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Abstract: The continuous operation of modern society is dominated by interdependent networks,
such as energy networks, communication networks, and traffic networks. As a result, the robustness
of interdependent networks has become increasingly important in recent years. On the basis of past
research, a no-feedback interdependent networks model is introduced. Compared with previous work,
this model is more consistent with the characteristics of real interdependent systems. In addition,
two types of failure modes, unilateral failure and bilateral failure, are defined. For each failure
mode, the influence of coupling strength and dependency strength on the robustness of no-feedback
interdependent networks was analyzed and discussed in relation to various giant component sizes.
The simulation results indicated that the robustness of the no-feedback interdependent networks
was inversely proportional to coupling strength and dependency strength, and the effect of coupling
strength and dependency strength on the robustness was equivalent. These conclusions are beneficial
for helping researchers and engineers to build more robust interdependent systems.
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1. Introduction

The continuous well-adjusted operation of modern society is ubiquitous, however it should not
be taken for granted. Many critical national infrastructure networks are indispensable, including
energy networks, communication networks, and traffic networks. Most of these networks are not
independent, i.e., the substance, energy, and information exchanges always exist, resulting in so-called
interdependent networks. Evaluating the robustness of such systems is of great significance for
the design of resilient infrastructures. However, analyzing the nature of interdependent networks
with traditional complex network theory faces great challenges due to the dependencies that exist
between these networks. In 2010, Buldyrev proposed a one-to-one correspondence and fully coupled
interdependent networks model [1], and studied the cascading failure using percolation theory.
Since then, investigation on the nature of interdependent networks has received wide popularity
and a lot of dramatic advances have been made [2–10].

In the literature, the robustness of interdependent networks has been evaluated on the basis of
three aspects: (1) the characteristics of subnetworks; (2) the property of dependency links; and (3) the
failure mode of nodes.

The characteristics of subnetworks include the number of subnetworks, degree distribution [11],
assortative [12], and clustering coefficient [13,14]. At present, many investigations have been conducted
on double-layer interdependent networks, where the number of subnetworks is two. Buldyrev et al. [1]
first evaluated the robustness of two layer and fully coupled interdependent networks and found that
the percolation process of interdependent networks exhibited a first-order phase transition, which was
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different from the two-order phase transition of a single or isolated network. Dong and Gao et al. [15,16]
extended the double-layer model to a multi-layer and investigated the cascading failure process of
interdependent networks consisting of three or more subnetworks. This type of network is known as
the network of networks (NON). In addition, the influence of degree distribution on robustness has
usually been studied based on different failure modes and coupling preference. For instance, it was
concluded in Reference [17] that a broader degree distribution of subnetworks increases the robustness
of random coupled interdependent networks that are under random attack.

Another important factor that affects the robustness of interdependent networks is the property
of dependency links, including coupling preference [18–20], directionality, and dependency strength.
Coupling preference determines the way that dependency links are established between subnetworks,
such as assortative coupling, disassortative coupling, and random coupling based on node degree or
betweenness [21]. The dependency link can be either directed [22,23] or undirected [13,14]. Fu et al. [24]
investigated the influence of the dependency link direction on the robustness of interdependent
networks, and found that the robustness of directed interdependent networks was worse than
undirected ones. The dependency strength was defined as the failure probability of the node after
losing its dependency link. Liu et al. [25] analytically demonstrated the influence of this factor on
robustness with percolation theory and generating function.

In terms of the failure modes of nodes, the majority of the previous work in this area used random
or intentional attacks to represent natural failure or deliberate destruction based on node degree or
betweenness [26]. Recently, new explanations on the meaning of failure modes have been proposed
from the viewpoint of localized attack [27,28] and fuzzy information attack [29].

In order to improve the robustness of the interdependent networks, many advanced
methodologies have been proposed, such as designing coupling preference based on the topology
and especially the degree distribution of subnetworks [8,30], adding redundancy of key nodes or
edges [31,32], and restoring some key nodes after failure [33]. In addition, other properties related to
interdependent networks have also been studied, such as propagation [34–37], competition [38],
resilience [39] and gaming [40].In the end, for the theory to model the cascading failures in
interdependent networks, spreading process and in particular, mean-field approximation [41,42] has
been recently studied, in addition to the commonly used generating functions and percolation theory.

Although dramatic advances have been made in the literature, the available tools and theories
for the research of interdependent networks are insufficient. For example, when modeling the
dependency link, the characteristics of a real system have not been fully considered, resulting in
the oversimplification of the properties of the dependency link. Many models in previous studies
were built on the assumption that dependencies are bidirectional and assumed that nodes would
inevitably fail after their dependent nodes fail, but this is not the case. Furthermore, failure modes in
previous studies that have been considered to inform the perspective of one subnetwork rather than the
whole interdependent networks. Such assumptions may lead to a misunderstanding of the operating
characteristics of real interdependent systems. In order to facilitate the description, we defined a new
failure mode and developed a framework to analyze the robustness of interdependent systems from
the perspective of the different characteristics of dependency links.

The rest of this paper is organized as follows. Section 2 proposes an interdependent networks
model based on the description of the failure modes of nodes and evaluation indicators of robustness.
Numerical simulation and analysis on the cascading failure and collapse threshold are provided in
Section 3 from two aspects: coupling strength and dependency strength. In addition, the influence of
these two factors on the robustness of interdependent networks is also discussed. Finally, Section 4
concludes this paper and puts forward several directions for future work.
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2. Models

2.1. Interdependent Networks With No-Feedback Dependency

There are two kinds of dependency relationships among interdependent networks: feedback
and no-feedback [2,3]. Figure 1a shows a model with undirected feedback dependency: A3 and B4

depend on each other, the same as B4 and A4. Figure 1b shows a model with directed feedback
dependency: A4 depends on B4 and B4 depends on A3. In both Figure 1a,b, A3-B4-A4 constitutes
a feedback relationship of dependency or an interdependent chain. Thus, the failure of node A3

can produce a feedback on other nodes in subnetwork A through node B4. Due to the existence of
the interdependent chain, the robustness of feedback interdependent networks is usually very poor,
and in extreme cases, even the failure of a single node will cause the complete collapse of the whole
system [24]. In addition, nodes usually establish the dependency with nearest nodes rather than nodes
far away from them. Suppose that nodes with the same number in different subnetworks are nearest
from each other, the dependency links among nodes A3, B4 and A4 in Figure 1a,b are not consistent
with the principle of nearest distance.
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Figure 1. Various interdependent networks models [43]. (a) Model with undirected and feedback
dependency links; (b) Model with directed and feedback dependency links; (c) Model with directed
and no-feedback dependency links. In sub-graph (a); node A3 and B4 depend on each other, same as
node B4 and A4; in sub-graph (b); node A4 depend on B4, and B4 depend on A3. Both of them form a
feedback dependency relationship.

Therefore, in order to improve the level of robustness, the feedback interdependent system shown
in Figure 1a,b should be avoided. For interdependent networks composed of two subnetworks A
and B, if node Ai depends on node Bj and Bj depends on Ak, they must have k = i, such a system is
called the no-feedback interdependent system [43]. These kinds of interdependent networks were
firstly constructed and the percolation process of such systems studied by Parshani in Reference [2].
In addition, there are few bidirectional (or undirected) dependency links similar to those shown as
Figure 1a, and most of the dependency links in interdependent networks are directed [23]. For example,
a node in the control network may control a power network node, but this power node is not necessarily
responsible for the power supply of this control node, i.e., the power node depends on the control node
but not vice versa, which constitutes unidirectional dependency. Generally speaking, a more general
situation in the real world is that the dependency link has directionality and satisfies the constraint of
no-feedback. An illustrative example is shown in Figure 1c. In this paper, the interdependent model
with directed and no-feedback dependency was considered. Without the loss of generality, we assumed
that a node from one subnetwork had no more than one dependent node from the other subnetwork.

Many complex systems in the real world, e.g., communication and control networks that play the
key role of connection in many interdependent systems, are usually modeled as random networks [7,44].
Therefore, the Erdő-Rényi (ER) random network model is determined for the formulation of the
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subnetwork. We assumed that both subnetworks had the same number of nodes (denote as NA,
NB) for simplicity. Sorting the node numbers of subnetworks A and B randomly, we then got two
random sequences (Ai1, Ai2, . . . , AiN and Bj1, Bj2, . . . , BjN) and constructed the potential dependency
relationship like Ai1-Bj1, Ai2-Bj2, . . . , AiN-BjN using one-to-one correspondence. At last, we chose a
certain proportion of nodes, like CSA, in subnetwork A randomly, and constructed the dependency
of A on B according to the potential dependency relationship. In the same way, we constructed the
dependency of B on A with proportion CSB. Based on the above steps, we got a no-feedback ER-ER
interdependent networks model with coupling strength CSA and CSB as shown in Figure 1c.

2.2. Failure Mode and Evaluation Indicator of Robustness

In order to analyze the influence of subnetworks (e.g., power grid and communication network)
reliability on the robustness of interdependent systems, many studies have considered the case of
failure nodes in only one subnetwork, which is insufficient to fully reveal the failure characteristics of
interdependent networks. Therefore, according to the location of the initial failure nodes, we defined
two failure modes, i.e., unilateral failure and bilateral failure, to analyze the robustness in this paper.
Denote N f

A, N f
B as the number of initial failure nodes in subnetworks A and B, respectively, then the

two failure modes can be described as follows [45].
Unilateral failure (UF): a fraction of puf failure nodes are randomly distributed in only one

subnetwork, for example, subnetwork A.

pu f =
N f

A
NA

, 0 ≤ pu f ≤ 1 (1)

Bilateral failure (BF): a fraction of pbf failure nodes are randomly distributed in the whole
interdependent networks [16,43].

pb f =
N f

A + N f
B

NA + NB
, 0 ≤ pb f ≤ 1 (2)

Based on Reference [1], we assumed that the initial random failure led to a cascade of
failures, and that only nodes belonging to the giant component of subnetworks remained functional.
The cascading failure ended when the size of the giant component no longer changed. At this point,
there are two common indicators to measure the robustness. The first one is the size of the giant
component after cascading failure, which is denoted as S. Specifically, this indicator under UF is the
giant component size of subnetwork A, which is remarked as SA hereinafter. When it comes to BF,
it means the giant component size of the whole interdependent networks, and is denoted as SAB.
The second indicator is a collapse threshold, denoted as fc, representing the minimum size of initial
failure that causes the interdependent networks to complete collapse. The collapse threshold under
UF is defined as f A

c = min(puf), where puf is restricted by SA(puf) = 0. Similarly, the collapse threshold
under BF is defined as f AB

c = min(pbf), where pbf subjects to SAB(pbf) = 0.

3. Simulation and Analysis

In this section, the robustness of the no-feedback interdependent networks is analyzed based on
the following two considerations:

• Fully coupled interdependent systems as shown in [1] are rare in reality. In most circumstances,
only part of the nodes have dependency partners, such systems are known as partially
interdependent networks [2,46].

• Not all nodes will fail after their dependency nodes failing, i.e., failure of the dependency link
does not absolutely lead to dependency node failure. Given the huge loss caused by cascading
failure, a real-world coupled system usually has protection measures on key nodes to ensure these
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nodes can maintain a working state with a certain probability after the failing of their dependency
nodes [25,46], such a system is called weakly interdependent networks.

The parameter coupling strength (CS) is utilized to describe the fraction of nodes in one subnetwork
that has dependency partners in another subnetwork [2]. Specifically, CSA(CSB) indicates the fraction
of nodes in subnetwork A(B) that depend on the nodes in subnetwork B(A). In addition, in the weakly
interdependent networks model, the failure probability of the node after losing its dependency node
is defined as dependency strength (DS). In order to avoid the mutual influence between CS and DS
during simulation, they were investigated separately in this work. For example, if one parameter is
studied, the other parameter will be fixed with value 1. In order to balance the computation cost of the
simulation and characteristics of the real coupled system, the target network employed for simulation
is with a scale of NA = NB = 5000, and the average degree is <kA > = < kB > = 4.

3.1. Coupling Strength

This subsection is introduced to investigate the effect of CS on the robustness of no-feedback
interdependent networks. We started the simulation from a special case where different subnetworks
had equal coupling strength, i.e., CSA = CSB = CS. Based on the node number and average degree
set given above, the cascading failure of interdependent networks was simulated as follows. At the
beginning, according to different failure modes, we randomly select nodes with a ratio of p as failure
nodes in only one subnetwork or the whole interdependent networks, then the initial failures cause
the cascading failure. When the cascading failure ends, the results of SA, SB, and SAB with different
coupling strength under two failure modes are demonstrated in Figures 2 and 3, respectively. It should
be noted that SAB = (SA + SB)/2 is shown since different subnetworks have the same number of nodes.
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Figure 2. Simulation results of cascading failure of no-feedback interdependent networks with different
coupling strength (CS) under unilateral failure (UF), results of one simulation. (a)cascading failure of
subnetwork A with different CS under UF; (b) cascading failure of subnetwork B with different CS
under UF; (c) cascading failure of the entire interdependent networks with different CS under UF.
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Figure 3. Simulation results of cascading failure of no-feedback interdependent networks with different
coupling strength (CS) under bilateral failure (BF), results of one simulation. (a)cascading failure of
subnetwork A with different CS under BF; (b) cascading failure of subnetwork B with different CS
under BF; (c) cascading failure of the entire interdependent networks with different CS under BF.
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According to the results of Figures 2 and 3, it can be concluded that the robustness of no-feedback
interdependent networks under two failure modes shows a negative correlation with coupling strength.
The larger the coupling strength, the worse the robustness of the interdependent networks. The reason
is that if CS becomes larger, the number of nodes with dependency links is larger, there will be more
failures propagate between subnetworks through dependency links, thus subnetworks are more likely
to break into more components, leading to an intense cascading failure process. Moreover, when CS
increases to a certain value (such as 0.8 under unilateral failure and 0.6 under bilateral failure, as shown
in Figures 2 and 3), a sudden collapse (first order percolation) will occur along with the cascading
failure of interdependent networks. Comparing the results of Figures 2 and 3, it was observable that
the robustness under bilateral failure was worse than unilateral failure. This phenomenon is not
difficult to explain. According to the definition of failure mode given in Section 2.2, if two fractions
of failure nodes under unilateral and bilateral failure are equal, the number of failure nodes under
bilateral failure is two times that under unilateral failure, resulting in a larger failure range and a
smaller collapse threshold.

A more instinctive description of the negative correlation between collapse threshold and
coupling strength under unilateral and bilateral failure is given in Figure 4, where the average value
of 20 independent simulations are illustrated. For each simulation, we firstly built no-feedback
interdependent networks models with different CS (simulation step size of CS is 0.1), then simulated
the cascading failure of those models under two failure modes (the simulation step size of failure
nodes fraction was set to 0.01), and lastly, found the minimum scale of failure nodes for the complete
collapse of model under different CS, that is, the collapse threshold fc. Calculating the average value
of 20 thresholds under the same CS, we can plot the curves in Figure 4. For unilateral failure, when
CS as less than 0.4, the collapse threshold of interdependent networks was maintained at a level of
about 0.7. The reason is that when CS is small, failure propagation between the subnetworks through
the dependency link is very limited after initial failure, therefore the threshold does not change much.
However, in the range of 0.4 to 1, the collapse threshold decreased sharply as CS increased. At the
same time, the cascading failure scale caused by the initial failure kept expending along with the
increase of CS. When the parameter CS reached 1, the no-feedback interdependent networks model
was transformed into fully interdependent networks, and the collapse threshold was reduced to 0.39,
which is consistent with Reference [1]. In addition, the collapse threshold under bilateral failure
decreased faster than unilateral failure as coupling strength increased, and finally ended at about
0.23 under full dependency. Therefore, it is safe to conclude that no-feedback interdependent networks
under bilateral failure are more sensitive to the change of coupling strength.Appl. Sci. 2018, 7, x 7 of 13 
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Based on the experiments for CSA = CSB given above, a more general scenes CSA 6= CSB will be
investigated in the following. The simulation process is similar to the process for plotting Figure 4,
and the only difference is setting different coupling strength parameters CSA and CSB to subnetworks
A and B. Therefore, the results of this simulation were plotted on a three-dimensional curved surface.
The result of the collapse threshold of subnetwork A under unilateral failure as a function of coupling
strength is shown in Figure 5. On the other hand, the result of collapse threshold of the whole
interdependent networks under bilateral failure is shown in Figure 6. It is worthwhile pointing out
that curves in Figure 4 are special cases (CSA = CSB) in Figures 5 and 6. For exemplification, they are
highlighted with gray dotted lines.
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In Figure 5, it is observable that the collapse threshold changed slightly under unilateral failure
when coupling strength was small, but the robustness of interdependent networks declined rapidly if
the coupling strength was more than 0.5. As shown in Figure 6, the collapse threshold under bilateral
failure decreased more intensely than that under unilateral failure. With the coupling strength CSA and
CSB increased from zero to one, the collapse threshold decreased gradually, and it reached 0.23 when
CSA = CSB = 1.
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It should be noted that several special cases are marked with circles in Figure 5. They are discussed
as follows:

(1) If CSA = 1, CSB = 0 or CSA = 0, CSB = 1, one subnetwork is fully dependent on the other subnetwork
through directed dependency links. The cascading failure of subnetworks and interdependent
networks are shown in Figure 5a,d.

(2) If CSA = CSB = 1, two subnetworks are fully coupled by bidirectional dependency links, which are
equivalent to the model with one-to-one correspondence in [1]. The failure process shows a
second-order transition phenomenon in Figure 5b.

(3) If CSA = CSB = 0, two subnetworks have no dependency on each other, so failure in one
subnetwork will not spread to the other. The cascading failure process of interdependent
networks under unilateral failure is equivalent to the failure of a single network, which is
shown in Figure 5c.

More generally, for the cases of 0 < CSA < 1 and 0 < CSB < 1, it indicates that only part of the nodes
have dependency links in interdependent networks, and this is the coupling pattern of most real-world
interdependent systems. The corresponding cascading failure of such interdependent networks is
shown in Figure 5e.

Compared with Figure 4, a clearer conclusion can be drawn from Figures 5 and 6: Coupling
strength is an important factor that affects the robustness of no-feedback interdependent networks.
The higher the coupling strength, the smaller the collapse threshold, and the robustness also becomes
worse. Figuratively speaking, the curved surfaces in Figures 5 and 6 can be considered as snow-capped
mountains, then avalanches easily happen in the green and light blue areas, and the red area represents
a relatively secure zone. The avalanche region corresponds to a rapid decline of the collapse threshold,
indicating that the robustness of interdependent networks deteriorates with the increase of CSA and
CSB. Comparing Figure 5 with Figure 6, it can be seen that the area of avalanche was larger when the
no-feedback interdependent networks were faced with bilateral failure. It is further verified that the
robustness of interdependent networks under bilateral failure was more sensitive to the change of
coupling strength than unilateral failure.

As a further supplement, we did additional simulations based on the other two types of
subnetworks, the scale-free network (BA model) and the small world network (WS model). The results
were shown in Figures S1–S3 of the supplemental material, the same conclusions were obtained from
these results as that in ER-ER interdependent networks.

3.2. Dependency Strength

This section investigates the influence of dependency strength on the robustness of no-feedback
interdependent networks. Based on the parameters determined in Section 2.1, a weakly coupled
no-feedback ER-ER interdependent networks model was developed in this section, where the coupling
strength of both subnetworks were valued as 1 to eliminate the influence of this factor, and the
dependency strength was assigned with different DS. The main purpose of this experiment is to study
the relationship of the size of giant component and the initial failure nodes ratio p, then analyze the
effect of dependency strength on the robustness. The simulation step sizes of DS and p are set to 0.01.

Figure 7 illustrates the relationship between the size of the giant component and dependency
strength. Specifically, Figure 7a–c demonstrate the giant component of subnetwork A, subnetwork B,
and the entire interdependent networks under unilateral failure, respectively. Figure 7d–f show the
results under bilateral failure. It can be seen in Figure 7 that as the dependency strength becomes larger,
the cascading failure of interdependent networks experiences a moderate change from first-order to
second-order phase transition under unilateral and bilateral failure, which means the robustness of the
interdependent system is diminishing.



Appl. Sci. 2018, 8, 835 9 of 13Appl. Sci. 2018, 7, x 9 of 13 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 7. The cascading failure of subnetwork A, subnetwork B, and the entire interdependent 
networks with different dependency strength (DS) under unilateral failure (UF) and bilateral failure 
(BF), results of one simulation. (a) cascading failure of subnetwork A with different DS under UF; (b) 
cascading failure of subnetwork A with different DS under BF; (c) cascading failure of subnetwork B 
with different DS under UF; (d) cascading failure of subnetwork B with different DS under BF; (e) 
cascading failure of the entire interdependent networks with different DS under UF; (f) cascading 
failure of the entire interdependent networks with different DS under BF;. 

In addition, the results under bilateral failure in Figure 7d,e indicate that the cascading failures 
of subnetworks A and B were basically the same. The explanation of this situation is that failure nodes 
are distributed evenly in two subnetworks under bilateral failure, whereas only one subnetwork has 
failure nodes under unilateral failure mode. When DS increased to 0.5, the first-order percolation 
phenomenon appeared, which means that the influence of bilateral failure on the robustness was 
greater than unilateral failure. 

The relationship between dependency strength and the robustness of interdependent networks 
is further discussed as follows. According to the definition of collapse threshold given in Section 2.2, 
the intersection curves between surface and horizontal plane in Figure 7a,f represent the variation of 
the collapse threshold with dependency strength in one simulation. Accordingly, Figure 8 
summarizes the results of multiple simulations. In the processes of this simulation, we firstly 
construct weakly interdependent networks models different DS (simulation step size of DS is 0.1), 

S

0
0.5
pbf11

0.5

DS

0

0.5

1

0
S

Figure 7. The cascading failure of subnetwork A, subnetwork B, and the entire interdependent networks
with different dependency strength (DS) under unilateral failure (UF) and bilateral failure (BF), results of
one simulation. (a) cascading failure of subnetwork A with different DS under UF; (b) cascading failure
of subnetwork A with different DS under BF; (c) cascading failure of subnetwork B with different DS
under UF; (d) cascading failure of subnetwork B with different DS under BF; (e) cascading failure
of the entire interdependent networks with different DS under UF; (f) cascading failure of the entire
interdependent networks with different DS under BF;.

Comparing the results under unilateral failure in Figure 7a,b, it was noticeable that failure in
subnetwork A did not cause large scale levels of failure in B when DS was small. Specifically, if DS = 0,
the initial failure could not propagate through dependency links between subnetworks A and B,
and the failure of nodes in subnetwork A had no effect on subnetwork B. After DS increased to more
than 0.7, the cascading failure of subnetworks A and B had an obvious first-order transition.

In addition, the results under bilateral failure in Figure 7d,e indicate that the cascading failures of
subnetworks A and B were basically the same. The explanation of this situation is that failure nodes
are distributed evenly in two subnetworks under bilateral failure, whereas only one subnetwork has
failure nodes under unilateral failure mode. When DS increased to 0.5, the first-order percolation
phenomenon appeared, which means that the influence of bilateral failure on the robustness was
greater than unilateral failure.

The relationship between dependency strength and the robustness of interdependent networks is
further discussed as follows. According to the definition of collapse threshold given in Section 2.2,
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the intersection curves between surface and horizontal plane in Figure 7a,f represent the variation of
the collapse threshold with dependency strength in one simulation. Accordingly, Figure 8 summarizes
the results of multiple simulations. In the processes of this simulation, we firstly construct weakly
interdependent networks models different DS (simulation step size of DS is 0.1), then the latter
processes are the same as that of the processes for plotting Figure 4. It is observable in Figure 8 that
the collapse threshold decreased as dependency strength increased under both two failure modes.
In the unilateral failure mode, if DS was less than 0.5, there was little change in the collapse threshold
of the interdependent networks; if DS was larger than 0.5, the collapse threshold decreased sharply.
However, the situation under bilateral failure was different, the collapse threshold uniformly decreased
with the increasing of dependency strength from 0 to 1. Finally, for the case of DS = 1, the weakly
interdependent model evolves into fully interdependent networks. Similar to the situation shown in
Section 3.1, the threshold of interdependent networks collapse under bilateral failure was 0.26, and the
value under unilateral failure was 0.4, which is basically consistent with [1], where 0.39 was derived.
The tiny difference is probably due to the finite effect caused by the limited subnetwork size during
the simulation.
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averaging over simulation on 20 independent realizations.

In the end, an interesting phenomenon was observed from the comparison between
Figures 4 and 8: the changes of collapse threshold fc in the partially interdependent and weakly
interdependent models were consistent. The main reason is that the dependency link in interdependent
networks serves as a failure propagator. Specifically, for double-layer no-feedback interdependent
networks, where coupling strength is CSA = CSB = CS, dependency strength is DS. In the initial state,
the failure probability of node in one subnetwork is p1, the failure probability of the node (resulted
from the losing its dependency link) in the other subnetwork can be generated from:

p2 = CS × DS × p1 (3)

In Section 3.1, the dependency strength of the partially coupling model was 1, thus p2 = CS × p1.
In Section 3.2, we considered the weakly coupling model with fully dependency, i.e., the coupling
strength was 1, so p2 = DS × p1. Therefore, when the coupling strength is equal to the dependency
strength, the failure probability of nodes is the same after initial failure on both failure modes.
This explains the consistent results of Figures 4 and 8. Thus, we can conclude that the coupling
strength and dependency strength are equivalent to the robustness of interdependent networks.

Similarly to in Section 3.1, we conducted additional simulations on the effect of dependency
strength and the robustness based on the other two types of interdependent networks, using the
BA model and WS model as subnetworks, respectively. The results were shown in Figure S4 of the
supplemental material, and the same conclusions were obtained from these results as that in ER-ER
interdependent networks.
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4. Conclusions

In this paper, the robustness of interdependent networks with no-feedback dependency was
investigated. Unlike previous studies that focused on the percolation process of no-feedback
interdependent networks with different proportions of failure nodes, this paper focuses on the influence
of dependency links on network robustness. Specifically, we focuses on the collapse thresholds of
no-feedback interdependent networks from two characteristics of dependency links, coupling strength
and dependency strength. The influences of these two parameters on the robustness were analyzed
under two failure modes: unilateral failure and bilateral failure. Particularly, when studying the
influence of coupling strength, we discussed two cases of the coupling strength of subnetworks in
the same and different situations. The simulation results indicated that the collapse threshold of
interdependent networks had an inverse relationship with coupling strength and dependency strength,
especially under bilateral failure. This means that strong coupling strength or dependency strength
makes no-feedback interdependent networks less robust. For unilateral failure, if coupling strength
or dependency strength increased to more than 0.5, the robustness of the model decreased sharply,
while the collapse threshold rapidly reduced from 0.7 to about 0.4. In addition, we also found that
when considering only one factor, the influence of coupling strength and dependency strength on
robustness was equivalent. All these results provide references for designing a robust interdependent
system. If we want to construct a robust no-feedback interdependent system, it is a feasible way to
reduce coupling strength or dependency strength through various protective measures.

Although several achievements have been obtained, there are still some shortcomings in this
research. For example, we studied the direction of the dependency link between subnetworks but
did not consider the direction of the connection link in the subnetwork. While considering the
direction of dependency link and connection link at the same time, the robustness of interdependent
networks can be considered to be a notable problem. In addition, during the analysis of the effect of
dependency strength, we did not consider the difference between different dependency links and set a
fixed DS to those links. Finally, we chose to study the coupling strength parameter and dependency
strength, respectively. In fact, there are many real-world interdependent systems with partial and weak
dependency at the same time. To gain a better understanding of the robustness of the no-feedback
interdependent system, further research on these topics will be extremely essential.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/8/5/835/s1,
Figure S1: Relationship between collapse threshold fc and coupling strength (CS) under both unilateral and
bilateral failure modes, each point is obtained by averaging over simulation on 20 independent realizations.
Figure S2: The three-dimension curved surface shows collapse threshold fc as a function of coupling strength(CS) under
unilateral failure, each point is averaged over 20 different network realizations. Figure S3: The three-dimension
curved surface of collapse threshold fc as a function of coupling strength under bilateral failure, each point is averaged
over 20 different network realizations. Figure S4: Collapse threshold fc as a function of dependency strength(DS),
each point is obtained by averaging over simulation on 20 independent realizations.
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