent node force qi on the boundary
corresponding to the displacement mode.

qi =

([
E1
]T

+ λi

[
E0
])

∅i (14)

Combining Equations (13) and (14) and introducing auxiliary variables can transform quadratic
eigenvalue problems into standard linear eigenvalue problems.[

−
[
E0]−1[E1]T [

E0]−1

−
[
E1][E0]−1[E1]T

+
[
E2] [

E1][E0]−1

][
Φ
Q

]
= λ

[
Φ
Q

]
(15)

where [Φ] and [Q] are modal matrices of the displacement modal matrix and the force modal matrix.
For the square root singular problem for homogeneous materials, the stress intensity factors can

be defined as {
KI
KI I

}
=
√

2πL0 = ∑
i=1,2

(
ci

{
ψyy(η = ηA)

ψxy(η = ηA)

}
i

)
(16)

where L0 is the distance between the scaling center and the point of the crack surface (the segment OA
in Figure 3). From Equation (8), it can be deduced that if λi ≥ 1, the distribution of the stress mode
tends to 0 when ξ→ 0 [27].
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2.3. Force Balance and Displacement Coordination

Figure 4 shows a typical method simulating the crack with the coupling of the XFEM and the
SBFEM [28] domain. In the process of XFEM and X-SBFEM coupling, there is a problem of the balance
of virtual and real freedom, continuous displacement, and force. To solve the problem, the SBFEM
simulates the crack surface using the boundary of the element, while the XFEM introduces an additional
degree-of-freedom based on the use of the step function to describe the discontinuous displacement
field. To coordinate the displacement of the two types of elements along the boundary, a transition
matrix T is used to match the nodal displacements in SBFEM with those in XFEM. A transformation
matrix, which can be derived from the previous equations that translates the unknown SBFEM nodal
displacements (uE, uF, uA, and uB) to the unknown XFEM nodal displacements (q2, q3, a2, and a3) can
be described as 

uB
uE
uA
uF

 =


I 0 0 0
0 I 0 0

N2(xA) N3(xA) 0 −2N3(xA)

N2(xF) N3(xF) 2N2(xF) 0




q2
q3
a2

a3

 (17)

where I is a unit matrix. In order to ensure the compatibility of the displacement and to integrate the
element stiffness matrix, it is necessary to rearrange the column displacement vectors of the SBFEM
and the stiffness matrix according to whether the nodes are on the common boundary,[

Kaa Kab
TTKba TTKbbT

]{
uqS
uxF

}
=

{
Fa

TTFb

}
(18)

where the subscript a represents the nodes on the common boundary of SBFEM and XFEM and
subscript b represents the nodal degree-of-freedom of the noncommon boundary. The transformation
matrix T is only related to the interpolation shape function at the crack opening at the common
boundary of the SBFEM and the XFEM.
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3. A Nonlinear Crack Model with Iterative Method for Cohesive Interactions in the FPZ

The relative displacement of the crack surface, including the opening displacement (COD) and
the sliding displacement (CSD) of the crack surface, does not exceed the limits shown in Figure 5.
When the COD and CSD of the crack surface are not beyond the limits shown in Figure 5, the total
loads generated by the structure include the external loads and the cohesive forces at the virtual
crack surfaces. However, if the load exceeds the limit, the cohesive force is 0. In the case of cohesive
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forces, considering the stress intensity factor I as an example, the stress intensity factor consists of two
parts [29],

KI = KP
I + KC

I (19)

where KI is the total stress intensity factor and KP
I and KC

I are the components related to the external
and cohesive forces, respectively. All three stress intensity factors can be calculated by the standard
SBFEM solution stress intensity factor formula. Thus, KP

I > 0 when the crack opens as a result of
the external force of the model, while KC

I < 0 when the crack tends to close owing to the cohesive
force. Equivalently, KI = 0 when force balance is achieved as a result of the roles of the external and
cohesive forces. Therefore, KI ≥ 0 can be used as the criterion for judging whether the crack will
continue to propagate or not [15].Appl. Sci. 2017, 7, x FOR PEER REVIEW  7 of 20 
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The positive component of the cohesive tractions in the fracture process zone is determined by
the bilinear softening curve [30] of Figure 5a or the linear softening curve of Figure 5b. The tangential
component is determined by the curve of Figure 5c. The areas below the curve of Figure 5a,b are the
mode I fracture energy, G f I . The area between the curves in Figure 5c is twice that of the mode II
fracture energy, G f I I [30]. The key concept of this method is based on the relative displacement of
the crack surface and its application to the linear superposition of an iterative scheme to solve and
estimate the cohesive tractions on the crack surface. Specifically,

A. Assume that the structure is only affected by the external force so that the relative displacement
∆u1 of the super-element crack surface ∆u1 can be obtained based on the linear elastic
assumptions of X-SBFEM, and that the corresponding cohesive traction t1 can be obtained
according to Figure 5.
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B. As shown in Figure 6, the external force and the cohesive force obtained in the previous step are
applied to the structure, wherein the cohesive traction t1 is applied in the form of a side-face
force, formulated in accordance to the following equation:

∫
S
{δu(ξ, η)}T{pn(ξ, η)}dS =

∫ 1

0
{δu(ξ)}T{pn(ξ)}

√
x′(ξ)

2
+ y′(ξ)

2
dξ

=
∫ 1

0
{δu(ξ)}TFt(ξ)dξ

(20)

where

Ft(ξ) =


√

x2
1 + y2

1{pn(ξ)}
∣∣∣
η=−1√

x2
1 + y2

1{pn(ξ)}
∣∣∣
η=1

 (21)
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The SBFEM nonhomogeneous control equation can be easily obtained in accordance to[
E0
]
ξ2{u(ξ)},ξξ +

([
E0
]
+
[
E1
]T
−
[
E1
])
{u(ξ)},ξ −

[
E2
]
{u(ξ)}+ ξ{Ft(ξ)} = 0 (22)

Assume that the load can be expressed by the power series,

{Ft(ξ)} =
n

∑
i=1

ξti{Fti} (23)
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The corresponding displacement mode is

{ut(ξ)} =
n

∑
i=1

ξti{Φti} (24)

Substituting Equation (24) into Equations (23) and (11) results in

{Φti} =
[
(ti + 1)2

[
E0
]
+ (ti + 1)

[[
E1
]T
−
[
E1
]]
−
[
E2
]]−1

{Fti} (25)

{
qti

}
=

[
(ti + 1)

[
E0
]
+
[
E1
]T
]
{Φti} (26)

Thus, the complete displacement of the boundary nodes and the equivalent nodal force
are respectively,

{uh} =
n

∑
i=1
{Φti}+ [Φ]{c} (27)

{P} =
n

∑
i=1

{
qti

}
+ [Q]{c} (28)

[Φ] and [Q] are modal matrices of the displacement modal matrix and the force modal matrix
solved by Equation (15), respectively. The following equation can be obtained using Equations (27)
and (28):

[K]{uh} = {P} −
n

∑
i=1

{
qti

}
+ [K]

n

∑
i=1
{Φti} (29)

The equivalent nodal force of the super-element boundary node generated by the distributed load
of the crack surface is

RF = −
n

∑
i=1

{
qti

}
+ [K]

n

∑
i=1
{Φti} (30)

When the crack tip is solved characteristically,
{

uh
sb

}
and

{
ux f

}
can be obtained after solving

the linear equations. Substituting
{

ux f

}
into Equation (17), the displacement of all nodes in the crack

tip of the super-element
{

uh
sb

}
can be obtained. Substituting

{
uh

sb

}
into Equation (27) yields

{c} = [Φ]−1
({

uh
sb

}
− {Φt}

)
(31)

The displacement field of the crack tip element is

{u(ξ, η)} = N(η)

(
n

∑
i=1

ciξ
λi{ϕi} − ξt+1{Φt}

)
(32)

where {ψi} is the stress mode solved based on SBFEM. The relative displacement ∆ui+1 is solved
using Equation (32).

C. Repeat the steps until the relationship between ti and ∆ui+1 becomes consistent with the pattern
of variation plotted in Figure 5.

A simplified flowchart of the solution of the cohesive tractions is shown in Figure 7.
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4. Numerical Examples

4.1. A Three-Point Bending Beam

This model was first studied by Petersson (1981) as an experimental study of the mode I fracture
propagation problem [31]. The geometry, boundary conditions, and material parameters of the beam
are shown in Figure 8. The tensile strength ft is 3.33 MPa and the mode I fracture energy G f I is
137 N/m. The present example predicts the crack propagation path based on the LEFM maximum
circumferential tensile stress criterion. Analyzing the single linear softening curve (Figure 5b) and
based on the mode I fracture energy G f I , the limit value of the linear softening curve wc is 0.0823 mm.
The results of three crack propagation steps a = 10 mm, 20 mm, and 30 mm, for a 20 × 200 grid density,
are calculated and compared with the results based on the linear elasticity method [24].
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Figure 8. Three-point bending beam for crack propagation (unit: mm).

Figure 9a depicts the relationship of the load for three different crack propagation steps and
load point displacements (Load–LPD) based on LEFM work. The results are compared with Yang’s
work based on the linear elasticity method [12] and experimental results published by Petersson [27],
as shown in Figure 9. We can see that the elicited results based on LEFM are very different from
the experimental data. This is particularly evident for the peak load, which is much higher than the
experimental peak. This is because the LEFM-based method is incapable of simulating the energy
dissipation of the fracture zone. Based on X-SBFEM, this study has used different methodologies to
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solve the cohesive tractions based on the iterative method of linear superposition by simulating the
energy dissipation of FPZ. Figure 9b shows the Load–LPD curves for three different crack propagation
steps considering FPZ nonlinearities. It can be seen from Figure 9 that the calculated results are in
good agreement with the experimental results of Petersson, which shows that the method used in
this study can simulate the energy dissipation of FPZ. Moreover, it can be seen from Figure 9 that
the results of the three crack propagation steps are in good agreement with the experimental curve,
which shows that different steps have minor effects on the calculated results.Appl. Sci. 2017, 7, x FOR PEER REVIEW  11 of 20 
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Figure 9. Load–LPD curves for different crack increment lengths: (a) LEFM-based and (b) NFM-
based. 
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4.2. A Four-Point Shear Beam

Arrea and Ingraffea first tested and analyzed the four-point unilateral shear beam [28].
The geometry and boundary conditions of the beam are shown in Figure 10. Assuming that the
structure is in the plane stress state, the Young’s modulus E is 24.8 GPa, Poisson’s ratio υ is 0.18, tensile
strength ft is 3.0 MPa, mode I fracture energy G f I is 100 N/m, and mode II fracture energy G f I I is
10 N/m. The crack path is also predicted by using the LEFM-based maximum circumferential stress
criterion. Analyzing the linear softening curve of Figure 5b, the limit value of CODs wc obtained by
the mode I fracture energy G f I is 0.067 mm and the limit value of CSDs sc obtained by the mode II
fracture energy G f I I is 0.02 mm. The results of the three crack propagation steps a = 10 mm, 20 mm,
and 30 mm, using a 20 × 200 grid density, are calculated and compared with the results based on the
linear elasticity method [24].

Figures 11a and 12a show the relationship between the load calculated by LEFM, the crack mouth
sliding displacement (Load–CMSD), and the relationship between the load and the loading point
displacement (Load–LPD). It can be seen from the figure that the calculated results are close to the
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numerical solutions of Yang et al. [12] and the effect of different steps on the calculation results is not
considerable, which proves the applicability of the X-SBFEM algorithm to complex crack propagation
problems. However, the FPZ energy dissipation of the crack tip makes the LEFM-based method slightly
different compared to previous calculations and experimental data [15]. In this study, the iterative
method used to simulate the cohesive tractions is used to simulate the energy dissipation of the FPZ.
The linear softening curve in Figure 5b and the curve of Figure 5c are used to solve the cohesive
tractions of the vertical crack surface and the parallel crack surface. As shown in Figure 11b, it can
be seen that the Load–CMSD curve calculated herein is in good agreement with Yang’s experimental
data (NFM-based). Figure 12b shows that the method considered herein can describe the snap-back
phenomenon of the Load–LPD curve. It can be concluded that the iterative, linear superposition
method based on X-SBFEM can yield high-precision results without coupling the interface unit (CIEs)
near the crack tip.
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Figure 10. Four-point notched shear beam for crack propagation (unit: mm).
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4.3. An Experimental Concrete Gravity Dam with Single-Crack Expansion

Carpinteri [32], Barpi [33], and Shi [34] tested and analyzed the single-crack expansion gravity
dam. A 1:40 scale concrete gravity dam model is used herein. The geometry, boundary conditions,
and material parameters of the gravity dam are shown in Figure 13. Consisting of concrete, the gravity dam
is analyzed based on a plane strain assumption and on the bilinear softening curve, where ωc = 0.256 mm,
Gf = 184 N/m, and ft = 3.6 MPa. Suppose that the indentation length is 1/10 W (0.15 m), where W is
the width of the dam at the elevation of the indentation. Hydrostatic pressure exists in the upstream
face of the dam. This hydrostatic pressure acts on the upstream face and can be equivalently replaced by
four concentrated loads, as shown in Figure 13. The hydrostatic pressure gradually increases until the
dam breaks.
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In Figure 14, the results of the Load–COD curve in this study are compared with reference
solutions, the experimental data of Carpinteri et al. [32], and the numerical simulation data of Barpi
et al. [33] and Shi et al. [34]. It can be seen that the elicited results before the peak, load peak, and
experimental data obtained by this method are in good agreement with all the other numerically
elicited data. It can also be seen that the post-peak curve of the experiment was significantly higher
than the numerical results, which means that the crack opening displacement (COD) of the experiment
was greater under the same loading conditions. This phenomenon may be owing to the unanticipated
rigid rotation in the experiment of Carpinteri et al. [32] which results in premature failure of the
prefabricated crack. Compared with other numerical results shown in Figure 14a, the initial stiffness
obtained by the X-SBFEM method in this study is the closest to that obtained from the results of
Carpinteri et al. [32]. The results obtained by Barpi et al. [34] were smoothened before the peak,
while the large stiffness elicited in the pre-peak response obtained by Shi et al. [35] resulted in a crack
opening displacement (COD) that was smaller in value compared to the experimental results.Appl. Sci. 2017, 7, x FOR PEER REVIEW  15 of 20 
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The crack trajectories obtained by the above experiment and numerical method are shown in
Figure 14b. The crack trajectory obtained by the X-SBFEM method in this study is better matched
with the experimental and with all the other numerical results. Among them, the crack trajectory
obtained from the experiment directly developed towards the dam site before the dam ruptured. At the
same time, the trajectories obtained by the numerical simulations of Barpi et al. [33] and Shi et al. [34]
horizontally penetrated the dam body, which is quite different compared to the experimental results.
The results generated in this study obviously match more closely the experimental results.

Figure 15 shows the variation of the crack opening displacement and the distribution of cohesive
traction with the crack path in this example model, based on the X-SBFEM method.
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4.4. Static Cohesive Crack Propagation Simulation of Koyna Dam

After a severe earthquake in 1967, the neck of the Koyna Dam suffered serious damages.
Gioia et al. [35] (1992) simulated the generated crack based on linear elastic fracture mechanics and
Bhattacharjee et al. [36] applied the smeared model to analyze the crack propagation. The geometry
and material parameters of the Koyna Dam are shown in Figure 16. The dam concrete was assumed
to be homogeneous and the Koyna Dam was analyzed based on the planar strain assumption and
the bilinear softening curve, where ωc = 0.256 mm, ω0 = 0.04 mm, ω1 = 0.075 mm, ft = 1 MPa,
Gf = 100 N/m, and ft = 0.25 MPa. A crack was set at a horizontal orientation at an elevation of 66.5 m
on the upstream face of the dam in advance. The initial length of the crack was 1.93 m, which equaled
1/10 of the width of the dam at an elevation of 66.5 m. The loads considered included the body load
of the dam, hydrostatic pressure of the full reservoir, and the overloading head load applied at the
ultimate fracture of the dam. The crack expansion step assumed that ∆a = 2 m.
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During the numerical simulation, the crack initially expanded horizontally. When the overflow
increased gradually, the crack trajectory gradually expanded downward owing to the increase of
the compressive stress in the downstream area of the dam. Figure 17 is the schematic diagram
of the ultimate crack propagation path and corresponding cohesive tractions when the overflow
reached 10.35 m.
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Figure 18 compares the crack paths corresponding to an overflow of 10.35 m using the present
method with the results of Zhong [34], Bhattacharjee and Léger [36], and Gioia and Bazant [35]. In the
results reported in these published studies, the overflow was approximately 10.2 m, 10 m, and 14 m,
respectively. The crack path predicted by Bhattacharjee and Léger [36] was initially nearly horizontal.
It then turned downwards when the crack became equal to half of the width of the dam neck. The crack
path based on X-SBFEM in this study is consistent with those predicted by Zhong [34] and Gioia and
Bazant [35]. These studies reported the formation of very short horizontal extensions that initially
curved downwards and towards the dam’s heel.
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Figure 19 shows the relationships between the overflow and the crest displacement obtained
herein and four previously published numerical simulations [34–36]. It can be seen from Figure 19
that the results of Gioia et al. [35] are consistent with those of Zhong et al. [34], Bhattacharjee and
Leger et al. [36], and Li et al. [23] and the method presented herein during the initial loading, before
the obvious nonlinearity took place. Subsequently, the results obtained by the method presented
in this study are comparatively different from those reported by Gioia et al. [34] and Li et al. [23]
based on the linear elastic fracture mechanics method. Nevertheless, they match closely to the results
of Zhong et al. [35] and Bhattacharjee and Leger et al. [36]. In Figure 19, the resistance of the dam
increases as a function of the crack length and there is no postpeak region owing to the stabilization
effect of the self-weight of the dam. The results from these examples also reveal the minor difference
encountered between the numerical simulation of the scaled-down dam model and the actual dam.

Appl. Sci. 2017, 7, x FOR PEER REVIEW  18 of 20 

Figure 19 shows the relationships between the overflow and the crest displacement obtained 
herein and four previously published numerical simulations [34–36]. It can be seen from Figure 19 
that the results of Gioia et al. [35] are consistent with those of Zhong et al. [34], Bhattacharjee and 
Leger et al. [36], and Li et al. [23] and the method presented herein during the initial loading, before 
the obvious nonlinearity took place. Subsequently, the results obtained by the method presented in 
this study are comparatively different from those reported by Gioia et al. [34] and Li et al. [23] based 
on the linear elastic fracture mechanics method. Nevertheless, they match closely to the results of 
Zhong et al. [35] and Bhattacharjee and Leger et al. [36]. In Figure 19, the resistance of the dam 
increases as a function of the crack length and there is no postpeak region owing to the stabilization 
effect of the self-weight of the dam. The results from these examples also reveal the minor difference 
encountered between the numerical simulation of the scaled-down dam model and the actual dam. 

Meanwhile, it can be noted that the extended scaled boundary finite (NFEM-based) method is 
numerically stable and robust in modeling the nonlinear postpeak response of the dam up to a state 
where severe fractures and significant deformation start to occur. 

 
Figure 19. Plots of overflow as a function of crest displacement. 

5. Conclusions 

The following conclusions are drawn based on the presented results: 

(1) A nonlinear X-SBFEM model using the linear superposition of the iterative method was 
developed and validated to include the cohesive tractions and the fracture energy from FPZ. 

(2) The proposed model can be applied to complex structures without inserting CIEs. 
(3) The accuracy of the proposed model was in close agreement with the experiments showing 

improvement over the linear SBFEM method. 
(4) The numerical procedure is easily implemented within the finite element method software and 

can be compatible with various nonlinear constitutive relations. 

Author Contributions: J.-b.L. designed, analyzed and guided the full text. X.G. conducted the numerical 
simulations, analyzed the data and wrote the paper. X.-a.F. conducted the numerical simulations. C.W. and G.L. 
reviewed and edited the paper. All authors have contributed to and given approval of the manuscript. 

Acknowledgments: This research was supported by Grant 51779222 from the National Natural Science 
Foundation of China, Grant 2016YFB0201000 from National Major Scientific Research Program of China, and 
DUT17LK16 from the Fundamental Research Funds for the Central Universities. 

Conflicts of Interest: The authors declare no conflict of interest. 

Figure 19. Plots of overflow as a function of crest displacement.

Meanwhile, it can be noted that the extended scaled boundary finite (NFEM-based) method is
numerically stable and robust in modeling the nonlinear postpeak response of the dam up to a state
where severe fractures and significant deformation start to occur.

5. Conclusions

The following conclusions are drawn based on the presented results:

(1) A nonlinear X-SBFEM model using the linear superposition of the iterative method was developed
and validated to include the cohesive tractions and the fracture energy from FPZ.

(2) The proposed model can be applied to complex structures without inserting CIEs.
(3) The accuracy of the proposed model was in close agreement with the experiments showing

improvement over the linear SBFEM method.
(4) The numerical procedure is easily implemented within the finite element method software and

can be compatible with various nonlinear constitutive relations.
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