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Abstract: Shearing machines are the key pieces of equipment for spent–fuel reprocessing in
commercial reactors. Once a failure happens and is not detected in time, serious consequences will
arise. It is very important to monitor the shearing machine and to diagnose the faults immediately
for spent–fuel reprocessing. In this study, an intelligent condition monitoring approach for spent
nuclear fuel shearing machines based on noise signals was proposed. The approach consists of
a feature extraction based on wavelet packet transform (WPT) and a hybrid fault diagnosis model,
the latter combines the advantage on dynamic–modeling of hidden Markov model (HMM) and
pattern recognition of artificial neural network (ANN). The verification results showed that the
approach is more effective and accurate than that of the isolated HMM or ANN.

Keywords: shearing machine; condition monitoring; wavelet packet transform (WPT); hidden Markov
model (HMM); artificial neural network (ANN)

1. Introduction

Closed nuclear fuel cycles and spent–fuel reprocessing can effectively improve uranium resource
utilization and reduce high–level radioactive waste. These methods are selected by most major
nuclear–power countries [1–3]. A spent–fuel shearing machine, which is used for separating the
fuel assembly seat from the fuel rods and to shear the latter, is the key piece of equipment for the first
stage of spent–fuel reprocessing. The shearing machine may fail during operation due to, e.g., tool
wear or damage. Once a failure happens and is not detected and treated in time, the whole spent–fuel
reprocessing process will be affected. This can lead to serious accidents. Thus, it is essential to monitor
the health state of the shearing machine and diagnose faults immediately. Owing to extreme harsh
working conditions—e.g., strong radioactivity, acid gases, dust, no lubrication, and no permission
to install contact sensors or stop the running—conventional monitoring methods (using, e.g., video,
vibrations, and lasers) are not suitable for monitoring the state of a spent–fuel shearing machine [4,5].
It is necessary to introduce new and intelligent approaches for fault diagnosis and health–state
monitoring. It is discovered that noise signals produced by a shearing machine contain substantially
useful information on the health state of the shearing machine [6]. In contrast to vibration-based
methods, noise–based methods (with the advantage of not needing any direct contact) are very suitable
for the fault diagnosis of shearing machines applied for spent–fuel reprocessing. Usually, noise–based
fault diagnosis methods include acquiring noise signals of running equipments, extracting features
from the noise signals, and making decisions through pattern recognition technology. Therefore,
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the key points of noise–based fault diagnosis methods are selecting the feature extraction method and
determining the pattern recognition model [7].

Feature extraction methods regarding signals mainly include time domain, frequency domain,
and time–frequency domain methods. To a certain extent, the time domain and frequency domain
(e.g., Fourier transform) methods have limitations for complex and non–stationary signal processing [8].
In fact, there are many non–stationary, nonlinear, and dynamic signals in practical applications.
Generally, the time–frequency domain methods (e.g., short–time Fourier transform (STFT),
Wigner–Ville distribution (WVD), and wavelet-based methods) are more commonly used in signal
analyzing compared with the time domain and frequency domain methods [9–11]. In STFT
methodology, a given time signal is divided into equal length segments by windowing, to reveal
the spectrum of each segment by applying a Fourier transform. However, in practice, it is usually
difficult to decide the windowing function and the window length, for a better reflection of the signal
spectrum [12]. The WVD and higher–order WVD methods can achieve better resolutions than STFT.
However, for multicomponent signals, cross-term interference will occur [13]. The pseudo WVD,
which was developed to suppress the cross-term, reduces the time–frequency resolution to a certain
extent. The advantage of the wavelet-based methods is that they can process time series, which include
non-stationary signals at many different frequencies [14]. The wavelet transform (WT) intercepts
and analyzes the signal by adding a variable–scale sliding window on the signal [15]. Owing to
the adjustable time–frequency window, the method meets the high–resolution requirements of the
high–frequency signal. However, the resolution of WT in the time–frequency domain is related to the
frequency—it gives a high time resolution in the high–frequency range and a high frequency resolution
in the low–frequency range [16]. The wavelet packet transform (WPT), which is a further development
of WT, can improve the signal’s time–frequency resolution by decomposing the frequency bands into
several levels adaptively, especially high-frequency bands that the WT cannot finely decompose [17].
Hence, WPT is more suitable to analyze nonlinear and non–stationary signals, and it was selected for
feature extraction of the health states regarding the shearing machine in this study.

In recent years, data–based models have been playing an increasingly important role in fault
diagnosis [18–21]. Intelligence methods, such as expert system (ES), artificial neural network (ANN),
hidden Markov model (HMM) and support vector machine (SVM) have been widely applied in the
fault diagnosis of mechanical equipment [22–25]. HMM, a statistical model of time series, which was
founded in the 1970s, was initially applied for speech recognition, and now has become an important
branch in the field of signal processing [26]. It is well known for its applications in reinforcement
learning and temporal pattern recognition such as speech, handwriting and gesture recognition.
Meanwhile, HMM has been introduced into mechanical monitoring, e.g., cutting tools, bearings,
engines and pumps, etc., and even the fault identification of large and complex systems, such as
distributed sensor networks [27–29]. The advantage of HMM lies in its dynamic–modeling ability
regarding time series. Therefore, it is especially suitable for temporal pattern recognition. For common
classification, it is not necessarily better than other methods. A signal contaminated by noise may be
misjudged, i.e., the anti–interference ability of HMM is not strong enough. If the identified signal is
contaminated by noise, it may be misjudged, i.e., the anti–interference ability of HMM is not strong [30].
ANN is a kind of computing system inspired by the biological neural systems of animals. As is known,
ANN has strong self–adaptability, learning ability and nonlinear mapping ability as well as robustness
and fault tolerance [31]. At present, it has been widely used in image recognition, speech recognition,
machine translation and other fields, and become the most active field of artificial intelligence research.
Due to the aforementioned advantages and its insensitivity to incomplete or characteristic defects
of input information, the ANN–based methods are suitable for online fault diagnosis [32,33]. Some
researchers combined ANN with self organizing mapping (SOM), particle swarm optimization (PSO),
chaos, or rough sets theory to solve some complicated pattern recognition issues [34,35]. A study
shows that the hybrid model combining HMM and ANN is more effective than the isolated HMM for
speech emotion recognition [36].
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In practice, noise signals acquired from an operating shearing machine have the characteristics
of non–stationary, poor reproducibility and less accumulated samples, but they contain a lot of
information about the health states of the shearing machine. Considering the discussion above,
an intelligent condition monitoring approach for spent fuel shearing machines consisting of WPT–based
feature extraction hybrid HMM–ANN based fault detection steps was proposed in this paper. In this
approach, to combine the advantage on the capability to dynamic modeling of HMMs and pattern
recognition of ANN, the feature vectors extracted from the noise signals are fed to the trained HMMs
to obtain the likelihoods, which are used as the input of ANN, while ANN is used to make a decision.

2. Theoretical Background

This section describes the theoretical background of the approach proposed in this paper, including
WPT, HMM and ANN.

2.1. Wavelet Packet Transform

The wavelet packet transform (WPT) (a further development of WT) is an adaptive time–frequency
analysis method for data from nonlinear and non–stationary signals. It can improve the signal’s
time–frequency resolution by decomposing the frequency bands into several levels adaptively,
especially high–frequency bands that WT cannot finely decompose [37]. Figure 1 illustrates the
wavelet packet decomposition.

Figure 1. Map of wavelet packet decomposition.

The decomposition has the following relations:

S = AAA3 + DAA3 + ADA3 + DDA3 + AAD3 + DAD3 + ADD3 + DDD3, (1)

where A stands for low frequency, D for high frequency, and the index for the level of the wavelet
packet decomposition.

Let Wn
j be an orthogonal wavelet subspace, f n

j (t) ∈ Wn
j an orthonormal wavelet packet

progression, and dj,n
l the wavelet packet coefficient. Then, f n

j (t) is:

f n
j (t) = ∑

l∈Z
dj,n

l ωn(2jt− l). (2)

The wavelet packet decomposition algorithm can be expressed as:
dj,2n

l = ∑
k∈Z

ak−2ld
j+1,n
k ,

dj,2n+1
l = ∑

k∈Z
bk−2ld

j+1,n
k ,

(3)

and the wavelet packet reconstruction algorithm is:

dj+1,n
l = ∑

k∈Z
(al−2kdj,2n

k + bl−2kdj,2n+1
k ), (4)
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where ak−2l and al−2k are the coefficients of low–pass filters, bk−2l and bl−2k the coefficients of high–pass
filters, and n the level of decomposition.

2.2. Hidden Markov Model

The HMM method is a doubly stochastic model. A Markov chain is used to describe the transition
between states, and the other stochastic process is applied to describe the statistical relation between
state and observed variables. In the HMM, the state is not directly visible, but the output, by which the
existence and characteristics of the state can be perceived, is visible. Therefore, the method is called
the “hidden” Markov model [30,38]. The HMM can be divided into two layers: the hidden and the
observation layer. The Markov chain exists in the hidden layer, and the observation layer is seen as the
output of the hidden layer. An HMM can be expressed as:

λ = (N, M, π, A, B), (5)

where N is the number of states, M the number of possible observation symbols, π = (π1, π2, . . . , πN)

the initial-state probability vector, A = (aij)N×N the transition probability matrix, and B the
observed value probability matrix (for continuous HMM, B is the observed value probability density
function). The model can describe various random processes by considering different π, A, and B.
The composition of HMM is shown in Figure 2, where S = {q1, q2, . . . , qN} is the state sequence,
O = {o1, o2, . . . , oT} the observed sequence.

Figure 2. Composition of hidden Markov model.

HMM can be used in the fields where it is necessary to recover a data sequence that is not directly
observed (but some other data that depend on the sequence are), especially for the fields of requiring
high dynamic–modeling ability, such as speech recognition. When used for classification, the probability
distribution generated by HMMs gives some information about the states. The data are categorized
according to the model producing the highest likelihood. In practice, there are three classical algorithms
for HMM: forward–backward (known model parameters; calculating the probability of a particular
output sequence), Viterbi (known model parameters, looking for a hidden state sequence that can most
likely produce a particular output sequence), and Baum–Welch (known output sequences, looking for
the most likely state transfer and output probability).

2.3. Artificial Neural Network

An artificial neural network (ANN) is a mathematical model and network system inspired by
the biological neural network of the human brain. An ANN is made up of a collection of connected
units called artificial neurons, which receive input, change their activation state according to the
input, and produce output depending on the input and activation [32]. The weights and thresholds
of the neurons can be modified by a process called learning. The backpropagation (BP) algorithm,
a supervised gradient–descent learning algorithm, is a learning rule used most frequently in ANNs to
calculate a gradient that is needed in the calculation of the weights. The BP network, which is trained
through the BP algorithm, is the most widely used neural network at present. Structurally, the BP
network is a kind of feedforward ANN consisting of three or more layers (an input layer, one or more
hidden layers, and an output layer). Each node in a layer is connected to every node in the next layer
with a certain weight. There exists no connection between nodes in the same layer. Except for input
nodes, each node is a neuron that uses an activation function. The structure of the BP network is
shown in Figure 3.
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Figure 3. Structure of the backpropagation network.

The basic idea of the BP algorithm is minimizing the mean squared error of the outputs by
adjusting the connection weights after each learning iteration. The algorithm mainly include two
processes: the forward propagation of the signal and backpropagation of the error. Regarding the
forward propagation of the signal, the input sample is transmitted to the output layer by going from
a layer to a next layer. If the actual output of the output layer does not match the expected output,
the error propagation is shifted to the error backpropagation process. In the other case, the learning
algorithm stops. During error backpropagation, the output error is propagated back to the input layer
through the hidden layers. The error gradient is reduced to the allowable minimum by adjusting the
connection weights and thresholds between the nodes of the former and of latter layer. Adjusting
weights and thresholds is the network learning or training process.

The standard BP algorithms, such as gradient–descent and gradient–descent with momentum,
are often too slow because of their inherent defects. In practice, successful training always depends
on the appropriate learning rate and momentum constant [39]. To eliminate the disadvantages of BP
learning algorithms, faster algorithms, e.g., resilient backpropagation, scaled conjugate gradient, and
Levenberg–Marquardt, are included in the training of BP networks.

3. Condition Monitoring Approach for Shearing Machines

For monitoring the health state of the shearing machines exactly, a condition monitoring approach
consistsing of WPT–based feature extraction and hybrid HMM–ANN based fault diagnosis model and
detection steps were presented.

3.1. Feature Extraction Method Based on WPT

Feature extraction is applied to decrease the dimension of the original signal, keep and strengthen
useful information, reduce or even eliminate interference information, and to highlight feature
information by transforming the signal form. As is already known, noises of a shearing machine
contain a lot of information on the health state. When the health state changes, the amplitude–frequency
and phase–frequency characteristics in the frequency domain will change, and the energy in each
frequency band will change to a different value. As mentioned above, WPT is suitable for analyzing
nonlinear and non–stationary signals containing large amounts of details just like the noises of the
shearing machine.

The energy in every frequency band can be calculated by the wavelet packet coefficients. Then,
the health state of the shearing machine can be recognized by analyzing the energy distribution.
By decomposing the signal, the wavelet packet coefficients of every frequency band can be obtained.
Hence, the subband signals of nth level can be reconstructed with the wavelet packet coefficients.
The energy of each band in the nth level can be expressed as the square sum of the corresponding
node’s wavelet packet coefficients:

Ei =
m

∑
k=1
|cik|2, (i = 0, 1, · · · , 2n − 1), (6)



Appl. Sci. 2018, 8, 838 6 of 19

where Ei is the energy of the reconstructed signal sni, cik the wavelet packet coefficient of sni, and n the
level of the wavelet packet decomposition. The total energy of the signal is calculated with:

ET =
2n−1

∑
i=0

Ei. (7)

Therefore, for a n–level WPT feature extraction, the energy feature vector is obtained by normalizing
the energy of every frequency band in the nth layer:

T =

[
E0

ET
,

E1

ET
, · · · ,

E2n−1

ET

]
. (8)

3.2. Hybrid HMM–ANN Model for Fault Diagnosis

The HMM possesses a strong dynamic–modeling ability because it can be applied to analyze
a time series of states. When using it for classification, the method gives the categorizing result
according to the model producing the highest likelihood. If the signal to be recognized is contaminated
by noise, the output probabilities of several HMMs may be very close and can lead to an incorrect
recognition. As mentioned above, an ANN exhibits strong robustness, fault tolerance, learning
ability, and self-adaptability. It is not sensitive to incomplete input information or characteristic
defects. However, during recognition, the samples are classified according to the signal characteristics
of the current time series, without considering the relation between “front and back time series”.
Thus, the ANN model may lead to unrealistic results. In conclusion, the advantages of HMM and
ANN are complementary. In this study, a hybrid HMM–ANN model was constructed by combining
HMM’s dynamic–modeling ability and ANN’s high robustness, fault tolerance, learning ability,
and self-adaptability. The hybrid model consists of two layers: the HMM layer and the ANN layer.
The structure is shown in Figure 4.

Figure 4. Principle and structure of a hybrid HMM–ANN model (solid line: the training process,
dashed line: the recognizing process).
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The HMM layer is in the upper layer, thereby enabling the hybrid mode’s strong dynamic–modeling
ability. The HMM layer consists of a modeling module and an output probability calculation module.
The modeling module is used to obtain the HMMs by learning the samples, while the output probability
calculation module is used to calculate the output probabilities of samples under each of the HMMs.
The ANN layer is in the lower layer, taking the advantage of ANN’s fault tolerance, learning ability
and self–adaptability. It contains an input layer, several hidden layers and an output layer. The hybrid
HMM–ANN model is trained by the learning process and produces the predicted outputs.

3.3. Training and Recognizing Process of the Hybrid HMM–ANN Model

3.3.1. Training Process of the Hybrid Model

As is shown in Figure 4, the training of hybrid HMM–ANN model (HMM–ANN modeling)
includes three processes: HMM training, ANN input/target vectors construction and ANN training.

(1) Selection and Training of HMM.

Compared with discrete HMM, the continuous HMM has low distortion and better classification
effect [30]. Thus, a continuous Gaussian mixture hidden Markov model (CGHMM) was chosen.
The probability density of each state is determined jointly by two Gaussian probability density
functions. A CGHMM can be expressed as:

λ = (π, A, µjk, σjk, cjk), (9)

where µjk is the mean vector of the Gaussian function, σjk the covariance matrix of the Gaussian
mixture, cjk the mixing coefficient matrix, and the index j denotes the state of HMM, k the Gaussian
mixture. The training procedure is as follows:

(a) Initial guess of parameters. It is generally considered that the initial values of parameters π and
A have little effect while the initial value of parameters µjk, σjk and cjk have a large influence on
the training result of HMMs. The initial values π and A can be set randomly or evenly. It will be
detailed in the empirical part. The initial parameters µ

(0)
jk , σ

(0)
jk and c(0)jk are estimated by using the

segmental k–means algorithm (see literature [40]).
(b) Model revaluation. In this study, the Baum–Welch algorithm was used to reevaluate the HMM

parameters. For each state of HMM, the constructed model λ is updated based on the following
revaluation equations:

π̂i = γ1(i),
âij = ∑T−1

t=1 ξt(i, j)
/

∑T−1
t=1 γt(i),

ĉjk = ∑T
t=1 γt(j, k)

/
∑T

t=1 ∑M
k=1 γt(j, k),

µ̂jk = ∑T
t=1 γt(j, k) · ot

/
∑T

t=1 γt(j, k),

σ̂jk = ∑T
t=1 γt(j, k) · (ot − µjk)

2
/

∑T
t=1 γt(j, k),

(10)

where γt(i) = P(qt = θi|O, λ) is the probability of being in state θi at time t given the observed
sequence O and model λ, ξt(i, j) = P(qt = θi, qt+1 = θj|O, λ) the probability of being in state θi
and θj at times t and t + 1 respectively given the observed sequence O and model λ.

(c) Model determination. The output probabilities of the samples under the new model P(O|λ) are
calculated by using the forward–backward algorithm. If the condition P(O|λ(n+1))− P(O|λ(n)) ≤ ε

is met, the model obtained in the last revaluation is considered the final model. Otherwise, return to
step (b) and continue reevaluating.
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(2) Construction of Input/Target Vectors of ANN.

The feature vectors of the training samples are fed to the HMM layer to calculate the output
probabilities of the samples for every HMM. The input vectors of ANN can be constructed with the
normalized probabilities of the samples under each of the trained HMMs. The target vectors are
constructed according to the state of the samples. The target probability is 1 if the sample belongs to
this health state and 0 if not.

(3) Selection and Training of ANN.

The selection and training procedure of ANN mainly includes the construction of training samples,
the selection of the ANN network model, and the training of ANN:

(a) Establishment of network. An ANN with three layers (input layer, output layer, and hidden
layer) is constructed. The number of neurons in the input layer is equal to the dimension of the
feature vector, and that of the output layer equals the number of health states. The number of
neurons in the hidden layer is mainly determined by tests, while the following empirical equation
gives a preliminary range:

h =
√
(m + n) + a (11)

where m is the number of neurons in the input layer, n the number of neurons in the output
layer, and a an integer constant between 1 and 10. Besides the network structures, the activation
functions are critical points for the performance of ANNs.

(b) Setting training parameters, e.g., selections of initial weight, threshold, goal, learning rate,
momentum factor, maximum epochs, as well as selections of learning function, training function,
and performance function. They are also selected according to their applicabilities, requirements
of tasks and through tests.

(c) Training of ANN. Use the samples to train ANN iteratively until the accuracy meets the goal
value or the accuracy does no longer improve. Thus, the trained ANN model is obtained.

3.3.2. Recognizing Process of the Hybrid Model

The recognizing process of the hybrid HMM–ANN model is as follows:

(a) Construction of input vectors for ANN. The samples to be identified are preprocessed and feature
extracted with the same method as used for training samples. Consequently, observed vectors
can be obtained. Next, use the feature vectors as input to calculate the output probabilities of the
samples to be identified for all trained HMMs. The input vectors of ANN are constructed with
these probability values.

(b) Probability prediction of samples to be identified for each health state. Using the input vectors to
produce the outputs of the trained ANN model. As a result, the predicted probabilities of the
samples to be identified for each health state are obtained.

(c) Classification decision. Finally, considering the highest likehood, the health states of the samples
to be identified are determined.

4. Application and Results

In order to check the performance of the proposed approach, a shearing experiment was carried
out in lab environments, and the approach was validated using the noise signals that were acquired in
the experiment.
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4.1. Experimental Rig Setup and Data Collection

4.1.1. Experimental Setup

The shearing experiment was carried out on a simulated spent fuel shearing machine that can
simulate the working processes (e.g., gripping, feeding and shearing of fuel assemblies) of the real
shearing machines. The simulated fuel assembly was designed according to the structure of AFA–2G
fuel assembly, and was simplified and reduced in scale. The structure of the fuel rods were made of 304
stainless steel, and the fuel rods were filled with Al2O3 ceramic blocks instead of UO2. The simulated
shearing machine and fuel assembly are shown in Figure 5 and 6. The main parameter settings of
the simulated shearing experiment are shown in the Table 1. In addition, an InLine 1000 high–speed
camera (made by Fastec Imaging Corporation, San Diego, CA, USA) was used to record the shearing
process through an observation hole designed on the simulated shearing machine.

Figure 5. The simulated shearing machine.

Figure 6. The simulated fuel assembly.

Table 1. The main parameter settings of the simulated shearing experiment.

Maximum Maximum Tool Feeding Feeding Step Section SizePressing Force Shearing Force Speed Distance

165 kN 785 kN 0.03 m/s 15 mm 65 × 65 mm

4.1.2. Noise Acquisition Method for Shearing Machines

The shearing machine, a complex piece of mechanical equipment, possesses many sound sources.
The noises of a shearing machine can be divided into working noises and unloaded noises. The working
noises mainly include shearing noises and tool–retracting noises. The unloaded noises are generated
by the shearing machines during unloaded operation, e.g., noises generated by the hydraulic and
pneumatic system, noises generated during loading and transport of material, and noises caused
by clearance of transmission components such as gears, push chains, bearings, and tool carriers.
The composition of shearing–machine noises is shown in Figure 7.
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Figure 7. Composition of shearing-machine noise.

The acquisition period equalled a complete working cycle of the shearing machine including
feeding process, shearing process, and tool–retreating process. Figure 8 shows a diachronic sound
pressure curve of the working cycle of a shearing machine. The curve clearly indicates the unloaded
noise, shearing noises, and tool–retreating noises. It is obvious that the shearing noises are most intense.

Figure 8. Diachronic sound pressure curve of a working cycle.

The moving–coil microphone has excellent anti–irradiation properties because it has no electronic
components or integrated circuits inside. Furthermore, benefitting from the high peak voltage of
its output signal, the ionizing noises caused by radiation have no significant effect on the signals.
Experiments showed that the moving-coil microphone can work without significant distortion after
receiving a total dose of 5.7 kGy [41]. In this study, the TS–5 moving–coil microphones (made by
Guangdong Takstar Electronic Co., Ltd., Huizhou, Guangdong, China) were chosen as the components
of the noise-acquisition unit, as shown in Figure 9.

Figure 9. TS–5 type moving-coil microphone.

To reduce the influence of background noises and operation noises, the noise–acquisition unit
was designed as a dual microphone. Microphone A was positioned near the shearing machine while
microphone B was positioned far away, as shown in Figure 10. As the distributions of background
noises are uniform, the difference of the background noises picked up by the two microphones is
not significant, while the energy and pressure of the working noises produced by shearing machines
decrease fast with the increasing distance from the sound sources. Therefore, the working noises
picked up by microphone A are much stronger than that of microphone B. Thus, using the difference
between the two sound channels, the signals are denoised.
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Figure 10. Positions of microphones.

After the denoising, the PCI–6280 data acquisition card (made by National Instruments
Corporation, Austin, TX, USA) was used for digital sampling of the signals. The spectrum analysis of
the noise signals showed that the energy is mainly within 7 kHz, and the maximum frequency does
not lie above 20 kHz. According to the Nyquist theorem, the sampling rate is at least two times higher
than the highest frequency of the analyzed signals. Hence, the sampling rate was set to 44.1 kHz.
The sampled data are saved as “.wav” audio files.

4.1.3. Collected Data

After each shearing, the tool wear condition and the opening rates of the fuel–rod segments were
checked to confirm the health state of the shearing machine. For the subsequent signal processing
using Matlab (R2015a, MathWorks Inc., Natick, MA, USA), the “.wav” audio files were converted
to the “.mat” data files. For an example, the time domain and frequency domain diagrams of noise
sample No. 1–32 are shown in Figure 11.

(a) (b)

Figure 11. The time and frequency–domain diagrams of noise sample No. 1–32. (a) time–domain
diagram; (b) frequency–domain diagram.

In this experiment, 170 valid samples were collected. The settings of health states and sample
indices are listed in Table 2.

Table 2. Settings of health states and sample indices.

State No. States Sample Indices

1 Normal (Normal state without faults) 1–1 to 1–45
2 Fault 2 (Slight tool wear) 2–1 to 2–40
3 Fault 3 (Severe tool wear) 3–1 to 3–50
4 Fault 4 (Damaged tool) 4–1 to 4–35
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4.2. Results and Discussions

4.2.1. Feature Extraction from Noise Samples

When using WPT for feature extraction, the decomposition level n is particularly critical because
the recognition accuracy rate is directly related to n. If n is too small, the energy is mainly concentrated
in some certain subbands, resulting in very little difference in the feature distribution of different
signals. The signals can not be distinguished effectively by the extracted features, while, if n is too
large, it will cause “dimension disaster”, which is the feature redundancy and empty subbands, and
increases the complexity of the classifier, eventually reducing the recognition accuracy rate. In the
test, when n was less than or equal to two, the recognition rate was less than 70%, while, when n
was greater than or equal to four, some empty bands appeared. It is appropriate to set n to be three,
where the energy features’ dimension is eight. Furthermore, from tests, the db5 wavelet function and
Shannon entropy were selected for a three–level wavelet packet decomposition of the noise signals.
The wavelet packet decomposition tree is shown in Figure 12.

Figure 12. Three–level wavelet packet decomposition tree.

To provide an example, the subband signals, which were reconstructed by the third–level nodes of
the noise sample No. 1–32, are shown in Figure 13. It indicates that eight subbands were decomposed
from the original signal.

Figure 13. Reconstructed subband signals of noise sample No. 1–32.
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The feature vectors of the first four samples of each health state are provided as examples in
Figure 14a–d.

(a) (b)

(c) (d)

Figure 14. Feature vectors of noise signals. (a) working state No. 1; (b) working state N. 2; (c) working
state No. 3; (d) working state No. 4.

The mean of feature element values in every frequency band of all samples for every health state
are listed in Table 3, and the comparison of the average energies of each frequency band for different
health states is shown in Figure 15a–h.

It can be seen in Figure 15 that the average energy of every frequency band for different health
states are significantly different. Therefore, the feature extraction method based on WPT is effective for
noise signals of shearing machines.

Table 3. Mean of feature element values of all samples in every frequency band for every health state.

Working State No.
Mean of Feature Element Values of All Samples in Every Frequency Band

band 1 band 2 band 3 band 4 band 5 band 6 band 7 band 8

1 0.7358 0.1819 0.0107 0.0622 0.0007 0.0021 0.0043 0.0023
2 0.6748 0.1537 0.0196 0.0779 0.0544 0.0054 0.0095 0.0046
3 0.7828 0.1283 0.0161 0.0506 0.0034 0.0041 0.0088 0.0060
4 0.6697 0.2064 0.0199 0.086 0.001 0.0027 0.0094 0.0049
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 15. Comparison of average energy of each frequency band for different health states. (a) band 1;
(b) band 2; (c) band 3; (d) band 4;(e) band 5; (f) band 6; (g) band 7; (h) band 8.

4.2.2. HMM–ANN Modeling and Fault Detection Results

In this study, 60% of the samples in each state were randomly chosen as training sets, while the
remaining 40% were put aside for testing. The numbers of samples of each sample sets and state
category are shown in Table 4.

Table 4. The numbers of samples of each sample sets and state category.

Sample Sets Normal Fault 2 Fault 3 Fault 4 Total

Training 27 24 30 21 102
Testing 18 16 20 14 68

The tool wear process is continuous and irreversible, that is, the latter state can not transition
back to the previous state. Therefore, the left–right HMM (which permit only left to right transitions)
with good effect and fast speed was chosen. The number of states was set to be N = 4. Since the initial
state was “normal”, the initial state distribution was set to be π(0) = [1, 0, 0, 0]. In addition, the initial
state–transition probability matrix was set evenly to be

A(0) =


0.5 0.5 0 0

0 0.5 0.5 0
0 0 0.5 0.5
0 0 0 1

 .

The initial shape of the chosen HMM are shown in Figure 16.

Figure 16. The initial shape of the chosen HMM.
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In accordance with the general practice, purelin (linear activation function) was used for the
output layer of ANN. Logsig (sigmoid function) is very similar to tansig (hyperbolic tangent function
function) [42]. However, tansig is considered to be better for its range is normalized from −1 to 1
while logsig is vertically translated to normalize from 0 to 1. Thus, tansig was chosen as the activation
function of the hidden layer. According to the activation function, the initial weights should be
randomly selected between (−1, 1). In this study, the initial weights and thresholds were randomly
generated by the newff function in Matlab’s neural network toolbox. The learning rate was set to
0.01, the momentum factor to 0.9, and the maximum epochs to 300. The learning function chose
learngdm (gradient descent with momentum weight and bias learning function), and the performance
function chose mse (mean squared error performance function). For eliminating some disadvantages
of the gradient–descent method, such as the slow training speed, the traingdx (gradient descent
with adaptive learning rate), trainrp (resilient backpropagation), trainlm (Levenberg–Marquardt),
and trainscg (scaled conjugate gradient) algorithms were selected as candidate algorithms for network
training. To select the optimal parameter setting of ANN, more than twenty various parameter settings
were tested, partly shown in Table 5. The table indicates that a network with ten neurons in the hidden
layer proves to be an optimal ANN, and the trainlm (Levenberg–Marquardt) proves to be the best
training function.

Table 5. The performance of ANN for different settings.

Training Rule Neurons in Hidden Layer Training Error (mse) R

trainlm 10 3.10 × 10−10 1
traingdx 10 5.00 × 10−2 0.85633
trainrp 10 4.62 × 10−2 0.86827
trainscg 10 1.44 × 10−2 0.96095
trainlm 5 2.26 × 10−3 0.99397
trainlm 8 3.40 × 10−5 0.99991
trainlm 12 7.12 × 10−9 1
trainlm 14 2.22 × 10−8 1

The extracted energy feature vectors of the training samples (known state categories) were fed to
the HMM layer. Then, some HMMs were obtained by learning the samples. The goal for the ANN
training was set to 10−4. The input/target vector pairs (constructed by the method mentioned above)
were fed to the ANN layer. After the training converged, the ANN model was obtained.

The extracted energy feature vectors of the testing samples were fed to the trained hybrid
HMM–ANN model. The predicted values are shown in Table 6.

Table 6. Comparisons of health states and HMM–ANN outputs.

States State No. Predicted Values

Normal 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 – –
Fault 2 2 2 3 2 2 2 3 2 2 2 2 2 2 2 2 2 2 – – – –
Fault 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 4 3 3
Fault 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 – – – – – –

Total samples for validation: 68, correct predictions: 62, accuracy rate: 91.18%.

As seen in Table 6, 68 samples including normal and faulty health states were used in the
prediction, and 91.18% samples (a total of 62) were predicted correctly. Especially for the samples of
fault 4 (damaged tool), the accuracy rate reached 100%.

4.2.3. Comparative Analysis Results

To verify the enhancement of the HMM–ANN prediction accuracy, two more comparison
experiments were carried out. An isolated HMM model and an isolated ANN model were established.
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For comparison purposes, the isolated HMM and ANN model used the same parameter settings and
initial values (or initialization method) as for the hybrid HMM–ANN model. Furthermore, the same
training and testing sample sets were applied, and the same three–level WPT method was used for
feature extraction. The extracted energy feature vectors of the training samples (known state categories)
were fed to train the isolated HMM. In addition, the input/target vector pairs (the input vectors were
the extracted energy feature vectors, target vectors were constructed by the above mentioned method)
are fed to train the isolated ANN. Then, the feature vectors of the testing samples were fed to the
trained HMM and ANN. The results are shown in Tables 7 and 8.

Table 7. Comparison of health states and HMM outputs.

States State No. Predicted Values

Normal 1 1 1 3 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 – –
Fault 2 2 2 4 2 2 2 4 2 2 2 2 2 2 2 2 2 2 – – – –
Fault 3 3 3 3 3 3 3 3 3 2 3 3 2 3 2 3 3 3 3 2 3 3
Fault 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 – – – – – –

Total samples for validation: 68, correct predictions: 59, accuracy rate: 86.76%.

Table 8. Comparisons of health states and ANN outputs.

States State No. Predicted Values

Normal 1 4 3 3 4 4 4 1 1 1 4 1 1 1 1 1 1 1 1 – –
Fault 2 2 4 2 2 2 2 2 4 4 2 2 2 2 2 2 4 2 – – – –
Fault 3 3 3 3 3 4 3 3 4 4 4 3 2 3 4 4 3 3 3 3 4 3
Fault 4 4 2 4 4 2 1 4 2 4 2 4 4 2 2 4 – – – – – –

Total samples for validation: 68, correct predictions: 42, accuracy rate: 61.76%.

Comparing Table 6 with Tables 7 and 8 shows that some prediction errors in the isolated HMM
or ANN model were correctly predicted in the hybrid HMM–ANN model. As seen from Figure 17,
for Faults 1 and 3, the hybrid model gave better results than the isolated HMM, while, for Faults 2
and 4, they had the same accuracy rates. By contrast, for each health state, the hybrid model gave
better results than the isolated ANN model. Furthermore, the total accuracy of the hybrid HMM–ANN
model was significantly higher than that of the isolated HMM or ANN model.

Figure 17. Comparison of HMM, ANN and HMM–ANN.

Note that accuracy of the proposed approach strictly depends on the availability of the complete
(e.g., in each health state) condition monitoring data. Hence, to avoid accuracy reduction in fault
diagnostics, the proposed approach should be validated with the complete data samples.

5. Conclusions

In this paper, an intelligent condition monitoring approach consisting of WPT–based feature
extraction and hybrid HMM–ANN based fault detection steps was proposed. The proposed approach
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was validated using the noise signals, which were acquired from shearing machines under the lab
environments. The verification results showed that the extracted features of the working noises
can well characterize the health states of shearing machine, the hybrid model which combined the
advantage on dynamic–modeling of HMM and pattern recognition of ANN is effective—the accuracy
rate is significantly higher than that of the isolated HMM or ANN model.
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