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Abstract: The problem of steady laminar mixed convection flow and heat transfer past a moving
vertical thin needle in nanofluid for both assisting and opposing cases is analyzed in this paper.
Three types of nanoparticles including copper, titania and alumina are taken into consideration.
The nonlinear ordinary differential equations for momentum and energy have been transformed by
adopting the similarity transformation in linear form. The problem is solved numerically using an
implemented package called bvp4c in MATLAB software. The numerical computations are carried
out for various parameters of interest, which consists of the velocity ratio parameter, mixed convection
parameter, nanoparticle volume fraction parameter and the needle size. A stability analysis of the
solution is performed showing that the upper branch solution is stable, while the lower branch
solution is unstable. Validation of the present work is done by comparing the current results with
those available in the existing literature and found to be in excellent agreement.
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1. Introduction

Along with the development of technology, most engineers have ventured to create a new system
of application. Previously, most of the systems used in industries considered the conventional heat
transfer fluid such as oil, water and ethylene glycol. Unfortunately, these types of heat transfer fluids
did not show good performance in a cooling system. Choi [1] found an alternative way to overcome
this disadvantage by introducing the term nanofluid in fluid dynamics. The usage of the nanofluid as a
cooling device will intrinsically enhance the thermal performance of the manufacturing processes and
also reduce the operating costs. In fact, nanofluid is formed by adding some of the nanometer-sized
particles (called nanoparticles), the diameter of which is less than 100 nm, into the base fluid. There are
a few types of nanoparticles such as metal, oxide, carbides and carbon nanotubes. Nanofluid possesses
some special behaviors, by which it is very stable and does not have any additional problems such as
erosion, sedimentation, non-Newtonian behavior or additional pressure drop. This happens due to
the tiny size of the nano-elements and low volume fraction of nano-elements needed for the thermal
conductivity improvement. In view of its applications, nanofluid has the potential of being a new
generation of coolants in automotive applications. It tends to cool down in the electronic application
effectively by removing the high heat flux such as liquid cooling, air cooling and two-phase cooling. It is
also helpful in cancer imaging and drug delivery for cancer therapeutics in biomedical industries [2–4].
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The comprehensive literature on the mathematical models of nanofluid is reported by some
researchers such as Khanafer et al. [5], Buongiorno [6], Tiwari and Das [7], Nield and Kuznetsov [8],
as well as Kuznetsov [9]. The effectiveness of the thermal conductivity of nanofluid among the models
is studied in order to compare the theoretical data with the experimental data. There are two common
types of nanofluid models that have been considered in fluid dynamics, namely the model proposed
by Buongiorno [6] and Tiwari and Das [7]. Buongiorno’s model is a two-phase model in which the slip
velocity between base fluid and nanoparticles is not equal to zero. This model takes into account seven
slip mechanisms, which produce a relative velocity between the base fluid and nanoparticles such as
inertia, thermophoresis, diffusiophoresis, Brownian motion, fluid drainage, gravity and the Magnus
effect. In contrast with Buongiorno’s model, the Tiwari and Das model is a single-phase model that
considers the viscosity model proposed by Brinkman [10]. Since this model is a phase model, base fluid
and nanoparticles are said to be in thermal equilibrium, flowing at a uniform velocity, and a no-slip
condition occurs between them. This model considers the effect of nanoparticles volume fraction.
There are several articles regarding these two models that can be found in the literature [11–14].

Due to the importance of several industrial and technological applications, researchers are now
grabbing the opportunity to investigate the boundary layer flow and heat transfer analysis induced
by a thin needle in various fluid. The term thin needle simply means a parabolic revolution about
its axes direction in addition to the variable thickness. The motion of the thin needle distracts from
the free stream direction, and this situation is the main concern in experimental studies for the flow
and heat transfer analysis in order to measure the velocity and temperature profiles of the system.
It has many practical applications especially in the medicine and engineering industries. Some of
the applications are a hot wire anemometer for measuring the velocity of the wind, the blood flow
problem, transportation, coating of wires, lubrication and geothermal power generation.

The boundary layer flow past a thin needle in viscous fluid have been studied by Lee [15].
According to Lee [15], a needle is assumed “thin” when its thickness is smaller than or comparable
to that of the boundary layer over it. Inspired by the work of Lee [15], Narain and Uberoi [16] and
Narain and Uberoi [17] further investigate the problem by considering the mixed convection flow
over a vertical thin needle in viscous fluid. Since then, numerous works regarding the boundary
layer flow over a thin needle were carried out [18–21]. However, the previously-mentioned works
deals only with viscous fluid. Following from there, Grosan and Pop [22] grabbed the opportunity to
study the boundary layer flow of a horizontal thin needle in nanofluid. In their work, they solved the
classical problem of forced convection flow and heat transfer with a variable wall temperature. Starting
from that, many investigations into nanofluid were carried out by Hayat et al. [23], Soid et al. [24],
Krishna et al. [25] and Ahmad et al. [26] for various aspects of the problem. In contrast to the problem
of the horizontal thin needle, the consideration of studying the vertical thin needle is less popular and
was carried out by Trimbitas et al. [27]. In their study, they consider the mixed convection boundary
layer flow in nanofluid past a stationary vertical thin needle with the presence of gravitational force.

The study of the stationary needle has substantially different types of solutions from the moving
needle. This is due to the entrapment of the ambient temperature for the moving surface, which causes
the flow situation to represent an essentially different class of boundary layer flows. There are some
practical applications that prove the boundary layer behavior on the moving surface is an imperative
aspect of flow appearing in industrial and engineering processes. Some applications include the
boundary layer past a liquid film in condensation processes, aerodynamic extrusion of a plastic sheet
and a long thread traveling between a feed roll and a wind-up roll [28,29]. Since numerous applications
have been found in industries involving the moving surface, the purpose of this paper is to investigate
the characteristics of the fluid flow and heat transfer analysis past a moving vertical thin needle in
nanofluid under the influence of gravity (body) forces using the Tiwari and Das model. This problem
considers both assisting and opposing flow. The partial differential equations for momentum and
energy are reduced to ordinary differential equations, which are then solved numerically using an
implemented package bvp4c in MATLAB software (Matlab R2013a, Mathwork, Natick, MA, USA,
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1984). The side effect of the mixed convection parameter including the velocity ratio parameter,
nanoparticle volume fraction parameter and the needle size are graphically presented and elaborated
in detail in the next section for Pr = 6.2 (water).

2. Problem Formulation

2.1. Basic Equation

An incompressible laminar boundary layer flow and heat transfer of a nanofluid passing through
a moving vertical thin needle of uniform ambient temperature T∞ is considered. The inset of Figure 1
illustrates the vertical slender paraboloid needle whose radius is given by r = R(x) where x and
r are the axial and radial coordinates, respectively. The x-axis measures the needle’s leading edge
in the vertical direction, whereas r is always normal to the x-axis. The needle is considered thin
when its thickness does not exceed that of the boundary layer over it. Since the needle is assumed
thin, the influence of its transverse curvature is important; however, the pressure gradient along the
surface due to the presence of the needle can be ignored [15]. Furthermore, the needle is subjected to
a variable surface temperature Tw where Tw > T∞ corresponds to an assisting flow (heated surface)
and Tw < T∞ corresponds to an opposing flow (cooled surface). The needle moves with a uniform
velocity, Uw, in the same or reverse direction to the fluid flow of uniform velocity, U∞. Based on the
above assumptions, the governing equations for the nanofluid model proposed by Tiwari and Das [7]
take the following form of cylindrical coordinates:

∂

∂x
(ru) +

∂

∂r
(rv) = 0, (1)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂r

=
µn f

ρn f

1
r

∂

∂r

(
r

∂u
∂r

)
+

(ρβ)n f

ρn f
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∂

∂r

(
r

∂T
∂r

)
(3)

Assume the initial and boundary conditions of Equations (1)–(3) are:

t < 0 : u = v = 0, T = T∞ f or any x, r,

t ≥ 0 : u = Uw, v = 0, T = Tw at r = R(x),

u→ U∞, T → T∞ as r → ∞, (4)

where u and r are the velocity components along the x and r axis, respectively, and T is the temperature
of the nanofluid on the boundary layer. µ represents the viscosity; ρ is the density; α is the thermal
diffusivity; and β is the thermal expansion coefficient in which the subscripts ‘n f ’, ‘ f ’ and ‘s’ represent
‘nanofluid’, ‘fluid’ and ‘solid’, respectively. The relation between these parameters is given by [30]:

ρn f = (1− φ) ρ f + φρs, (ρCp)n f = (1− φ)
(
ρCp

)
f + φ

(
ρCp

)
s , (ρβ)n f = (1− φ) (ρβ) f + φ (ρβ)s ,

µn f =
µ f

(1− φ)2.5 , αn f =
kn f

(ρCp)n f
,

kn f

k f
=

(ks + 2k f )− 2φ(k f − ks)

(ks + 2k f ) + φ(k f − ks)
(5)

Here, k and (ρCp) represent the thermal conductivity and heat capacity, respectively. In addition,
φ represents the nanoparticle volume fraction for the nanofluid.
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Figure 1. Physical models and coordinate systems: (a) assisting flow and (b) opposing flow.

2.2. Steady-State Solution

In steady-state solutions, we assume ∂/∂t = 0. Hence, to compute the basic Equations (1)–(3)
under the boundary restrictions (4), we introduce the relevant similarity transformations as follows:

ψ = νx f (η), η =
Ur2

νx
, θ(η) =

T − T∞

Tw − T∞
(6)

Here, ψ is defined as a stream function that satisfies Equation (1), and the velocity components
are defined as u = r−1∂ψ/∂r and v = −r−1∂ψ/∂x, respectively. Assuming η = c (refer to the wall of
the needle), Equation (6) prescribes the size and shape of the needle where its surface is given by:

R(x) =
(νcx

U

)1/2
(7)

Substituting Equations (5) and (6) into basic Equations (2)–(4) reduces this to the following
nonlinear ordinary differential equations given by:

2(η f ′′)′

(1− φ)2.5
[
(1− φ) + φ

(
ρs/ρ f

)] + f f ′′ +
(1− φ) + φ(ρβ)s/(ρβ) f

(1− φ) + φ(ρs/ρ f )

λθ

4
= 0, (8)

2(ηθ′)′

(1− φ) + φ
(
ρCp

)
s /
(
ρCp

)
f

kn f /k f

Pr
+ f θ′ = 0, (9)

where prime represents the differentiation with respect to η (similarity variable). The appropriate
boundary conditions are then given by:

f (c) =
ε

2
c, f ′(c) =

ε

2
, θ(c) = 1,

f ′(η)→ 1
2
(1− ε), θ(η)→ 0 as η → ∞, (10)

where λ is the mixed convection parameter, which can be expressed as:
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λ =
gβ f (Tw − T∞)x

U2 =
Grx

Re2
x

(11)

Here, Grx = gβ f (Tw − T∞)x3/ν2 is the local Grashof number, and Rex = Ux/ν is the local
Reynolds number. It is worth mentioning that λ > 0 represents the assisting flow, while λ < 0
represents the opposing flow. Pr = ν/α is the Prandtl number, and ε is the velocity ratio parameter
between the needle and the free stream with U = Uw + U∞.

The skin friction coefficients, C f , and the local Nusselt number, Nux, are given by the
following equations:

C f = µn f (∂u/∂r)r=c/ρ f U2 =
4

(1− ϕ)2.5 Re−1/2
x c1/2 f ′′(c), (12)

Nux = −xkn f (∂T/∂r)r=c/k f (Tw − T∞) = −2
kn f

k f
Re1/2

x c1/2θ′(c), (13)

2.3. Stability Analysis

It has been discovered in Weidman et al. [31] that the lower branch solutions for the forced
convection flow passing through a permeable flat plate are unstable and not physically realizable.
Meanwhile, the upper branch solutions are stable and physically realizable. To test these features,
we need to consider the unsteady Equations (2) and (3) by introducing the new dimensionless time
variable, τ = 2Ut/x. Note that τ is associated with an initial value problem that is consistent with the
solution that will be obtained in practice (physically realizable).

From Equation (6), the new similarity solutions in terms of η and τ are:

ψ = νx f (η, τ), η =
Ur2

νx
, θ(η, τ) =

T − T∞

Tw − T∞
, τ =

2Ut
x

(14)

Substituting Equation (14) into Equations (2) and (3) yields:

2

(1− φ)2.5
[
(1− φ) + φ

(
ρs/ρ f

)] (η
∂2 f
∂η2

)′
+ f

∂2 f
∂η2 +

(1− φ) + φ(ρβ)s/(ρβ) f

(1− φ) + φ(ρs/ρ f )

λθ

4
− ∂2 f

∂η∂τ

+τ
∂ f
∂η

∂2 f
∂η∂τ

= 0,

(15)

2
(1− φ) + φ

(
ρCp

)
s /
(
ρCp

)
f

kn f /k f

Pr

(
η

∂θ

∂η

)′
+ f

∂θ

∂η
− ∂θ

∂τ
+ τ

∂ f
∂η

∂θ

∂τ
= 0, (16)

subject to the boundary conditions given below:

f (c, τ) =
ε

2
c,

∂ f
∂η

(c, τ) =
ε

2
, θ(c, τ) = 1,

∂ f
∂η

(η, τ)→ 1
2
(1− ε), θ(η, τ)→ 0 as η → ∞, (17)

Furthermore, to identify the stability of the steady flow solution f = f0(η) and θ = θ0(η)

satisfying the boundary value problem (15)–(17), we assume (see [31]):

f (η, τ) = f0(η) + e−γτ F(η), θ(η, τ) = θ0(η) + e−γτG(η) (18)

where γ is a small disturbance of growth (or decay) and functions F(η) and G(η) are smaller relative to
f0(η) and θ0(η), respectively. Substituting Equation (18) into Equations (15)–(17) yields the following:
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2

(1− φ)2.5
[
(1− φ) + φ

(
ρs/ρ f

)] (η
∂2F
∂η2

)′
+

(1− φ) + φ(ρβ)s/(ρβ) f

(1− φ) + φ(ρs/ρ f )

λG
4

+ f0
∂2F
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∂2 f0

∂η2 + γ
∂F
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−γτ
∂ f0

∂η

∂F
∂η

= 0,

(19)

2
(1− φ) + φ

(
ρCp

)
s /
(
ρCp

)
f

kn f /k f

Pr

(
η

∂G
∂η

)′
+ f0

∂G
∂η

+ F
∂θ0

∂η
+ γG− γτG

∂ f0

∂η
= 0, (20)

with the boundary conditions given by:

F(c, τ) = 0,
∂F
∂η

(c, τ) = 0, G(c, τ) = 0,

∂F
∂η

(η, τ)→ 0, G(η, τ)→ 0 as η → ∞ (21)

As mentioned by Weidman et al. [31], to compute an initial growth or decay of the solution (18),
we let τ = 0. Hence, the functions in Equations (19) and (20) yield F = F0(η) and G = G0(η). In order
to test our numerical method, we solve the corresponding linear eigenvalue problems given by:

2 (ηF′′0 )
′

(1− φ)2.5
[
(1− φ) + φ

(
ρs/ρ f

)] + f0F′′0 + f ′′0 F0 +
(1− φ) + φ(ρβ)s/(ρβ) f

(1− φ) + φ(ρs/ρ f )

λG0

4
+ γF′0 = 0, (22)

2 (ηG′0)
′

(1− φ) + φ
(
ρCp

)
s /
(
ρCp

)
f

kn f /k f

Pr
+ f0G′0 + F0θ′0 + γG0 = 0, (23)

along with the conditions as follows:

F0(c) = 0, F′0(c) = 0, G0(c) = 0,

F′0(η)→ 0, G0(η)→ 0, as η → ∞ (24)

Using the numerical values of f0(η) and θ0(η), we solve Equations (22)–(24) numerically, and the
solutions obtained give an infinite set of eigenvalues (γ1 < γ2 < γ3 < . . .). There is an initial growth
of disturbances if the smallest eigenvalues γ1 are negative, and the flow is said to be in unstable
mode. Otherwise, for positive eigenvalues, there is an initial decay of disturbances and the flow is
said to be in stable mode. As suggested by Harris et al. [32], the range of the eigenvalues obtained
can be considered by relaxing the boundary conditions on F0(η) and G0(η). In the current study,
we choose F0(η) → 0 as η → ∞ and then solve the linear eigenvalue problems (22) and (23) subject
to (24) together with the new condition F′′0 (0) = 1.

3. Results and Discussion

To ensure the accuracy of the numerical method used in this study, we made comparison results of
f ′′(c) with those of Ishak et al. [19] and Soid et al. [24] for different values of needle size, c, when λ = 0
and Pr = 1 (see Table 1). Our computations are in excellent agreement with the work of Ishak et al. [19]
and Soid et al. [24] for all considered values of c. Thus, to test the accuracy of our code, we compute
the numerical results for this problem. The system of Equations (8) and (9) with the conditions in (10)
is solved using an implemented bvp4c package in MATLAB software. The bvp4c package is a method
used to solve the boundary value problems for ordinary differential equations. This package applies
the finite difference method, where the solution can be obtained using an initial guess supplied at
an initial mesh point and changes step size to get the specified accuracy. However, to solve these
boundary value problems, it is necessary to first reduce it to a system of first order ordinary differential
equations. Depending on the values of the parameters used, we take a suitable finite value of η → ∞
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as η = 10–140. In addition, we assume the range of φ is between zero and 0.2 with φ = 0, representing
the regular fluid, and the Prandtl number is set to Pr = 6.2. The thermophysical properties of the
copper, titania, alumina and the base fluid can be referred in the paper of Oztop and Abu-Nada [30].

Table 1. Comparison results of f ′′(c) with those of Ishak et al. [19] and Soid et al. [24] when λ = 0 and
Pr = 1.

c Ishak et al. [19] Soid et al. [24] Present Results

0.01 8.4924 8.491454 8.491455
0.1 1.2888 1.288778 1.288778
0.2 - 0.751665 0.751665

Figures 2 and 3 display the variation of shear stress f ′′(c) and local heat flux −θ′(c) with mixed
convection parameter λ for various values of nanoparticles volume fraction φ for Cu nanoparticles.
Interestingly, in Figure 2, the shear stress at the wall increases with the increase of the parameter φ. As a
result, more particles are suspended in the base fluid, and the thermal conductivity of nanoparticles
becomes stronger. Besides, it is seen from Figure 3 that upon increasing the size of the nanoparticles,
the local heat flux on the surface reduces. It is also good to know that an increment in the size of the
nanoparticles leads to a decrease in the ratio of thermal conductivity. This occurs due to the fact that
the existence of nanoparticles in the base fluid plays a significant role to increase the heat transfer.
However, Figure 3 implies that the increase in φ is to reduce the rate of heat transfer on the needle
surface. It is clear from the graphs that the critical values of λ, say λc, in which the upper and the
lower branches are connected is getting higher, when the φ value increases. It is also found that the
dual solutions are likely to exist when the flow is opposing (λ < 0). In summation, the dual solutions
are in the range of λc < λ ≤ 0.3. When λ < λc, no similarity solutions exist for Equations (8) and (9).

Figure 2. Effect of mixed convection parameter λ on the variation of shear stress for various values of
nanoparticle volume fraction φ.

The effect of velocity ratio parameter ε on the variation of shear stress and local heat flux for
different nanoparticles are illustrated in Figures 4 and 5 for the opposing flow (λ = −0.2). It follows
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that the dual similarity solutions exist in the range of εc < ε ≤ 0. Note that Equations (8) and (9)
subject to the conditions in (10) possess the dual solutions only when the needle and the free stream
moves in the opposite direction (ε < 0). Furthermore, from these figures, only unique solutions exist
for ε > 0 where the needle and the free stream move in the same direction. Moreover, the critical
values of ε in which the upper and the lower branches intersect increase for Al2O3 followed by TiO2

and Cu.

Figure 3. Effect of mixed convection parameter λ on the variation of local heat flux for various values
of nanoparticle volume fraction φ.

Figure 4. Effect of the velocity ratio parameter ε on the variation of shear stress for different nanoparticles.
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Figure 5. Effect of the velocity ratio parameter ε on the variation of local heat flux for different nanoparticles.

Figures 6 and 7 portray the influence of the mixed convection parameter on the variation of the
shear stress and local heat flux for different sizes of needle c for Cu nanoparticles. It is observed from
the figures that the magnitude of the shear stress and local heat flux on the needle surface is higher
for c = 0.1 compared to that of c = 0.2. From the physical point of view, when the size of the needle
is getting smaller, the surface of the needle in contact with the fluid particle decreases. This leads
to the reduction of the drag force that occurs on the needle surface and the fluid flow. Furthermore,
decreasing the needle size causes the heat transfer to accelerate since the heat is easily diffused through
a thin surface compared to a thick surface. Besides, the range of λ increases as the size of the needle
decreases. In particular, the dual similarity solutions exist when λc < λ ≤ 0.2 for both values of c = 0.1
and c = 0.2.

The variation of the skin friction coefficient (Rex)1/2C f and the local Nusselt number
(Rex)−1/2Nux on different nanoparticles are shown in Figures 8 and 9 for various values of c and φ.
Observation from these figures yields that the skin friction coefficient and the heat transfer rate are
higher for c = 0.1 compared to c = 0.2. This trend implies that the reduction in the needle size causes
the thickness of the velocity boundary layer to decrease. Consequently, an increase in the shear stress,
as well as the skin friction coefficients occurs on the surface, and this behavior can be seen through
Figure 8. Similar observations were obtained on the local Nusselt number in Figure 9 as the value
of c decreases. Physically, the thin surface of the needle allows the heat transfer between the needle
and the fluid flow to become faster. Also from Figure 8, the stronger rate of nanoparticle volume
fraction leads to a greater magnitude of skin friction coefficient. This is due to the collisions between
the suspended nanoparticles and the base fluid particles that enhance the friction occurring on the
needle surface. From Figure 9, the rate of heat transfer increases for c = 0.1, while it decreases for
c = 0.2 when the size of the nanoparticle φ becomes higher. In contrast with the micrometer scale,
nanoparticles possess higher surface area to volume ratio due to a huge number of atoms on the
boundaries. This causes them to be highly stable in suspensions. It follows that these suspensions
show high thermal conductivity possibly due to enhanced convection between the solid particle and
fluid surfaces. This behavior is more suitable for the thinner surface of the needle (c = 0.1). Moreover,
the graphs presented in Figures 8 and 9 depict that the Cu nanoparticles has the lowest values of
skin friction coefficient and heat transfer rate compared to Al2O3 and TiO2. Sometimes, there is no



Appl. Sci. 2018, 8, 842 10 of 16

clear evidence to completely predict the effects of different nanoparticles on the local Nusselt number.
This is due to the complications of the proposed model, in which we consider the thin needle.

Figure 6. Effect of mixed convection parameter λ on the variation of shear stress for different needle sizes c.

Figure 7. Effect of mixed convection parameter λ on the variation of local heat flux for different needle sizes c.

The axial velocity and temperature profiles for different needle sizes, c, are plotted in
Figures 10 and 11 for ε = −2, φ = 0.1 and λ = −0.1 (opposing flow) for Cu nanoparticles.
From Figure 10, it is found that the velocity increases as the needle size decreases for the upper
branch, while it decreases for the lower branch. The physical reason is due to the thinner surface
of the needle, which leads to the decrease in the drag force that occurs between the needle and the
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fluid particles in the flow. Note that the velocity boundary layer thickness for the upper branch
decreases with the reduction in the needle size. Figure 11 shows that when the size of the needle
decreases, the temperature increases, as well, while the thermal boundary layer thickness decreases in
the upper branch.

Figure 8. Variation of skin friction coefficients with nanoparticle volume fraction φ for different
nanoparticles when c = 0.1 and c = 0.2.

Figure 9. Variation of local Nusselt numbers with nanoparticle volume fraction φ for different
nanoparticles when c = 0.1 and c = 0.2.
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Figure 10. Effect of needle size c on the variation of velocity profiles.
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Figure 11. Effect of needle size c on the variation of temperature profiles.

Figures 12 and 13 illustrate the velocity and the temperature profiles for varying mixed convection
parameter λ for ε = −2, φ = 0.1 and c = 0.1 for Cu nanoparticles. It shows that the velocity and
temperature boundary layers are highly influenced by this parameter. In Figure 12, an increment in
the values of λ results in an increase in velocity profiles and consequently decreases the momentum
boundary layer thickness for the upper branch. A reverse trend is observed for the lower branch.
Meanwhile, in Figure 13, as the λ value increases for the upper branch, the temperature increases and
the thermal boundary layer thickness decreases respectively. However, the results are inverted for
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the lower branch. Based on Figures 10–13, we noticed that all the profiles obtained have fulfilled the
requirement of the far field boundary condition (10) asymptotically, thus supporting the numerical
results, as well as the dual nature of the solutions obtained in the current study.
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Figure 12. Effect of mixed convection parameter λ on the variation of velocity profiles.
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Figure 13. Effect of mixed convection parameter λ on the variation of temperature profiles.

From this study, the stability of the dual solutions is determined by using the bvp4c package
through MATLAB software. This analysis is performed to identify which of the upper or lower branch
is linearly stable and physically realizable. The stability of the solutions depends on the smallest
eigenvalues obtained. The unknown eigenvalue γ is presented in Equation (18), and to compute the
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values of γ, we solve the linear eigenvalue problems given in Equations (22) and (23) together with
the conditions (24). Tables 2 and 3 show the smallest eigenvalue γ with respect to several values of
the involved parameters of interest. The tables indicate that the negative value of γ refers to an initial
growth of disturbance, and the flow is in unstable mode. Meanwhile, the positive value of γ denotes
an initial decay of disturbance, and the flow is said to be in a stable mode. It is worth knowing that the
stable solution always gives a good physical meaning that can be realized. In Table 2, as the values of
λ are approaching λc, the smallest eigenvalue γ tends to zero either from the positive side or negative
side. Similar observation can be found from Table 3 as ε approaching εc.

Table 2. Smallest eigenvalues γ for different values of nanoparticle volume fraction φ, needle size c
and mixed convection parameter λ when ε = −2 for Cu nanoparticles.

φ c λ Upper Branch Lower Branch

0.0 0.1 −1.612 0.0008 −0.0008
−1.610 0.0029 −0.0029
−1.60 0.0202 −0.0194
−1.58 0.0354 −0.0327

0.2 −0.5998 0.0061 −0.0059
−0.599 0.0081 −0.0079
−0.594 0.0175 −0.0166
−0.58 0.0303 −0.0277

0.1 0.1 −0.635 0.0057 −0.0056
−0.634 0.0103 −0.0100
−0.63 0.0165 −0.0159
−0.62 0.0326 −0.0301

0.2 −0.1378 0.0031 −0.0031
−0.137 0.0084 −0.0082
−0.136 0.0126 −0.0121
−0.135 0.0158 −0.0149

0.2 0.1 −0.3946 0.0024 −0.0024
−0.394 0.0071 −0.0070
−0.392 0.0164 −0.0157
−0.39 0.0171 −0.0163

0.2 −0.066 0.0028 −0.0028
−0.0655 0.0090 −0.0087
−0.0650 0.0110 −0.0106
−0.064 0.0162 −0.0153

Table 3. Smallest eigenvalues γ for different nanoparticles and for various values of velocity ratio
parameter ε when φ = 0.1, c = 0.1 and λ = −0.2 for Cu nanoparticles.

Nanoparticles ε Upper Branch Lower Branch

Cu −3.0674 0.0033 −0.0033
−3.067 0.0045 −0.0044
−3.06 0.0158 −0.0152
−3.00 0.0470 −0.0420

Al2O3 −3.986 0.0040 −0.0040
−3.984 0.0108 −0.0106
−3.98 0.0152 −0.0147
−3.97 0.0275 −0.0260

TiO2 −3.922 0.0042 −0.0041
−3.92 0.0052 −0.0052
−3.90 0.0113 −0.0111
−3.89 0.0401 −0.0370
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4. Conclusions

In this paper, we investigate the effect of the velocity ratio parameter, mixed convection parameter,
nanoparticle volume fraction parameter and the needle size on the fluid flow and heat transfer
analysis of the mixed convection boundary layer flow past a moving vertical thin needle in nanofluid.
The stability analysis is considered to identify which of the dual solutions obtained is stable by applying
the bvp4c package in MATLAB software. The following are some conclusions that can be made through
this study:

• The magnitude of the skin friction coefficient and the local Nusselt number increases as the size
of the needle decreases. The thinner surface of the needle causes the heat to be easily diffused,
hence reducing the drag force between the needle and the free stream.

• The existence of the dual solutions occurs when the needle and the fluid move in the opposite
way (ε < 0), while the solution is unique when they move in the same way (ε > 0). Nevertheless,
the range of the dual solutions exists only in between εc < ε ≤ 0.

• The presence of the nanoparticles volume fraction in the flow causes the skin friction coefficient,
as well as the heat transfer rate on the needle surface to increase especially for the thinner surface.

• The dual solutions are more pronounced when the flow is opposing (λ < 0) and the range is
between λc < λ ≤ 0.3. When λ < λc, no solutions are obtained.

• The stability analysis has confirmed that the upper branch solution is stable, while the lower branch
solution is unstable by observing the positive and negative sign of the eigenvalues obtained.
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