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Abstract: This paper proposed an improved image semantic segmentation method based on
superpixels and conditional random fields (CRFs). The proposed method can take full advantage
of the superpixel edge information and the constraint relationship among different pixels. First,
we employ fully convolutional networks (FCN) to obtain pixel-level semantic features and utilize
simple linear iterative clustering (SLIC) to generate superpixel-level region information, respectively.
Then, the segmentation results of image boundaries are optimized by the fusion of the obtained
pixel-level and superpixel-level results. Finally, we make full use of the color and position information
of pixels to further improve the semantic segmentation accuracy using the pixel-level prediction
capability of CRFs. In summary, this improved method has advantages both in terms of excellent
feature extraction capability and good boundary adherence. Experimental results on both the PASCAL
VOC 2012 dataset and the Cityscapes dataset show that the proposed method can achieve significant
improvement of segmentation accuracy in comparison with the traditional FCN model.

Keywords: image semantic segmentation; superpixels; conditional random fields; fully convolutional
network

1. Introduction

Nowadays, image semantic segmentation has become one of the key issues in the field of computer
vision. A great deal of scenarios are under increasing demand for abstracting relevant knowledge
or semantic information from images, such as autonomous driving, human-machine interaction,
and image search engine [1–3]. As a preprocessing step for image analysis and visual comprehension,
semantic segmentation is used to classify each pixel in the image and divide the image into a number
of visually meaningful regions. In the past decades, researchers have proposed various methods
including the simplest pixel-level thresholding methods, clustering-based segmentation methods,
and graph partitioning segmentation methods [4] to yield the image semantic segmentation results.
These methods have high efficiency due to their having low computational complexity with fewer
parameters. However, their performance is unsatisfactory for image segmentation tasks without any
artificial supplementary information.

With the growing development of deep learning in the field of computer vision, the image
semantic segmentation methods based on convolutional neural networks (CNNs) [5–14] have been
proposed one after another, far exceeding the traditional methods in accuracy. The first end-to-end
semantic segmentation model was proposed as a CNN variant by Long et al. [15], known as FCN.
They popularized CNN architectures for dense predictions without any fully connected layers. Unlike
the CNNs, the output of FCN becomes a two-dimensional matrix instead of a one-dimensional vector
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during the image semantic segmentation. It is the first time image classification on a pixel-level
has been realized, which is a significant improvement in accuracy. Subsequently, a large number of
FCN-based methods [16–20] have been addressed to promoting the development of image semantic
segmentation. As one of the most popular pixel-level classification methods, the DeepLab models
proposed by Chen et al. [21–23] make use of the fully connected CRF as a separated post-processing step
in their pipeline to refine the segmentation result. The earliest version of DeepLab-v1 [21] overcomes
the poor localization property of deep networks by combining the responses at the final FCN layer with
a CRF for the first time. By using this model, all pixels, no matter how far apart they lie, are taken into
account, rendering the system able to recover detailed structures in the segmentation that were lost due
to the spatial invariance of the FCN. Later, Chen et al. extended their previous work and developed the
DeepLab-v2 [22] and DeepLab-v3 [23] with improved feature extractors, better object scale modeling,
careful assimilation of contextual information, improved training procedures, and increasingly
powerful hardware and software. Benefiting from the fine-grained localization accuracy of CRFs,
the DeepLab models are remarkably successful in producing accurate semantic segmentation results.
At the same time, the superpixel method, a well-known image pre-processing technique, has been
rapidly developed in recent years. Existing superpixel segmentation methods can be classified
into two major categories: graph-based methods [24,25] and gradient-ascent-based methods [26,27].
As one of the most widely used methods, SLIC adapts a k-means clustering approach to efficiently
generate superpixels, which has been proved better than other superpixel methods in nearly every
respect [27]. SLIC deserves our consideration for the application of image semantic segmentation due
to its advantages, such as low complexity, compact superpixel size, and good boundary adherence.

Although researchers have made some achievements, there is still much room for improvement
in image semantic segmentation. We observe that the useful details such as the boundaries of images
are often neglected because of the inherent spatial invariance of FCN. In this paper, an improved
image semantic segmentation method is presented, which is based on superpixels and CRFs. Once the
high-level abstract features of images are extracted, we can make use of the low-level cues, such as
the boundary information and the relationship among pixels, to improve the segmentation accuracy.
The improved method is briefly summarized as follows: First, we employ FCN to extract the pixel-level
semantic features, while the SLIC algorithm is chosen to generate the superpixels. Then, the fusion
of the two obtained pieces of information is implemented to get the boundary-optimized semantic
segmentation results. Finally, the CRF is employed to optimize the results of semantic segmentation
through its accurate boundary recovery ability. The improved method possesses not only excellent
feature extraction capability but also good boundary adherence.

The rest of this paper is organized as follows. Section 2 provides an overview of our method.
Section 3 describes the key techniques in detail. In Section 4, experimental results and discussion are
given. Finally, some conclusions are drawn in Section 5.

2. Overview

An improved image semantic segmentation method based on superpixel and CRFs is proposed
to improve the performance of semantic segmentation. In our method, the process of semantic
segmentation can be divided into two stages. The first stage is to extract semantic information from
input image as much as possible. In the second stage (also treated as post-processing steps), we intend
to optimize the coarse features generated during the first stage. As a widely used post-processing
technique, CRFs are introduced into the image semantic segmentation. However, the performance
of CRFs depends on the quality of feature maps, so it is necessary to optimize the first stage results.
To address this problem, the boundary information of superpixels is combined with the output of the
first stage for the boundary optimization, which helps CRFs recover the information of boundaries
more accurately.

Figure 1 illustrates the flow chart of the proposed method, in which red boxes denote two stages
and blue boxes denote three processing steps. In the first step, we use the FCN model to extract
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the feature information from the input image to obtain pixel-level semantic labels. Although the
trained FCN model has fine feature extraction ability, the result is still relatively rough. Meanwhile,
the SLIC algorithm is employed to segment the input image and generate a large number of superpixels.
In the second step, also the most important, we use coarse features to reassign semantic predictions
within each superpixel. Benefiting from the good image boundary adherence of superpixel, we obtain
the results of boundary optimization. In the third step, we employ CRFs to predict the semantic
label of each pixel for further refining the segmentation boundaries. At this point, the final semantic
segmentation result is obtained. Both the high-level semantic information and the low-level cues in
image boundaries are fully utilized in our method.
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3. Key Techniques

In this section, we describe the theory of feature extraction, boundary optimization, and accurate
boundary recovery. The key point is the application of superpixels, which affects the optimization
of coarse features and the pixel-by-pixel prediction of CRF model. The technical details are
discussed below.

3.1. Feature Extraction

Different from the classic CNN model, the FCN model can take images of arbitrary size as inputs
and generate correspondingly-sized outputs, so we employ it to implement the feature extraction
in our semantic segmentation method. In this paper, the VGG-based FCN is selected due to its best
performance among various structures of FCN model. The VGG-based FCN is transformed from the
VGG-16 [28] by replacing the fully connected layers with convolutional ones and keeping the first five
layers. After multiple iterations of convolution and pooling, the resolution of the resulting feature
map gets lower and lower. Upsampling is required to restore the coarse feature to the output image
with the same size as the input one. In the implementation procedure, the resolution of the feature
maps is reduced by 2, 4, 8, 16, and 32 times, respectively. Then, upsampling the output of the last
layer by 32 times can get the result of FCN-32s. Because the large magnification leads to the lack of
image details, the results of FCN-32s are not accurate enough. To improve the accuracy, we added
more detailed information of the last few layers, and combined them with the output of FCN-32s.
By this means, the FCN-16s and the FCN-8s can be derived.

An important problem that needs to be solved in semantic segmentation is how to combine
“where” with “what” effectively. In other words, semantic segmentation is to classify pixel-by-pixel
and combine the information of position and classification together. On one hand, due to the difference
in receptive fields, the resolution is relatively higher in the first few convolutions, and the positioning of
the pixels is more accurate. On the other hand, in the last few convolutions, the resolution is relatively
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lower and the classification of the pixels is more accurate. An example of three models is shown in
Figure 2.
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It is can be observed from Figure 2 that the result of FCN-32s is drastically smoother and less
refined. This is because the receptive field of FCN-32s model is larger and more suitable for macroscopic
perception. In contrast, the receptive field of FCN-8s model is smaller and more suitable for feeling
the details. From Figure 2 we can also see that the result of FCN-8s, which is closest to the ground
truth, is significantly better than those of FCN-16s and FCN-32s. Therefore, we choose FCN-8s as
the front-end to extract the coarse features of images. However, the results of FCN-8s are still far
from perfect and insensitive to the details of images. In the following, the two-step optimization is
introduced in detail.

3.2. Boundary Optimization

In this section, more attention is paid to the optimization of image boundaries. There are some
image processing techniques that can be used for the boundary optimization. For example, the method
based on graph cut [29] can obtain better edge segmentation results, but it relies on human interactions,
which is unacceptable for processing a large number of images. In addition, some edge detection
algorithms [30] are often used to optimize the boundary of images. These algorithms share the common
feature that the parameters for a particular occasion are fixed, which are more applicable to some
specific applications. However, when solving general border tracing problems for images containing
unknown objects and backgrounds, the fixed parameter approach often fails to achieve the best results.
In this work, superpixel is selected for the boundary optimization purpose. Generally, a superpixel can
be treated as a set of pixels that are similar in location, color, texture, etc. According to this similarity,
superpixels have a certain visual significance in comparison with pixels. Although a single superpixel
has no valid semantic information, it is a part of an object that has semantic information. Besides,
the most important property of superpixels is its ability to adhere to image boundaries. Based on this
property, superpixels are applied to optimize the coarse features extracted by the front end.

As shown in Figure 3, SLIC is used to generate superpixels, and then the coarse features are
optimized by the object boundaries from these superpixels. To some degree, this method can improve
the segmentation accuracy of the object boundaries. The critical algorithm of boundary optimization is
completely demonstrated in Algorithm 1.

Figure 4 shows the result of boundary optimization by applying Algorithm 1. As can be seen
from the partial enlarged details in Figure 4, the edge information of superpixels is utilized effectively,
and thus a more accurate result can be obtained.

It is observed from the red box in Figure 4 that a number of superpixels with sharp, smooth,
and prominent edges adhere the boundaries of object well. Due to diffusion errors in the upsampling
process, a few pixels inside these superpixels have different semantic information. A common mistake
is to misclassify background pixels as another classification. Figure 4 shows that this kind of mistake
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can be corrected effectively using our optimization algorithm. There are some other superpixels with
more types of semantic information, while the number of pixels with different classification is about
the same. These superpixels can be found in the weak edges or thin structures of images, which are
easy to misclassify in a complex environment. For these superpixels, we keep the segmentation results
with those delivered by the front end.
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Algorithm 1. The algorithm of boundary optimization.

1. Input image I and coarse features L.
2. Apply SLIC algorithm to segment the whole image into K superpixels R = {R1, R2, . . . , RK}, in which

Ri is a superpixel region with label i.
3. Outer loop: For i = 1: K

1© Use M = {C1, C2, . . . , CN} refers to all pixels in Ri, in which Cj is a pixel with classification j.

2© Get the feature of each pixel in C from the front end. Initialize the weight WC with 0.
3© Inner loop: For j = 1: N

Save the feature label of Cj as LCj , and update weight WCj of the label in the entire superpixel.

WCj = W ′Cj
+

1
N

, in which W ′Cj
denotes the last value o f WCj

If WCj > 0.8, then exit the inner loop.

End
4© Search for WC.

If there is a WCj > 0.8, then move on to the next step.

Else

Search the maximum Wmax and the sub-maximum Wsub.

If Wmax −Wsub > 0.2, then move on to the next step.

Else continue the outer loop.
5© Reassign the classification of current superpixel with LCmax .

End
4. Output the image Ĩ.
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3.3. Accurate Boundary Recovery

After the above boundary optimization, it is still necessary to improve the segmentation accuracy
of the thin structure, weak edge, and complex superposition. Therefore, we employ the CRF model to
recover the boundaries more accurately, i.e., to further optimization. To clearly show the effect of the
CRF model, an example is given in Figure 5.
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Consider the pixel-wise labels as random variables and the relationship between pixels as edges,
and correspondingly constitute a conditional random field. These labels can be modelled after we
obtain global observations, which are usually the input images. In detail, a global observation I is
represented as the input image of N pixels in our method. Then, given a graph G = (V, E), V and
E denotes the vertices and the edges of the graph, respectively. Let X be the vector formed by the
random variables X1, X2, . . . , XN , in which Xi is the random variable representing the label assigned
to the pixel i. A conditional random field conforms to Gibbs distribution, and the pair (I, X) can be
modelled as

P(X = x|I) = 1
Z(I)

·exp(−E(x|I)), (1)

in which E(x) is the Gibbs energy of a labeling x ∈ LN and Z(I) is the partition function [31]. The fully
connected CRF model [32] employs the energy function

E(x) = ∑i φi(xi) + ∑i,j ψi,j
(
xi, xj

)
, (2)

in which φi(xi) is the unary potentials that represent the probability of the pixel i taking the label xi,
and ψi,j

(
xi, xj

)
is the pairwise potentials that represent the cost of assigning labels xi, xj to pixels i, j at

the same time. In our method, the unary potentials can be treated as the boundary optimized feature
map that can help improve the performance of CRF model. The pairwise potentials usually model
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the relationship among neighboring pixels and are weighted by color similarity. The expression is
employed for pairwise potentials [32] as shown below:

ψi,j
(

xi, xj
)
= µ

(
xi, xj

)[
ω1exp

(
−
∣∣∣∣pi − pj

∣∣∣∣2
2σ2

α
−
∣∣∣∣Ii − Ij

∣∣∣∣2
2σ2

β

)
+ ω2exp(−

∣∣∣∣pi − pj
∣∣∣∣2

2σ2
γ

)

]
, (3)

in which the first term depends on both pixel positions and pixel color intensities, and the second term
only depends on pixel positions. Ii, Ij are the color vectors, and pi, pj are the pixel positions. The other
parameters are described in the previous work [32]. As shown in the Potts model [33], µ

(
xi, xj

)
is equal

to 1 if xi 6= xj, and 0 otherwise. It means that nearby similar pixels assigned different labels should be
penalized. In other words, similar pixels are encouraged to be assigned the same label, whereas pixels
that differ greatly in “distance” are assigned different labels. The definition of “distance” is related
to the color and the actual distance; thus, the CRF can segment images at the boundary as much as
possible. Partial enlarged details shown in Figure 6 are used to explain the analysis of the accurate
boundary recovery.
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4. Experimental Evaluation

In this section, we first describe the used experimental setup, including the datasets and the
selection of parameters. Next, we provide comprehensive ablation study of each component of
the improved method. Then, the evaluation of the proposed method is given, together with other
state-of-the-art methods. Qualitative and quantitative experimental results are presented entirely,
and necessary comparisons are performed to validate the competitive performance of our method.

4.1. Experimental Setup

We use the PASCAL VOC 2012 segmentation benchmark [34], as it has become the standard
dataset to comprehensively evaluate any new semantic segmentation methods. It involves
20 foreground classes and one background class. For our experiments on VOC 2012, we adopt
the extended training set of 10,581 images [35] and a reduced validation set of 346 images [20].
We further evaluate the improved method on the Cityscapes dataset [36], which focuses on semantic
understanding of urban street scenes. It consists of around 5000 fine annotated images of street scenes
and 20,000 coarse annotated ones, in which all annotations are from 19 semantic classes.

From Figure 7, it can be seen that as the number of superpixels increases; a single superpixel
will get closer to the edge of the object. Most of images in VOC dataset have a resolution of around
500× 500, so we set the number of superpixels to 1000. For Cityscapes dataset, we set the number of
superpixels to 6000 due to the high-resolution of images. In our experiments, 10 mean field iterations
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are employed for CRF. Meanwhile, we use default values of ω1 = σr = 3 and set ω1 = 5, σα = 49 and
σβ = 3 by the same strategy in [22].Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 17 
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Figure 7. Results with different superpixel number. The first row: SLIC segmentation results with 100,
500, and 1000 superpixels on an example image in VOC dataset. The second row: SLIC segmentation
results with 1000, 3000, and 6000 superpixels on an example image in Cityscapes dataset.

The standard Jaccard Index (Figure 8), also known as the PASCAL VOC intersection-over-union
(IoU) metric [34], is introduced for the performance assessment in this paper:
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Figure 8. The standard Jaccard Index, in which TP, FP, and FN are the numbers of true positive, false
positive, and false negative pixels.

According to Jaccard Index, many evaluation criteria have been proposed to evaluate the
segmentation accuracy. Among them, PA, IoU, and mIoU are often used, and their definitions
can be found in the previous work [37]. We assume a total of k + 1 classes (including a background
class), and pij is the amount of pixels of class i inferred to class j. pii represents the number of true
positives, while pij and pji are usually interpreted as false positives and false negatives, respectively.
The formulas of PA, IoU, and mIoU are shown below:

Pixel Accuracy (PA):

PA =
∑k

i=0 pii

∑k
i=0 ∑k

j=0 pij
, (4)

which computes a ratio between the number of properly classified pixels and the total number of them.

Intersection Over Union (IoU):

IoU =
pii

∑k
j=0 pij + ∑k

j=0 pji − pii
, (5)

which is used to measure whether the target in the image is detected.
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Mean Intersection Over Union (mIoU):

mIoU =
1

k + 1 ∑k
i=0 IoUi, (6)

which is the standard metric for segmentation purposes and computed by averaging IoU.
mIoU computes a ratio between the ground truth and our predicted segmentation.

4.2. Ablation Study

The core idea of the improved method lies in the utility of superpixels and the optimization of
CRF model. First, to evaluate the importance of the utility of superpixels, we directly compared the
plain FCN-8s model with the boundary optimized one. Then, the FCN-8s with CRF and our proposed
method are implemented sequentially. For better understanding, the results of these comparative
experiments are shown in Figure 9 and Table 1.
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Figure 9. An example result of the comparative experiments. (a) The input image, (b) the result of
plain FCN-8s, (c) the boundary optimization result by superpixels, (d) the result of FCN-8s with CRF
post-processing, (e) the result of our method, and (f) the ground truth.

From the results, we see that methods with boundary optimization by superpixels consistently
perform better than the counterparts without optimization. For example, as shown in Table 1,
the method with boundary optimization is 3.2% better than the plain FCN-8s on VOC dataset,
while the improvement becomes 2.8% on Cityscapes dataset. It can be observed that the object
boundaries in Figure 9c are closer to the ground truth than Figure 9b. Based on the above experimental
results, we can conclude that the segmentation accuracy of the object boundaries can be improved
by the utility of superpixels. Table 1 also shows that, for the FCN-8s with CRF applied as a
post-processing step, the better performance can be observed after boundary optimization. As shown
in Figure 9d,e, the results of our method are more similar with the ground truth than that without
boundary optimization. The mIoU scores of the two right-most columns also corroborated this point,
with an improvement of 5% on VOC dataset and 4.1% on Cityscapes dataset.

Table 1. The mIoU scores of the comparative experiments.

DatasetMethod Plain FCN-8s With BO 1 With CRF Our Method

VOC 2012 62.7 65.9 69.5 74.5
Cityscapes 56.1 58.9 61.3 65.4

1 BO denotes the Boundary Optimization.

The purpose of using CRFs is to recover the boundaries more accurately. We compared the
performance of plain FCN-8s with/without CRF under the same situation. From Table 1, it is
clear that CRF consistently boosts classification scores on both the VOC dataset and the Cityscapes
dataset. Besides, we compared the performance of boundary optimized FCN-8s with/without CRF.
In conclusion, methods optimized by CRFs outperform the counterparts by a significant margin,
which shows the importance of boundary optimization and CRFs.
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4.3. Experimental Results

4.3.1. Qualitative Analysis

According to the method proposed in this paper, we have obtained the improved semantic
segmentation results. The comparisons on VOC dataset among FCN-8s, DeepLab-v2 [22], and our
method are shown in Figure 10.
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As shown in Figure 10, our results are significantly closer to the ground truth than those by
FCN-8s, especially for the segmentation of the object edges in images. By comparing the results
obtained by FCN-8s with ours, it can be seen that they are the same color and they have a similar
object outline, which indicates that our method inherits feature extraction and object recognition
abilities of FCN. In addition, our method can get finer details than DeepLab-v2 in the vast majority
of categories, which profits from the boundary optimization of coarse features. From segmentation
results of each image in Figure 10, we also notice the following details: (a) All these methods can
identify the classification of the single large object and locate the region accurately, due to the excellent
extraction ability of CNNs. (b) In the complex scene, these methods cannot work effectively due to
the error of extracted features, even employing different post-processing steps. (c) Small objects are
possible to be misidentified or missed, due to the lack of the pixels describing the small objects.

It is worth mentioning that, in some details of Figure 10, such as the rear wheel of the first
bicycle, the results of DeepLab-v2 seem better than ours. The segmentation result of DeepLab-v2
almost completely retained the rear wheel of the first bicycle. However, it cannot be overlooked that
DeepLab-v2 fails to properly process the front wheels of the two bicycles. In contrast, the front wheels
processed by our method are closer to that of ground truth. For the rear wheel missing problem,
some analysis is made on the difference among the bicycle body, solid rear wheel, and background.
The solid rear wheel has a distinguished color with compassion of the background, but at the same
time, the same case exists in the bicycle body and solid rear wheel, leading to a large probability of
misrecognition. Additionally, the non-solid wheel is much more common than the solid one in the real
scenario; therefore, the CRF model tends to predict the non-solid wheel.

The proposed semantic segmentation method is implemented on Cityscapes dataset. Some visual
results proposed by FCN-8s, DeepLab-v2, and our method are shown in Figure 11. Similar to the
results on PASCAL VOC 2012 dataset, the improved method achieves better performance than others.
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4.3.2. Quantitative Analysis

PASCAL VOC 2012 Dataset

The per-class IoU scores on VOC dataset among FCN-8s, the proposed method, and other popular
methods are shown in Table 2. It can be observed that our method achieves the best performance in
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most categories, which is consistent with the conclusion obtained in qualitative analysis. In addition,
the proposed method outperforms prior methods in mIoU metric; it reaches the highest 74.5% accuracy.

Table 2. Per-class IoU score on VOC dataset. Best performance of each category is highlighted in bold.

FCN-8s Zoom-Out [38] DeepLab-v2 CRF-RNN [20] GCRF [39] DPN [40] Our Method

areo 74.3 85.6 86.6 87.5 85.2 87.7 85.5
bike 36.8 37.3 37.2 39.0 43.9 59.4 40.1
bird 77.0 83.2 82.1 79.7 83.3 78.4 83.1
boat 52.4 62.5 65.6 64.2 65.2 64.9 66.3

bottle 67.7 66.0 71.2 68.3 68.3 70.3 74.2
bus 75.4 85.1 88.3 87.6 89.0 89.3 91.3
car 71.4 80.7 82.8 80.8 82.7 83.5 82.3
cat 76.3 84.9 85.6 84.4 85.3 86.1 87.5

chair 23.9 27.2 36.6 30.4 31.1 31.7 33.6
cow 69.7 73.2 77.3 78.2 79.5 79.9 82.2
table 44.5 57.5 51.8 60.4 63.3 62.6 62.3
dog 69.2 78.1 80.2 80.5 80.5 81.9 85.9

horse 61.8 79.2 77.1 77.8 79.3 80.0 83.0
mbike 75.7 81.1 75.7 83.1 85.5 83.5 83.4
person 75.7 77.1 82.0 80.6 81.0 82.3 86.6
plant 44.3 53.6 52.0 59.5 60.5 60.5 56.9
sheep 68.2 74.0 78.2 82.8 85.5 83.2 86.3
sofa 34.1 49.2 44.9 47.8 52.0 53.4 49.4
train 75.5 71.7 79.7 78.3 77.3 77.9 80.4

tv 52.7 63.3 66.7 67.1 65.1 65.0 69.9
mIoU 62.7 69.6 71.2 72.0 73.2 74.1 74.5

This work proposed a post-processing method to improve the FCN-8s result. During the
implementation procedure, the superpixel and the CRF are used subsequently to improve the coarse
results extracted by FCN-8s. Therefore, the comparison with FCN-8s is the most primary and direct
way to illustrate the improvement level of our method. Meanwhile, to further evaluate the performance
of our method, the comparison with DeepLab has been made. The IoU, mIoU, and PA scores of FCN-8s
and DeepLab-v2, and our methods are given in Figure 12.
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Figure 12. IoU, mIoU, and PA scores on the PASCAL VOC 2012 dataset.
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It can be observed from Figure 12, compared with FCN-8s, that the proposed method significantly
improves the IoU score in every category with higher mIoU and PA scores. In addition, our method
is better than DeepLab-v2 in most categories (except for aero plane, car and chair). The detailed
improvement statistics are shown in Figure 13.
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As shown in Figure 13, our method can be significantly improved compared with FCN-8s,
which reach up to 11.8% in mIoU and 17.4% in PA, respectively. For DeepLab-v2, the improvements of
mIoU and PA are 3.3% and 1.7%. Moreover, Figure 13 intuitively shows the improvement level using
our method in comparison with FCN-8s and DeepLab. The improvement can be clearly observed
in 100% (21/21) of categories when compared with FCN-8s. Meanwhile, there is 85.71% (18/21) of
categories improvement in comparison withDeepLab-v2. In summary, our method achieved the best
performance among these three methods.

Cityscapes Dataset

We conducted an experiment on the Cityscapes dataset, which differs from the previous one in
the high-resolution images and the number of classes. We used the provided partitions of training and
validation sets, and the obtained results are reported in Table 3. It can be observed that the evaluation
on the Cityscapes validation set is similar to that on the VOC dataset. Using our method, the highest
mIoU score can reach up to 65.4%. The IoU, mIoU, and PA scores of FCN-8s, DeepLab-v2, and our
method are given in Figure 14.

Table 3. Per-class IoU score on Cityscapes dataset. Best performance of each category is highlighted
in bold.

FCN-8s DPN [40] CRF-RNN [20] DeepLab-v2 Our Method

road 95.9 96.3 96.3 96.8 97.2
sidewalk 71.5 71.7 73.9 75.6 78.9
building 85.9 86.7 88.2 88.2 88.8

wall 25.9 43.7 47.6 31.1 35.1
fence 38.4 31.7 41.3 42.6 43.3
pole 31.2 29.2 35.2 41.2 40.2

traffic light 38.3 35.8 49.5 45.3 44.3
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Table 3. Cont.

FCN-8s DPN [40] CRF-RNN [20] DeepLab-v2 Our Method

traffic sign 52.3 47.4 59.7 58.8 59.3
vegetation 87.3 88.4 90.6 91.6 93.5

terrain 52.1 63.1 66.1 59.6 61.6
sky 87.6 93.9 93.5 89.3 94.2

person 61.7 64.7 70.4 75.8 79.3
rider 32.9 38.7 34.7 41.2 43.9
car 86.6 88.8 90.1 90.1 94.1

truck 36.0 48.0 39.2 46.7 53.4
bus 50.8 56.4 57.5 60.0 66.0

train 35.4 49.4 55.4 47.0 51.8
motorcycle 34.7 38.3 43.9 46.2 47.3

bicycle 60.6 50.0 54.6 71.9 70.4
mIoU 56.1 59.1 62.5 63.1 65.4
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It can be observed from Figure 14 that the proposed method has significantly improved the IoU,
mIoU, and PA scores in every category with the comparison of FCN-8s. Similar to the results in VOC
2012 dataset, our method is better than DeepLab-v2 in most categories (except for pole, traffic light,
and bicycle). The detailed improvement statistics are shown in Figure 15.

As shown in Figure 15, our method can get a significant improvement compared with FCN-8s,
which reach up to 9.3% in mIoU and 9.1% in PA, respectively. Moreover, Figure 15 intuitively
shows the improvement level using our method with the comparison of FCN-8s and DeepLab-v2.
The improvement can be clearly observed in 100% (19/19) of categories when compared with FCN-8s
and 84.21% (16/19) of categories when compared with DeepLab-v2, respectively.
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5. Conclusions

In this paper, an improved semantic segmentation method is proposed, which utilizes the
superpixel edges of images and the constraint relationship between different pixels. First, our method
has the ability to extract advanced semantic information, which is inherited from the FCN model. Then,
to effectively optimize the boundaries of results, our method takes into account the good adherence to
the edges of superpixels. Finally, we apply CRF to further predict the semantic information of each pixel,
and make full use of the local texture features of the image, global context information, and smooth
priori. Experiment results show that our method can achieve the more accurate segmentation result.
Using our method, mIoU scores can reach up to 74.5% on the VOC dataset and 65.4% on the Cityscapes
dataset, which are 11.8% and 9.3% improvements over FCN-8s, respectively.
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