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Abstract: We propose a general concept of quantum antenna in the strong coupling regime. It is based
on the theory of open quantum systems. Antenna emission into space is considered an interaction
with a thermal photonic reservoir. For antenna dynamics modeling, we formulate master equations
with a corresponding Lindblad super-operators for the radiation terms. It is shown that strong
coupling dramatically changes the radiation pattern of antenna. The total power pattern splits to three
partial components, each of which corresponds to a spectral line in Mollow triplet. We analyzed the
dependence of splitting on the length of antenna, shift of the phase, and Rabi-frequency. The predicted
effect opens a way for implementation of multi-beam electrically tunable antennas, potentially useful
in different nano-devices.
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1. Introduction

Traditionally, the field of quantum optics deals with a control of quantum statistical correlations of
light using elements such as interferometers, cavities, photonic crystals, beam splitters, etc. [1]. Purcell
effect [2] and Dicke’s superradiance effect [3] are two of the most intriguing effects in quantum optics.
Purcell predicted in 1946 the dependence of spontaneous emission rate on the environment of the light
source. The effect is based on the ability of the specific environment to control the photonic density of
states at the source position. In 1954, Dicke introduced the concept of enhanced spontaneous emission
by an optically small ensemble of identical two-level atoms collectively interacting via a common
electromagnetic field [3]. This effect involves the collective Dicke’s states which turn out to be highly
entangled. The problem becomes even more fascinating if instead of a small atomic cloud, the size
of the system becomes comparable to the wavelength. In 2006, Scully with co-workers focused on
the problem of a single photon stored in a large cloud of atoms, which exists in a collective N-atom
state [4–9]. The photon is shared among the atoms, thus one of them is excited, but we do not know
which one. When the atoms in various positions are excited at different moments in time (Dicke’s states
timing), the usual picture of collective emission, which treats each atom as a tiny antenna, is no longer
valid. In this case, peculiar features of the directional and temporal characteristics of the cooperatively
emitted radiation have been predicted. In particular, a single photon absorption by the cloud of
N atoms is followed by the spontaneous emission in the same direction. These investigations gave
birth to what is known today as “correlated spontaneous emission” and opened one of the possible
ways for quantum antenna design.

Rapid progress in communication and radar technologies for the radio frequency ranges
(from microwaves to terahertz) led to the development of various types of antennas that control
electromagnetic fields on the wavelength scale [10–13]. The progress in modern nanotechnologies
brings about the general trend of the transferring principles of radio-communication to the optical
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range. Thus, optical antennas became a promising tool for manipulating and controlling optical
radiation [10–13].

In general, the classical antenna is defined as a device transforming the energy of coupled near
field to the free far field (transmitting antennas) and vice versa (receiving antennas) [14]. Such a
definition becomes unsuitable for nano-antennas of classical and quantum origin. The reason for
this is that, in contrast to the classical case, the antenna emitters and detectors cannot be considered
independently of the antenna’s elements. The radiation antenna properties are not separable from the
source’s and detector’s origin. It becomes incorrect to speak about antennas as passive linear elements.
Antennas become nonlinear and active (for recent reviews—see [15,16]). Antenna nonlinearities in their
typical implementations are so strong that consideration of nonlinearity as a weak perturbation breaks
down. Strong and even ultra-strong coupling of emitter and EM field became a reality [17]. As a result,
such fundamental effects as spontaneous emission [18,19], Rabi-oscillations [20,21], and solitons [22,23]
became the basis principles for quantum nano-antennas. The different types of nanostructures
(plasmonic nanowires [24], quantum dots [25], carbon nanotubes [26–28], etc.) have been considered
as promising models for their implementation. As a result, a new way is opened for antenna’s design
control by directed quantum emission and correlation of light properties [29]. In many cases the
effect of non-reciprocity manifests itself in quantum antennas [30,31], which leads to the difference
of the same antenna’s properties in transmitting and receiving regimes without using the ordinary
types of non-reciprocal materials. On the other hand, the quantum origin leads to some fundamental
limitations, which are not installation-specific classical antennas (for example, Heisenberg uncertainty
principle [32]).

The classical antenna concept is based on such conventional parameters as a field radiation pattern,
power pattern, radiation resistance, directivity, gain, etc. [14]. All these values are completely defined
by the current distribution of the antenna. The field and power patterns are exactly square-law coupled.
In the quantum case, the field and power are defined as expectation values of the corresponding
photonic operators [1] with respect to the quantum states of antenna emitter. As a result, the coupling
between observable fields and powers becomes unobvious and strongly dependent on the initial state
of emitter. It should be taken into account when introducing the conventional antenna parameters
mentioned above. On the other hand, the quantum antennas pen the way for producing the quantum
light with special coherent properties. For example, for the two particle entangled states of antenna,
the directional photon pairs emission that are strongly correlated in momentum were predicted [29].
It requires an introduction of some other antenna’s characteristics, which do not have classical analogs,
such as the second-order correlation photonic functions [29]. Still incomplete, this list shows that
conventional antenna concepts [14] need a fundamental reconsideration when dealing with quantum
antenna design.

In this paper, we focus on the theory of quantum-optical antenna with fermionic type of excitation.
Our description is based on such general principles of quantum physics as theory of open systems [1,33]
with their bridging to the classical antenna theory [14]. The general principle of open system theory is
based on the separation of the actual system and evanescent space (reservoir). The last one assumed to
be so large that its interaction with the actual system does not change its quantum state. We consider
the quantum antenna as a radiating actual system and a surrounding space in which radiation takes
place—as a reservoir. The interaction between the actual system and reservoir leads to losses in the
former. Therefore, the theory of open systems is an effective general technique for description of losses
of different physical origin and may be applied to the problem of antenna emission. The antenna’s
emission has been considered as a loss of energy of a source placed in space (this is the place to speak
about radiative losses). The influence of antenna on the state of surrounding area is negligibly small.
Therefore, the later may be considered as photonic reservoir. The model of photonic reservoir in
the thermal state corresponds to the transmitting antenna (the antenna’s evanescent field appears in
a thermal equilibrium state and produces the thermal noise). Our considerations have yielded the
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fundamental properties of quantum antennas, which have no analogs in the classical ones and provide
applications in the future.

The paper is organized as follows: in Section 2 we formulate the model of quantum antenna as a
quantum system, and formulate the basis Hamiltonian and corresponding master equation. In Section 3,
we study the dynamics of quantum antenna basing on the approximate analytical solutions in the
regimes of weak and strong coupling. The power radiative patterns of quantum antenna are studied in
Section 4. The conclusions, main results, and their promising applications are formulated in Section 5.

2. Model of Quantum Antenna as an Open System

The general model of the antenna is shown in Figure 1. We consider the antenna as a quantum
dot placed inside a quantum wire which behaves as a waveguide (Figure 1a). Such structures were
implemented experimentally in the form of tapered InP nanowire waveguide containing a single
InAsP quantum dot [34–36]. The quantum dot is perfectly positioned on the axis of InP nanowire
waveguides, where the emission is efficiently coupled to the fundamental waveguide mode.
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Figure 1. General illustration of the system used as a model of quantum antenna in the strong coupling
regime. (a) The antenna configuration. The semiconductor InAsP quantum dot (red colored) positioned
inside the semiconductor InP quantum wire (green colored). The quantum dot is coupled with quantum
wire via quantum tunneling through the potential barriers. (b) The energy spectrum of the shown
system in the case of EM field absence. It consists of two zones, valence and conduction, which are
separated by the energy gap. The dominant support to the energy of quantum transitions is given by
the small region near the band minimum at the zone center and is approximately equal to }ω0.
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From a theoretical point of view, this system may be considered as a defect of a crystal lattice.
Therefore, the general model of the bulk crystal defects, which is based on Wannier functions [37], may
be used for the antenna analysis. Similarly to [37], we define Wannier functions an

(
x− xj

)
mutually

coupled to Bloch functions ψnh(x) via relations

an
(

x− xj
)
=

1√
N

∑
h

e−ihxj ψnh(x) (1)

ψnh(x) =
1√
N

∑
j

eihxj an
(
x− xj

)
(2)

where n is a number of zone and h is a quasi-momentum of the charge. The Wannier function an
(
x− xj

)
is strongly localized in the vicinity of the atom at the point x = xj. An arbitrary wave-function is given
by ψ(x) = N−1/2∑n,j fn

(
xj
)
an
(

x− xj
)
, where the envelope fn(x) in the continuous limit satisfies the

Schrodinger equation −( }2

2me f f

)2
∂2

∂x2 + U(x)

 f (x) = [ε− εc(0)] f (x) (3)

where U(x) is the potential, averaged with respect to the crystal lattice, and me f f and ε are the effective
mass and energy of charge carrier, respectively.

The Bloch function may be presented as ψh(x) = eihxuh(x), where uh(x) is a periodic function
such that uh(x + a) = uh(x). The Wannier and Bloch states satisfy the uncertainty principle [37] in
the form ∆h·∆x ∼= 1. This means that, for rather long antenna (large ∆x), the main support to the
wave-function is defined by a small region near the band minimum at the zone center. As a result,
we obtain the approximate presentation for the wave function at the given zone

ψ(x) = 1
N ∑

j
f
(
xj
)
∑
h

eih(x−xi)uh(x) ≈

1
N ∑

j
u0(x) f

(
xj
)
∑
h

eih(x−xi) =

1
N ∑

j
u0(x) f

(
xj
)
δ(x− xi) = u0(x) f (x)

(4)

Equation (4) shows that the quantum properties of antenna may be modeled by a two-level
artificial atom with Fermionic quantum states |a〉, |b〉 separated by the energy }ω0 with the same
spatial envelope f (x) (Figure 1b).

We assume the length of antenna to be comparable to the wavelength. The area of quantum
confinement is also comparable to a wavelength. It makes the retardation of EM field in its interaction
with quantum emitter to be essential. The antenna is driven by the classical external field in the regime
of arbitrary coupling. Particularly, an essential role in the formation of radiation is played by the
Rabi-oscillations produced by the antenna feeding. Therefore, its interaction with the EM field cannot
be considered by different types of perturbation theories.

The total Hamiltonian of antenna in the EM-field within the bounds of given model is
Ĥ = Ĥ0 + V̂, where

Ĥ0 =
}ω0

2
(|a〉〈a| − |b〉〈b|) (5)

Ĥ0 is Hamiltonian of free antenna and

V̂ = −}ΩR
2

(
|b〉〈a|eiωt + |a〉〈b|e−iωt

)
(6)
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is the interaction Hamiltonian with the external field. We will limit our consideration to the strong
coupling regime and not consider the ultra-strong one [17], thus Hamiltonian (6) is written in
rotating-wave approximation [1]. The states |a〉, |b〉 are the excited and ground states of antenna
without field, ω0, ω are the frequencies of optical transition and driven field, respectively and ΩR is
the Rabi-frequency.

The radiation of quantum antenna coupled to photonic reservoir is described in rotating-wave
approximation [1] by Hamiltonian

Ĥint = }∑
k

gk
l

l/2∫
−l/2

e−i(k·e)x
[
b̂kσ̂+ f (x)e−iωkt + H.c.

]
dx (7)

where gk = dab cos(e·k/|k|)
√

ωk/2}ε0V is a coupling factor of k-th EM-field mode of reservoir with
antenna, dab is the dipole moment, σ̂+ = |b〉〈a| is a Fermionic-type lowering operator of antenna
excitation, b̂k is a creation operator of photon in the k-th mode, e is the unit vector along the antenna axis,
ωk, k are the frequency and wave-vector of k-th mode, respectively and V is the normalization volume.

We will use the Eigenfunctions of Hamiltonian Ĥ = Ĥ0 + V̂ as a basis functions. For this,

we transform all operators according to Â⇒ ÛÂÛ+ , where Û(t) =

(
eiωt/2 0

0 e−iωt/2

)
is the

transformation operator. The transformed Hamiltonian components are Ĥ0 ⇒ }∆(|a〉〈a| − |b〉〈b|)/2
and V̂ ⇒ −}ΩR(|b〉〈a|+ |a〉〈b|)/2, where ∆ = ω0 −ω is the frequency detuning. The Eigenmodes
are defined by relation Ĥ|Ψα〉 = να|Ψα〉 where α = 1, 2. The eigenvalues are given by

να = ±ν = ±
√

∆2 + Ω2
R/2, with corresponding Eigenmodes

|Ψ1〉 = Ceiνt(g|a〉+ |b〉) (8)

|Ψ2〉 = Ce−iνt(|a〉 − g|b〉) (9)

where C = 1/
√

1 + g2 is a normalization factor and g = ΩR/(∆ + 2ν). The Eigenmodes (8) and (9)
are orthonormal:

〈
Ψα

∣∣Ψβ

〉
= δαβ. These states describe the interaction of excited and ground states

via Rabi-oscillations with frequency ν.
The state of emitting antenna is characterized by a 2× 2 density matrix, ρ, which satisfies the

master equation
.
ρ = − i

}
[
Ĥ, ρ

]
+ =̂(t) (10)

The last term is the Lindblad super-operator which models antenna emission as its coupling to a
photonic thermal reservoir. It reads in its conventional form

=̂(t) = − 1
l2

l/2∫
−l/2

l/2∫
−l/2

dxdx′ f (x) f ∗(x′)×{
∑
k

g2
k
} eik·e(x−x′)

t∫
0
[σ̂+σ̂−ρ(t′)− σ̂−ρ(t′)σ̂+]ei(ω−ωk)(t−t′)dt′ + H.c.

} (11)

The next step of simplification consists in the standard transition from summation over k to the
frequency integration [1] using the replacement

∑
k
(. . .)⇒ 2

V

(2π)3

2π∫
0

dϕ

∞∫
0

dk·k2
π∫

0

dθ sin θ(. . .) (12)
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where azimuthal integration have been carried out and the new variable of integration k = ωk/c have
been used. As a result, we obtain

=̂(t) ≈ d2
ab

(2π)2}ε0c3×{
π∫
0

sin θ cos2θ
∞∫
0

ω3
k |F(ωk; θ)|2

t∫
0

ei(ω−ωk)(t−t′)[σ̂+σ̂−ρ(t′)− σ̂−ρ(t′)σ̂+]dωkdθdt′ + H.c.

}
(13)

where

F(θ, ωk) =
1
l

l/2∫
−l/2

f (x)e−i ωk
c x cos θdx (14)

The main support to the time integral is given by the narrow vicinity of frequencies
ωk ≈ ω. It allows us to use the approximation ω3

k|F(θ, ωk)|2 ≈ ω3|F(θ, ω)|2 and integrate using∫ t
0 ei(ω−ωk)(t−t′)dωk ≈

∫ ∞
−∞ ei(ω−ωk)(t−t′)dωk = 2πδ(t− t′). Thus, we have

=̂(t) ≈ −Γ(ω)

2
[
σ̂+σ̂−ρ(t)− 2σ̂−ρ(t)σ̂+ + ρ(t)σ̂+σ̂−

]
(15)

Γ(ω) =
d2

abω3

πε0}c3

π∫
0

sin θ cos2 θ|F(θ, ω)|2dθ (16)

The relaxation parameter Γ(ω) is a spontaneous emission frequency. Its difference from
Weisskopf–Wigner result for individual atoms [1] consists in the special interference dictated by
the relative phase shift of different EM-modes over antenna axis. As a result, its frequency dependence
does not add up to O

(
ω3) as for the case of individual atom.

The presentation of operator σ̂+ = |b〉〈a| at the basis (8) and (9) reads

σ̂+(x, t) = ∑
α,β=1,2

καβ f 2(x)|Ψα〉
〈
Ψβ

∣∣ (17)

where coefficients καβ are elements of matrix κ = C2

(
g e−2iνt

−g2e2iνt −g

)
. The equations of density

matrix elements in the basis (8) and (9) are

.
ρ11 = −Γ(ω)

2

{
2C4(1 + g4)ρ11 − 2C4g4 − gC4

(
1− g2

)(
ρ12e2iνt + c.c.

)}
(18)

.
ρ12 = −i

(
2ν− i

1
2

γ12

)
ρ12 −

γ21

2
ρ21 +

γ22

2
+

(γ11 − γ22)

2
ρ11 (19)

.
ρ21 = i

(
2ν + i

1
2

γ12

)
ρ21 −

γ21

2
ρ12 +

γ22

2
+

(γ11 − γ22)

2
ρ11 (20)

The relaxation parameters are obtained from rather long, but trivial calculations. They are given by

γ12 = Γ(ω)C2
(

1 + 2C2g2 + g2
)

(21)

γ21 = 2Γ(ω)g2C4 (22)

γ22 = −Γ(ω)gC2
(

1 + 2C2g2
)

(23)

γ11 = γ22 + 2Γ(ω)C4g
(

g2 − 1
)

(24)

The element ρ22 may be found from the probability conservation law ρ22 = 1− ρ11 [1].
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3. Dynamics of Quantum Antenna: Qualitative Analysis

The strong coupling regime corresponds to the condition ΩR >> ∆, which gives g ≈ 1.
For simplicity, we will analyze the antenna dynamics in the regime of exact resonance (zero detuning).
In this case the approximations γ12 ≈ 3Γ(ω)/2, γ21 ≈ Γ(ω)/2, γ11 ≈ γ22 ≈ Γ(ω) become appropriate.
Therefore, the system (9)–(11) simplifies to

.
ρ11 = −Γ(ω)

2
ρ11 +

Γ(ω)

4
(25)

.
ρ12 = −i

(
2ν− i

3
4

Γ(ω)

)
ρ12 −

Γ(ω)

4
ρ21 −

Γ(ω)

2
(26)

.
ρ21 = i

(
2ν + i

3
4

Γ(ω)

)
ρ21 −

Γ(ω)

4
ρ12 −

Γ(ω)

2
(27)

The system (25)–(27) is equal to the equations of resonant fluorescence [1]. The temporal evolution
described by this system goes to the steady state defined by the condition

.
ραβ = 0. For the strong fields

such that ΩR >> Γ the last two terms in [1] have been neglected. As a result, the steady state values
ρ11(∞) = ρ22(∞) = 1/2 and ρ12(∞) = ρ21(∞) = 0. We are keeping these terms and obtain the steady
state as

ρ(∞) =

(
1/2 ρ12(∞)

ρ∗12(∞) 1/2

)
(28)

where

ρ12(∞) =
Γ(ω)

(
2iν− Γ(ω)

2

)
2
(

4ν2 − Γ2(ω)
2

) (29)

As it follows from (20), the antenna emission has not vanished, while the emission properties are
independent on its initial state.

4. Radiation Properties of Quantum Antenna

In this section, we will consider the power radiation pattern of quantum antenna in the strong
coupling regime. The far field emitted by antenna [1] presented as a superposition of the partial
supports produced by elementary dipoles induced at the antenna surface. The positive-frequency part
of field operator produced by the single dipole quantum emitter [1] in spherical system is given by
Ê(+)(r, t) = e·ω2

0dabσ̂−(t− r/c)/4πε0c2r, where r is the spherical radial coordinate (dipole assumed
to be placed at the origin). The corresponding operator of the antenna field is given by

Ê(+)(r, t) =
ω2

0dab

4πε0c2 e
l/2∫
−l/2

1
|r− r′(x′)| f

(
x′
)
σ̂−
(

t− |r− r′(x′)|
c

)
dx′ (30)

The normally ordered operator of intensity in the far field zone is given by

Ê(−)(r, t)· Ê(+)(r, t) = ω4
0d2

ab
(4πε0)

2c4

l/2∫
−l/2

l/2∫
−l/2

f (x)
|r−r′(x)|

f ∗(x′)
|r−r′(x′)| σ̂

+
(

t− |r−r′(x)|
c

)
·

σ̂−
(

t− |r−r′(x′)|
c

)
dx′dx

(31)
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The observable value of intensity is expressed through the two-time correlation function of
polarization [1]. It reads

〈
Ê(−)(r, t)·Ê(+)(r, t)

〉
=

ω4
0d2

ab

(4πε0)
2c4

l/2∫
−l/2

l/2∫
−l/2

f (x)
|r− r′(x)|

f ∗(x′)
|r− r′(x′)|K(x, x′; t)dx′dx (32)

where

K
(

x, x′; t
)
=

〈
σ̂+

(
t− |r− r′(x)|

c

)
·σ̂−

(
t− |r− r′(x′)|

c

)〉
(33)

We will consider the steady state of antenna given by Equations (23) and (24). It is a stationary
process for which the correlation function is time-independent. Thus, Equation (28) may be rewritten as

K
(

x, x′
)
=

〈
σ̂+(0)·σ̂−

(
|r− r′(x)| − |r− r′(x′)|

c

)〉
(34)

The correlation function (29) is equal to the correlation function of resonance fluorescence
considered in detail in [1]. An approximate relation for steady state is given by

〈
σ̂+(0)·σ̂−(τ)

〉
SS =

1
4

(
e−

Γ
2 τ +

1
2

e−
3Γ
4 τ ·e−iΩRτ +

1
2

e−
3Γ
4 τ ·eiΩRτ

)
e−iω0τ (35)

where Γ = Γ(ω0). The time shift in antenna is stipulated by the phase shift of radiation from different
points and is given by τ = (|r− r′(x)| − |r− r′(x′)|)/c. For simplifying the integration in (27), we will
use the conventional assumptions from macroscopic antenna theory [14]∣∣r− r′

(
x′
)∣∣ ≈ R (36)∣∣r− r′

(
x′
)∣∣ ≈ R− x′ cos θ (37)

for amplitude and phase factors, respectively, where R, θ are coordinates for the spherical system with
origin at the antenna center (exponentially attenuated factors in (30) are related to the amplitude and
thus approximated according to (36). As a result, the intensity of radiation may be presented in terms
of radiation pattern from conventional antenna theory [14]. It reads

〈
Ê(−)(r, t)·Ê(+)(r, t)

〉
SS
≈

ω4
0d2

ab

(4πε0)
2c4

1
R2 sin2 θ·ξ(θ) (38)

where

ξ(θ) = 2Re
l/2∫
−l/2

dx· f (x)
l/2∫
x

f ∗
(

x′
)〈

σ̂+(0)σ̂−
(

x′ − x
c

cos θ

)〉
SS

dx′ (39)

(θ < |π/2|).
For illustrating the qualitative properties of radiation pattern we consider the simplest model

of perfect linear antenna [14], quantum envelope of which has the constant spatial amplitude and
the linear phase distribution f (x) = eikϕx, where ϕ is a normalized phase shift per unit length.
The integration in (33) gives

ξ(θ) =
1
2

{(
sin Ψ

Ψ

)2
+

1
2

(
sin Ψ+

Ψ+

)2
+

1
2

(
sin Ψ−

Ψ−

)2
}

(40)

with Ψ = kl(cos θ − ϕ)/2, Ψ± = Ψ± (ΩR/ω0) cos θ.
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Let us consider now the angular pattern of power spectrum of quantum antenna for the
strong-field limit (ΩR >> Γ/4). Following Wiener–Khintchine theorem, it is given in terms of
the two-time correlation function by the field in the far zone by

S(ω; R, θ) = 1
π Re

∞∫
0

〈
Ê(−)(r, t)·Ê(+)(r, t + τ)

〉
SS

eiωτdτ =

≈ 1
π

ω4
0d2

ab
(4πε0)

2c4
1

R2 sin2 θ·Re
∞∫
0

ξ(τ; θ)eiωτdτ
(41)

where

ξ(τ; θ) =

l/2∫
−l/2

dx· f (x)
l/2∫
−l/2

f ∗
(

x′
)〈

σ̂+(0)σ̂−
(

τ +
x′ − x

c
cos θ

)〉
SS

dx′ (42)

Making the integrations in (35) and (36), we obtain the final result in the form

S(ω; R, θ) =
k4d2

ab sin2 θ

4π(4πε0)
2R2×{

[sin(Ψ)/Ψ]2

(ω−ω0)
2+(Γ/2)2 +

(3/4)[sin(Ψ+)/Ψ+ ]
2

(ω−ω0−ΩR)
2+(3Γ/4)2 +

(3/4)[sin(Ψ−)/Ψ− ]
2

(ω−ω0+ΩR)
2+(3Γ/4)2

} (43)

Equation (37) allows us to analyze the qualitative behavior of radiation pattern, some aspects of
which are seen to be in agreement with theory of resonance fluorescence [1]. The total radiation
pattern represents the sum of three elementary patterns (sin Ψ/Ψ)2 having the form of perfect
wire antenna [14], centered at the three different angles θ = arccos(ϕ), θ± = arccos

(
ϕ/1± ΩR

ω0

)
.

The weight of the elementary pattern is defined by the corresponding resonant line centered at one of
the frequencies ω = ω0, ω = ω0 + ΩR, ω = ω0−ΩR. Such a form of frequency spectrum corresponds
to a Mollow triplet in resonance fluorescence for the case of strong driving field [1]. The element of
novelty in the antenna is that the radiation of each triplet-line occurs in its own direction. The value of
angle splitting depends on the driving field, phase shift of the quantum envelope along antenna, and
its length compared to the wavelength.

The trends of mentioned behavior are illustrated in Figures 2–4. The elementary radiation patterns
of the lines ω = ω0 (colored green), ω = ω0 + ΩR (colored red), and ω = ω0 −ΩR (colored blue) in
logarithmic scale for different values of various parameters have been shown in these Figures. The
patterns are in the ratio 2:1:1 according to the ratio of integrated intensities in the peaks. It means
that every elementary pattern corresponds to the signal formed by the broadened spectral line with
the width Γ/2, 3Γ/4, 3Γ/4, respectively. Figure 2a corresponds approximately to the typical pattern
of a wire antenna. The lines that correspond to ω = ω0 −ΩR and ω = ω0 + ΩR not seen separately
since are merged for such a small value of driving field. A rather small difference between the
powers of central line and side ones is observed, but not such a case for angle splitting. Increasing
of Rabi-frequency (Figure 2b) does not change the number of lobes but leads to an angle splitting of
rather small value for the side lobes.

The patterns become more and more jagged with the increase of length (Figures 3 and 4).
Simultaneously, the effect of pattern separation increases and even the absolute separation becomes
reachable (the angle of maximum for the main lobe of one pattern coincides with the minimum for
another one). The typical radiation patterns of wire antennas are highly dependent on the value of
phase shift. The value ϕ = ϕcr defines the regime of axial radiation. For the phase shift exceeding
the critical value ϕ > ϕcr, the main lobe moves to the invisible region [14] and disappears from
the observable range of angles θ. Therefore, the antenna emission is completely formed out of a
superposition of side lobes, which are not coherent. As a result, the emitted power decreases, making
this regime unsuitable for a lot of applications. For classical wire antennas ϕcr = 1 [14]. In our case
we have own critical shift for each partial diagram: ϕcr = 1 for central line and ϕcr =

(
1± ΩR

ω0

)
for

two side lines. The last two critical values depend on Rabi-frequency and become controllable via
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the adiabatic field variation. For example, the right-hand line may be removed to the invisible region
while the two others are left in the visible one. This mechanism manifests itself in the strong decrease
of the emitted power at the line ω = ω0 −ΩR compared to two others for rather large Rabi-frequency
(Figures 3a and 4a).

The conventional antenna parameters—such as directivity, gain, etc. [14]—may be defined by
the ordinary way for the quantum antenna considered in this paper. However, it is more natural
to consider separately each component of Mollow triplet. For the side lobes (the two last terms in
Equation (37)) these values will depend on the driving electromagnetic field.
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Figure 2. The elementary radiation patterns of the lines ω = ω0 (green), ω = ω0 + ΩR (red), and
ω = ω0 −ΩR (blue) for different values of Rabi-frequency. The patterns are in the ratio 2:1:1 according
to the ratio of integrated intensities in the peaks. The patterns are presented in logarithmic scale.
kl/2 = 2π, ϕ = 0.8. (a) ΩR = 0.001ω0; (b) ΩR = 0.2ω0.
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Figure 3. The elementary radiation patterns of the lines ω = ω0 (green), ω = ω0 + ΩR (red) and
ω = ω0 −ΩR (blue) in logarithmic scale for different values of phase shift. kl/2 = 4π, ΩR = 0.2ω0.
(a) ϕ = 1.0; (b) ϕ = 1.2.
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5. Conclusions

In summary, we developed a model of quantum antenna in the strong coupling regime basing
on the general theory of open quantum systems [1,33]. The far-field zone of antenna radiation is
considered as the thermal photonic reservoir. We formulated and solved the master equation with
Lindblad-terms related to the energy losses via antenna emission. The general concept was applied
to the wire antenna with Fermionic type of excitation. Spectral density of power in the far-field zone
was calculated. It is shown that the strong coupling regime dramatically changes the radiation pattern
compared to the macroscopic antennas and optical nano-antennas of different well-known types.
The calculated radiation pattern consists out of three components, each of which corresponds to the
resonance line in the Mollow triplet and turned one with respect to another at some angle. The value of
this angle strongly depends on the geometric parameters of antenna, energy spectra of used materials,
and the value of coupling (Rabi-frequency). It opens new ways for highly effective electric control of
antenna’s characteristics for using in different nano-photonic applications. On the other hand, the
influence of EM field on the pattern should be accounted from the point of view of electromagnetic
compatibility in nanoscale [38,39].
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