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Abstract: Image segmentation attempts to classify the pixels of a digital image into multiple groups
to facilitate subsequent image processing. It is an essential problem in many research areas such
as computer vision and image processing application. A large number of techniques have been
proposed for image segmentation. Among these techniques, the clustering-based segmentation
algorithms occupy an extremely important position in this field. However, existing popular clustering
schemes often depends on prior knowledge and threshold used in the clustering process, or lack
of an automatic mechanism to find clustering centers. In this paper, we propose a novel image
segmentation method by searching for image feature density peaks. We apply the clustering method
to each superpixel in an input image and construct the final segmentation map according to the
classification results of each pixel. Our method can give the number of clusters directly without prior
knowledge, and the cluster centers can be recognized automatically without interference from noise.
Experimental results validate the improved robustness and effectiveness of the proposed method.

Keywords: image segmentation; clustering; density peaks; robust search

1. Introduction

Image segmentation refers to partition an image into distinctive regions, where each region
consists of pixels with similar attributes. The purpose of image segmentation is to simplify or change
the representation of an image into some common features that are more meaningful and easier to
analyze [1–3]. Over the past several decades, image segmentation has been widely used in diverse
applications of computer vision and image processing, such as object detection [4], face recognition [5],
image retrieval [6], and medical image analysis [7].

A large number of techniques and algorithms have been proposed for image segmentation.
Color image segmentation of natural and outdoor scene is a well-studied problem due to its numerous
applications in computer vision. Different methods have been already proposed in the state of the art
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based on different perspectives [8,9]. The most commonly used in image segmentation methods are
listed roughly as follow: segmentation based on edge detection, region extraction, threshold method,
and clustering techniques [10,11]. There also exists graph cut based method which performs image
segmentation by using both edge and regional information [12]. Besides, segmentation may be also
viewed as classification problem based on color and spatial features. In this regard, the rough set
theory [13], which can extract the discriminative features from original data, has been applied to color
image segmentation [14].

In particular, the K-means and fuzzy c-means (FCM) clustering are two of the most effective and
popular algorithms in this field, which are carried out by classifying elements into different regions
based on element similarity [15–17]. K-means clustering is a widely used technique with simple
implementation and good convergence speed. This method aims to group pixels of a picture into
K clusters, according to the similarity between a pair of data components [17]. In the segmentation
process, K clustering centers are first determined, then this method intends to place them as far as
possible away from each other for optimally clustering [1]. However, the clustering performance of
this method depends heavily on prior knowledge, which may fail when data points described in the
feature space are nonspherical clusters. Fuzzy clustering algorithm has been applied to many domains.
This method superior to most hard clustering techniques in preserving original image information
in the clustering process [18]. FCM is an unsupervised algorithm based on the idea that clustering
the data points by minimizing the cost function iteratively and maximizing the distance between
cluster centers [19–21]. However, the FCM algorithm is very sensitive to additive noise due to the
lack of consideration of the image context, which lacks algorithm’s robustness to deal with image
noise [22]. In addition, this method requires a large amount of calculation and often appears an
over-segmentation phenomenon.

Alex et al. [15] propose a new clustering algorithm. It first defines two variables for each data
point based on the nature of clustering centers. Then, a decision graph is designed to make the cluster
centers isolated from other data points for clustering. However, the strategy in Alex et al. [15] still
has drawbacks. For instance, the accuracy of the algorithm largely depends on the choice of threshold
which is difficult to define effectively [23]. Besides, the cluster centers must be manually selected from
the final decision graph generated by the algorithm.

In this paper, we propose a novel clustering-based method for image segmentation, which can
automatically recognize the cluster centers by searching density peaks efficiently without defining
the threshold. More specifically, we define a function to separate the clustering centers and other data
points, change the way to calculate variables. In addition, this algorithm requires neither iteration nor
prior knowledge, which can simply select the cluster centers and return the number of clusters.

The rest of this paper is organized as follows. We first describe the architecture of our work in
Section 2. Experimental results are demonstrated in Section 3. Section 4 presents the conclusion and
future work in image segmentation.

2. Materials and Methods

In this section, we present the technical details of our approach, which is carried out by searching
for image feature density peaks. After image preprocessing and color feature extraction, the algorithm
abstracts the color features into the sample distribution in cluster analysis. Then two variables are
defined for each sample point separately: the local density ρi of point i and its distance δi from the
points with higher density. Finally, the cluster centers are recognized as points which have anomalously
large values of δi and ρi.

Figure 1 presents an overview of the approach. When dealing with image segmentation problems,
what we need are often the picture’s feature information for each pixel, such as luminosity, color,
contrast and other feature information, etc. So in the first place, we should extract this information,
and store in an array or a vector digitally. Furthermore, it is crucial to find an applicable space to
express these features for analyzing and quantifying in this space. Since the image size is relatively
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large, we need to preprocess it by using superpixel method for retaining the useful feature information
and reducing data redundancy.

Figure 1. Overview of our image segmentation framework.

2.1. Superpixel Method for Image Preprocessing

The conventional segmentation approach will process each pixel one by one, which will cause a
massive amount of data have trouble in analyzing, especially when the picture size is relatively large.
In the present work, we use superpixel segmentation as an intermediate step to reduce the complexity
of images from millions of pixels [24]. Superpixel segmentation aims to partition a picture into multiple
homogeneous cells, we called superpixels, which has been widely applied to the picture analysis and
simplification. Stutz et al. [25] comprehensively evaluated a variety of advanced superpixel algorithms
in their studies. Among these algorithms, the simple linear iterative clustering (SLIC) can effectively
adhere to image boundaries as well as or better than other schemes [26]. We employ this algorithm to
divide the original image into a number of irregular blocks according to their similarity, which changes
a pixel-level image into a district-level image. Each block is a perceptually consistent unit, and all
pixels in a little superpixel region are most likely uniform in color. The different quantity of superpixels
can be set according to the different size of the picture, and the values of the pixels contained in each
superpixel region are the same. Hence each superpixel can be abstracted as a sample point. It is
obviously that this way makes system requires less computation compared with other algorithms.

In this process, superpixel segmentation provides a more characteristic and significant
representation easy to perceive of the digital image [27], most structures in the image are preserved.
It is more helpful and meaningful for centralized processing of valid elements utilizing superpixel
segmentation. There is very little loss in moving from the pixel-level map to the superpixel-level
map. In the next task of image segmentation, superpixels are used as sample points for analysis.
This method is illustrated by a simple example in Figure 2.

2.2. CIELab Color Space for Image Feature Description

In the conventional color representation space, such as RGB color space and CMYK color space,
their channels contain not only color information but also luminosity information, which can not be
extracted separately. In CIELab space, because of its unique channel settings, luminosity features are
stored in L channels alone, and color features are stored in a and b channels. They are independent
of each other. Therefore, any operation to the image in the Lab color space will not affect the hue.
If luminosity and color features need to be extracted and adjusted, Lab space will facilitate the operation.
In addition, Lab color space has a large range than RGB space, which means that color information
described in RGB space can also be mapped in Lab space, and it can make up for color distribution
inhomogeneity in the other color space.

In this method, we choose the CIELab color space, which consists of three channels for describing
colors visible to human beings [28]. A method based on rough set for color channel selection proposed
by Soumyabrata Dev et al. [14] provides ideas for the choice of color space in our work. Thus, in
image segmentation, even only choose one color channel to analyze can we accomplish our task
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satisfactorily either. It also contributes to reducing the computation amount of the algorithm. After
the superpixel segmentation is finished, we will use the planar space composed of L channel and a
channel as the image feature space. With the distribution of sample points in the feature space, cluster
analysis can be performed. More specifically, we take a fraction of Figure 2a and take it as an example,
the above process is intuitively illustrated in Figure 3. Corresponding to the example of Figure 2,
all the superpixels of this picture can be viewed as clustering sample points, and their distribution in
the feature space is shown in Figure 4b.

(a) (b) (c)

Figure 2. The process of superpixel pre-segmentation. (a) The original image. (b) We partition the
original image into multiple homogeneous. (c) The superpixel level map. Calculating the average of
the color features for each superpixel region and use that value to replace the pixel values for all points
in the region. In this process, not only can maximize the retention of the effective information but can
drop some unnecessary noise, the complexity of the calculation will be greatly reduced.

Figure 3. The flowchart of Sections 2.1 and 2.2. The small image is an interesting region selected
from the original image, and this interesting region is divided into 62 superpixels. We consider each
superpixel as a sample point and represent them in feature space.
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(a) (b)

(c) (d)

Figure 4. (a) Original image. (b) The 2-d color feature space for all sample points from image (a), which
is represented through the strategy illustrated in Figure 3. (c) Local density ρ for sample points, which
are shown as 3D shaded surface plot of the probability density function. (d) Distributions of discrete
distance δ for 3D condition, which are computed by using Equation (5).

2.3. Improvement of the Clustering Method

The novel clustering approach based on the assumption is that the cluster centers are surrounded
by points with lower local density and have a relatively large distance from points with higher
density [15]. The steps that required to complete this method are as follow:

For each point i, 1 ≤ i ≤ N (N is the total number of superpixels) based on the basic assumption,
there are only two quantities need to be computed: its distance δi from points of higher density, and its
local density ρi [15,23,29]. In the original clustering method, the local density ρi is computed according
to the following equation:

ρi = ∑
j

X
(
dij − dc

)
, (1)

where

X (d) =

{
1, d < 0

0, otherwise
(2)
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dij is the Euclidean distance between data point i and data point j, and dc is the cutoff distance.
Actually, ρi is decided based on the number of points that are closer than dc to point i. It’s obvious
that the choice of dc has a huge impact on the algorithm if the value of dc is not appropriate, then the
efficiency of the procedure will be greatly reduced. The solution of local density ρi is an important
parameter which indicates the sparseness of distribution of sample points and has a considerable
influence on the final analysis results [30].

In our work, we proposed another way to compute local density ρi without a cutoff distance.
Kernel density estimation (KDE) [31] is the most commonly used density estimation method, which is a
non-parametric way to estimate the probability density function of a random variable. Let us define an
multivariable independent sample ((x1, y1), (x2, y2), . . . , (xn, yn)), whose distribution is drawn from
our superpixels distribution in the feature space. In other words, the values of the sample points in
the L channel and a channel are respectively stored in x and y. We intend to fit the shape of samples’
probability density function ρ, its kernel density estimator is:

ρi (x, y) =
1
n

n

∑
i=1

Kh (x− xi, y− yi)

=
1

nh

n

∑
i=1

Kh

(
x− xi

h
,

y− yi
h

) (3)

where K is kernel which is a non-negative function integrates into one. h > 0 is bandwidth, which is
also called window, it is a smoothing parameter whose choice will strongly influence the estimation
results [32].

The kernel density estimation is to use a smooth peak function we called ’kernel’ to fit the observed
data points, so as to simulate the true probability distribution curve. Kernel density estimate has many
types of kernel, the Gaussian kernel function is one of the most commonly used among them, so we
apply it to figure out local density ρi.

K (x, y) =
1

2πσ2 exp

(
− (x− x0)

2 + (y− y0)
2

2σ2

)
(4)

In this method, we used the kernel approach described in [16]. And we can see the 3-dimensional
density estimation result clearly in Figure 4a. In addition to the following calculations, the density
values and function shape also provide grounds for roughly estimating the location of the cluster
centers and more comprehensively classifying sample points.

After we figure out the local density ρi, the distance δi can be computed by choosing the minimum
distance between the point i and any other points with higher density, we take the maximum distance
dij between data points as its δi. The distance for δi each point i is defined as:

δi =

{
min

(
dij
)

, ρj > ρi

max
(
dij
)

, ρi is the highest density
(5)

We can find an important characteristic of the cluster centers based on the results of δi and ρi.
The cluster centers are the points with high local density ρi and a relatively high distance between other
points with higher density, i.e. δi. Based on this assumption, we construct a new graph containing both
the δi and ρi in it, called decision graph. Figure 5 shows the decision graph, which is represented based
on the both the local density ρi and distance δi adopted in our method. The decision graph is designed
to represent the core nature of cluster centers, horizontal ρ axis and vertical axis δ respectively pull the
cluster center upward and rightward, so that the cluster centers stand out.
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Figure 5. The decision graph, which is represented based on the both the local density ρi and distance
δi used in our method.

The KDE searches the density peaks in the probability estimate function plot (Figure 4c) accurately,
and in Figure 4d it is not difficult to find that there are only a few points with a large value of δ.
Comprehensive δ and ρ values, when their values of some sample points are both large, these points
are most likely cluster centers. However, the final result in [15] still needs to be manually selected,
which is considerably affected by human factors, different options will lead to entirely different
segmentation results.

2.4. Adaptive Selection of Cluster Centers

Due to the difficulty of solving the above problem, a separate function is found to assist in picking
the cluster centers automatically. The measure of functions is based on the method in [33] as following:

R = ρδ− k (ρ + δ)2 (6)

k is a constant determined by experience, which will affect the accuracy of the algorithm to some
extent. In Section 3, the exact k value and its influence on the accuracy will be discussed in detail.
The points are considered as cluster centers when R > 0. Thus, the separate function can achieve the
separation between cluster centers and other sample points. Therefore, the decision graph in Figure 5
can be redrawn as follows:

As shown in Figure 6, the points to the right of the curve are considered as the cluster centers.
And after the cluster centers have been found, the remaining data points will be assigned to the same
clusters as its nearest neighbors of higher density. Once a point is assigned to a cluster, the information
regarding the classification is updated immediately, this procedure continues until no valid candidates
are left to be assigned [8]. We define the candidacy of a point i as follows:

cady(i) =

{
true, point i is cluster center

f alse, otherwise
(7)
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Figure 6. Separate Function Decision Graph. The letters of final cluster centers are marked by red color.

For each point, we check its candidacy firstly. This helps us to filter out the points which are not
valid candidates to be analyzed and hence reduces the computational time. This step is shown in
Algorithm 1.

Algorithm 1 Assignment of remaining points

Input: cluster centers {cady|cady(i) = 1, i = 1, 2, · · · , N}; the local density set P = {ρ1, ρ2, ρ3, · · · , ρN}
and distance set Q = {σ1, σ2, σ3, · · · , σN} for all superpixels computed from the original image.

1: for each: superpixel i with cady(i) = 0 in the rest of un-classified superpixels do
2: Searching for a series of superpixels SL with lower local density ρi by using density set P and

Equations (1)–(4).
3: Searching for one superpixel pm with the minimum value of σi from SL by using the distance

set Q and Equations (5)–(8).
4: if pm is a cluster center then

5: i← L, where L is the class label of pm
6: Update cluster centers cady(i): cady(i)← 1
7: end if
8: end for

Output: All of the classified superpixels.

Marking each pixel points with its cluster number, and the cluster number of each pixel data is
the cluster number of the superpixel area to which the point belongs. And fill all pixel points with the
mean color of the clusters they are belonging to. Then achieving the final segmentation based on the
numbers marked through the last step, as shown in Figure 7.

(a) Original image (b) Image segmentation result

Figure 7. The segmentation result (a) by our method on the original picture (b).
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3. Experiment

3.1. Data and Experimental Setting

We employed the Berkeley segmentation database (BSDS300) for evaluation of our segmentation
scheme. The BSDS300 database consists of 300 natural images, each with multiple ground truth
segmentations provided by different individuals. This database contains a variety of content,
including landscapes, animals, buildings, and portraits, makes it a challenge for any segmentation
algorithm. In addition, it has found wide acceptance as a public benchmark for testing image
segmentation algorithms [34,35]. In this paper, the entire BSDS300 database is first employed to
investigate the effect of several user-defined parameters and evaluate the performance of our method
compared to other schemes. Then, we divided the database into 7 different subsets according to specific
content in order to further evaluate the segmentation performance in preserving the salient features
of the input images. The evaluation details will be discussion in Section 3.2. All of our experiments
are performed on PC with Intel CoreTM i7-6700 CPU with a frequency of 3.40 GHz and 8 GB of RAM
under MS Windows 10.

Following the previous works [22,36], we adopt the commonly used Probabilistic Rand index
(PRI) [34,37] to measure the results of image segmentation for each image within the dataset. PRI was
initially introduced for measuring the similarity between two data clusterings. It is now widely used
for the comparison of segmentation algorithms using multiple ground truth images. PRI operates
by comparing the compatibility of assignments between pairs of elements in the clusters. Its value
between test and ground truth segmentations is computed by the sum of the number of pairs of pixels
that have the same label in test S and ground truth segmentations G, and those that have different
labels, divided by the total number of the couple of pixels [34]. Specifically, given a set of ground-truth
segmentations {Gk}, the PRI is defined as:

PRI (S, {Gk}) =
1
T ∑

i<j

[
cij pij +

(
1− cij

) (
1− pij

)]
(8)

where cij is the event that pixels i and j have the same label and pij its probability. T is the total
number of pixel pairs. We employ the sample mean to estimate pij, Equation (10) amounts to averaging
the PRI among different ground-truth segmentations. The PRI has been reported to suffer from a
small dynamic range [38,39], and PRI values across images and algorithms are often similar. In [38],
this drawback is addressed by normalization with empirical estimation of its expected value.

3.2. Evaluation

We carried out a series of experiments to validate the usefulness of the output of our
segmentation method. We first ran our algorithm on the entire database to investigate the effect
of several user-defined parameters and to empirically choose an optimal value for these parameters.
Then, we evaluate the proposed method by comparing the qualitative & quantitative performance of
our method with state-of-the-art schemes. Both the quantitative and qualitative results demonstrated
that our method could successfully improve segmentation accuracy.

3.2.1. Effects of Parameters

Ronneberger2015UNetConvolutionalIn our algorithm, there are practically only two parameters
to control, h (bandwidth in Equation (3)) and k (constant in Equation (6)). h is a parameter which
basically determines the bandwidth of smoothing window and have a clear impact on the performance.
Typically, an estimate with smaller value of h might provide a better estimate to the empirical
cumulative distribution function. We performed our algorithms with varied value of h, and we found
that the segmentation accuracy tends to be stable when when h varied from 0.5 to 1.5. Afterwards,
we compare the performance when k = 0.5, 0.6, · · · 1.5 under fixed value of k. We observed that the
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segmentation accuracy achieves the best when h = 0.8. Thus we empirically set h to be 0.8 in our
experiment for keeping a stable performance. Moreover, we found that the accuracy tends to be
stable when k takes values between 0.04 and 0.06 after running our algorithm for a certain number of
times. For k ∈ (0.04, 0.06), we found that it also has a clear impact on the segmentation performance,
as shown in Figure 8, where the accuracy indicates the ratio of the total correctly classified pixels.
In addition, the accuracy tends to be stable when k is 0.0462 and 0.0515, and it reaches the peak of
0.0972 when k = 0.0501.

Figure 8. Performance with different parameter values, k is an constant between 0.04 and 0.06.

3.2.2. Quantitative Evaluation

To quantitatively evaluate our algorithm, we use PRI to compare the performance of the proposed
method with other schemes. We first perform all methods on the entire database by following their
optimal settings to do the comparison experiments. The average values of PRI computed on 300 images
of BSD300 dataset are shown in 8th raw of Table 1, in which our scheme achieves the highest value.
In addition, in order to further evaluate the classification performance of our method, we divided
the databased into 7 subsets based on different content and characteristics appearing on images.
Then the PRI counts the fraction of pairs of pixels whose labels are consistent between the computed
segmentation and the ground truth, averaging across multiple ground truth segmentations to account
for scale variation in human perception [40]. The PRI values for all types of images are shown in the
first 7 raws of Table 1. As noted in this Table, the sensitivity of the proposed method is best with
PRI = 0.897, which are also the highest value among the other two methods, and only 0.002 behind the
K-means method [41] on the image 122048 type. Moreover, we have shown the average computation
time for all methods, which indicates that our method can be carried out with less computational cost.

Table 1. Comparison of different method for Berkeley image dataset, Probabilistic Rand Index (PRI).

Image Type FCM-S K-Means Our Method

human 0.510 0.674 0.672
transport 0.503 0.563 0.592
intensity inhomogeneity 0.608 0.653 0.651
building 1 0.715 0.694 0.712
animal 0.816 0.803 0.837
landscape 0.704 0.783 0.818
building 2 0.819 0.885 0.897
Mean 0.668 0.722 0.740
average computation time 5.782s 4.237s 5.331s

3.2.3. Qualitative Evaluation

To prove the effectiveness of the proposed method, we compare our method with existing
segmentation methods on the Berkeley datasets: BSDS300. We compute the results of our method
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on entire datasets, and then the results of FCM-S and K-means are computed by following the
optimal settings in the previous work [41,42], respectively. Figure 9 shows the qualitative results
of 7 images, with each one is randomly selected from one of 7 image types (corresponding to first
7 rows of Table 1). These results suggest that our method can achieve superior performance in
preserving the salient features of the input images due to its excellent accuracy of pixel classification.
For example, from Figure 9, it can clearly be observed that there are considerable number of pixels
in the white kerchief or human face (1st row), body of the bird (5th row), and the church clock
(end row) are falsely clustered as background or the part of the other objects. Comparing with the
other two segmentation approaches, the proposed scheme accomplishes the segmentation requests
by avoiding these classification errors through reasonably classifying these pixels. Moreover, as we
can see in the 3rd row of Figure 9, there is an obvious intensity inhomogeneity occurring around the
image. By contrast, the proposed scheme outperforms the FCM-S and K-means by producing more
homogeneous background.

(a) Original Image (b) FCM-S (c) K-means (d) Our method

Figure 9. Results for different segmentation algorithms based on clustering. (a) Original image
(b) FCM-S based segmentation (c) K-means based segmentation (d) The method we proposed.
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4. Discussion

In this paper, we proposed a new image segmentation method which does not require a priori
knowledge and a large amount of computation. This method is based on the assumption that a cluster
center is surrounded by its neighbors with lower density, and the data with a higher density than the
cluster center must be far from it. The decision graph is designed to take variables into comprehensive
consideration, and a separate function is automatically defined to select cluster centers, and thus the
algorithm can figure out the most appropriate number of clusters according to the actual situation of
different pictures in the case of unsupervised.

Image segmentation problem is challenging, many issues still need to be resolved. Our method
is based on the clustering model in [15], but more of an automatic method and does not define the
threshold. Superpixel segmentation methods are used to make an image preprocessing to reduce the
computational complexity, and regardless of the size of the input image. Moreover, the computation
time of the algorithm can always be maintained within a very reasonable range. Experiment
results indicate that our method is more effective and more stable compared to state-of-the-art
clustering methods.

We still have some challenges, such as the number of superpixel areas still needs more evidence
to determine to avoid segmentation results are not meticulous enough, and it is also closely related to
the runtime.
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