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Abstract: The appearance of damage on metallic structures is inevitable due to complex working
environments. Non-destructive testing (NDT) of these structures is critical to the safe operation
of the equipment. This paper presents a non-destructive damage detection, visualization, and
quantification technique based on laser-generated ultrasonics. The undamaged and damaged metallic
structures are irradiated with laser pulses to produce broadband input ultrasonic waves. Damage
to the structures plays the role of a nonlinear radiation source of new frequencies. Usually these
new frequencies are too weak to be detected directly. Here, the state space predictive model is
proposed to address the problem. Based on the recorded responses in the time domain, the state
space attractors are reconstructed. Damage to the structures is shown to change the properties of the
attractors. A nonlinear damage detection feature called normalized nonlinear prediction error (NNPE)
is extracted from the state space to identify the changes in the attractors—and hence the damage.
Furthermore, the damage is visualized and quantified using the NNPE values extracted from the
entire area by using a laser scanning technique. Experimental results validate that the proposed
technique is capable of detecting, visualizing and quantifying artificial damage to aluminum alloy
plates and actual fatigue cracks to a twin-screw compressor body.

Keywords: damage detection; damage quantification; laser-generated ultrasonics; state space
reconstruction; normalized nonlinear prediction error

1. Introduction

During the life cycle of a metallic structure, the appearance of damage is inevitable due to the
structure’s complex working environments [1–3]. For example, the working environment of engine
blades is very severe. These blades suffer from shock, friction and high temperatures as well as heating
and cooling cycles. Therefore, it is very easy to produce cracks in the engine blades [1]. According to
the statistics on predecessors, the failures in metallic structures caused by fatigue cracks account for
more than 90% [4]. Each year, the breakdown and disorderly closedown of equipment caused by
fatigue cracks cause owners to expend large amounts of time and money, and sometimes failures even
threaten the operators’ safety and lives [5,6]. These safety and economic considerations have spurred
research within the field of NDT of metallic structures in the past few years.

Among various structural damage detection techniques, such as infrared testing [7], eddy current
testing [8,9], magnetic particle testing [10], and ultrasound testing [11,12], the ultrasound testing
technique has been widely used due to its relatively high spatial resolution, portable operation, high
performance ratio, and high effectiveness in damage detection. By recording the ultrasonic waves
propagating through a structure, macroscopic damage such as cracks, inclusions, and notches can
be detected by using this method [5]. Influenced by the linear interaction between propagating
waves and damage, the ultrasonic waves experience reflection, diffraction, and mode conversion.
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By extracting metrics from the response waves, the damage can be defined. Notably, most damage
detection techniques use linear metrics extracted from response waves to detect damage, namely,
the damage is assumed only to affect the structure in a linear way. However, according to Worden’s
study [12], damage evolution is a nonlinear process that initiates certain nonlinear properties in the
structure. When dealing with nonlinear damage, linear ultrasonic waves may lose their effectiveness
and reliability.

Recent studies have shown that nonlinear ultrasonic waves are usually more sensitive to small
cracks than classical linear ones. In the nonlinear ultrasonic techniques, a fatigue crack plays the role
of a nonlinear radiation source [13]. It will distort the original propagating ultrasonic waves and
generate different waves with new frequency components as shown in Figure 1. This makes the new
nonlinear component a damage-sensitive feature for damage detection. Duffour et al. [14] investigated
the application of the nonlinear vibro-acoustic modulation technique for the assessment of fatigue
cracks in steel beams and nickel-based alloy plates. In their experiments, the specimens were subjected
to both a low ultrasound frequency and a low structural vibration frequency. The ratio of the average
first sideband amplitude over the ultrasonics carrier was proposed as a nonlinear feature to assess
the cracks. Jiao et al. [13] also investigated the application of the vibro-acoustic modulation technique
for the detection of cracks in steel pipes. They delimited the Modulation Index as a crack-sensitive
feature. The influence of the frequency and amplitude of vibration on the sideband amplitudes
was experimentally investigated. Liu et al. [15] conducted nonlinear modulation measurement for
non-destructive testing of the cracks in aluminum plates and scaled steel shafts. The nonlinear spectral
coefficient was used to isolate the nonlinear modulation components from noisy environments and
show a higher sensitivity to fatigue cracks than the traditional nonlinear coefficient. Hess et al. [16]
investigated the application of the linear surface acoustic waves and the nonlinear surface acoustic
waves in non-destructive testing of surface cracks. They demonstrated that the nonlinear surface
acoustic waves could be more effective to crack detection. Gusev et al. [17] developed a theoretical
model for crack imagination by the nonlinear frequency-mixing technique. Based on the model,
the cracks in a glass plate were successfully detected and imaged [18]. They demonstrated that the
sensitivity of this technique is 20 times higher than the linear photo-acoustic techniques.

In the research mentioned above, the nonlinear ultrasonic technique was demonstrated to
be a good candidate for the detection of fatigue damage. However, this technique also has some
shortcomings in that it is challenging to get the two most suitable independent original excitation
frequencies in practice [19]. This is because the optimal choice of the excitation frequencies is also
affected by the structure to be detected and the environmental condition [20]. Here we introduced the
laser-generated ultrasonics technique [21] to solve this problem. Compared with traditional nonlinear
techniques, only one laser pulse excitation is used to generate a broadband input signal rather than two
different ultrasonic waves. So the optimal choice of the excitation frequencies is no longer a problem.
But a new problem has reared up that is affected by the broadband nature of the input signal generated
by the laser pulse. The new frequencies caused by the damage are submerged and cannot be detected
directly. In this paper, we introduced the state space predictive model [22] to tackle this problem.
The dynamic characteristics of the structure can be described by geometric figures in the state space
and the damage is shown to change the properties of the geometric figure. By identifying the change
in the geometric figure, the damage can be detected. Usually, the state space predictive model was
applied to the vibrating structures for structural damage identification. In this paper, the model was
applied to laser-generated ultrasonic signals for fatigue damage detection and quantification.

This paper is organized as follows: in Section 2, the fundamental issues about the generation and
modulation of laser-generated ultrasonics and attractor-based analyses are provided. How damage
can be detected and quantified by normalized nonlinear prediction error is also described in Section 2;
in Section 3, a laser-generated ultrasonics detecting system is built to detect the damage; in Sections 4
and 5, artificial damage to aluminum alloy plates and actual fatigue cracks in a twin-screw compressor
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body are detected and quantified by the proposed technique to validate the effectiveness of the
technique. Finally, the results of this work are presented in Section 6.
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2. Background

The fundamental issues of laser-generated ultrasonics and attractor-based analyses are briefly
reviewed in this section. The framework for damage detection and quantification is provided.
Transforming the dynamic properties of a structure into a geometric figure in the state space is
shown to be especially useful for damage detection and quantification.

2.1. Generation and Modulation of Laser-Generated Ultrasonics

The ultrasonics technique has been used for damage detection for a long time, and the generation
of ultrasonic waves by using laser pulses was developed in the 1960s [21]. When the surface of a
material is illuminated by a laser pulse, the material absorbs a part of the laser energy, resulting in
a rapid temperature rise in the local area. Elastic waves are generated due to the thermal expansion.
Based on the power density of the irradiating pulse laser, there are two thermal models for the
generation of ultrasonic waves, namely, ablation generation and thermo-elastic generation [23]. For the
latter, the power density of the laser pulse is lower than the ablation threshold of the irradiated
material, which indicates non-destructive wave generation. In this paper, thermo-elastic generation
is considered.

After irradiation by a laser pulse, a broadband ultrasonics is generated. The ultrasonics is then
used as an excitation signal to detect the damaged structure. When the wave is propagating in
the structure, nonlinear wave modulation will occur because of the damage and new frequency
components are generated as shown in Figure 2. Taking a closer look at Figure 2, the high-order
nonlinear modulation signals are easily submerged by the original signal because of the broadband
characteristic of the input signal, which means that traditional nonlinear damage detection technologies
are unsuitable for this situation. State-space predictive models [22,24] are introduced to tackle this issue.
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2.2. Reconstruction of the State-Space Attractor

Usually, a dynamic system can be described by a first-order differential equation:

.
x = F(x, t), (1)

where F is a function of the variables x and t. Variable x represents the state variable and t
represents time.

If we plot x1(t) against x2(t), the resulted space is called to be ‘state space’. If the solution of
the equation is visualized as a trajectory in state space, for a given set of initial conditions, xi(0), the
trajectories representing the dynamic properties of the system in the state space will trace out a unique
path. After a certain period of disturbance, the path will gradually migrate towards an invariant
geometric figure in state space. This geometric figure is called to be ‘attractor’ [22].This attractor in state
space represents the steady state point of a dynamic system and exhibits sensitive dependence on the
initial conditions of the system. This is the reason why the state space predictive model can be used for
identifying the dynamic change (usually caused by damage) of a system [22,24–26]. Usually, an initial
baseline attractor is reconstructed for an intact system and compared with the attractor reconstructed
for a damaged one. Damage has been shown to change the geometry of the attractor. Hence, by
identifying a change in the geometric properties, damage can be detected and even quantified. This is
the basic damage detection principle of this paper.

In theory, all the vector variables of the system are needed to reconstruct the attractor.
Unfortunately, it is difficult to obtain every vector variable in practice. Luckily, according to the
embedding algorithm proposed by Takens [27], the unknown variables can be reconstructed by the
measured ones. Assuming x(n) is the measured time series, the attractor X(n) can be expressed as
follows:

X(n) = [x(n), x(n + T), . . . , x(n + (m− 1)T)], (2)

where n is the discrete time index of the sampled value; m is the embedding dimension, it is the
dimension of the reconstructed state space; T is the time delay, and all of the reconstructed vectors
are simply time-delayed versions of the measured signal with a lag of T. The choice of parameters T
and m influences the reconstruction result. In this study, the commonly acknowledged methods for
the choice of the time delay T and embedding dimension m, namely, the average mutual information
function (AMI) [28] and Cao’s function [29], are proposed to calculate the embedding parameters.
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2.3. Feature Extraction

As indicated earlier, damage to a system is expected to alter the geometric portrait of the attractor
in the state space. The difference between the undamaged and damaged attractors then becomes a
good candidate feature for damage detection. Here, we introduce a certain metric called NNPE as the
feature to identify the difference between the attractors.

A schematic overview of feature NNPE extraction from the reconstructed state-space attractors is
provided in Figure 3. First, P random points x(i) (i = 1,2, . . . ,P) are selected from the baseline attractor
reconstructed from the undamaged system. The selection of the value of P influences the feature
extraction result. P is set to N/100 in this study based on Pecora’s work [30], where N is the number
of recorded data. Next, Q points y(j) (j = 1,2, . . . ,Q) closest to each point x(i) are selected from the
current-line attractor reconstructed from the compared system, which may suffer from certain damage.
When selecting the closest Q points in current-line attractor, the same P points x(i) (i = 1,2, . . . ,P) will be
used in the baseline attractor. For example, if point (1, 1) was selected as the random point in baseline
attractor, then the point (1,1) will still be selected as the point in the current-line attractor. Even though
in most cases, this point may not be contained on the trajectory in the current-line attractor. When the
point x(i) is selected in the current-line, the closest Q points in the current-line attractor will be selected
by the Euclidean distance of the specific point from the point x(i) in the state space. The Q points that
have the shortest Euclidean distance from the point x(i) in current-line attractor will be selected as the
closest Q points. Also, the choice of the value of Q should guarantee that the local dynamic properties
of the attractor can be described clearly and that the feature extraction results will not be hidden by the
noise. A proper choice is Q = N/1000 [31]. Meanwhile, to avoid the time correlation between x(i) and
y(j), a Theiler Window with a step 2T is proposed when selecting the neighboring points. In this way,
the minimum separation between x(i) and its closest neighbors in time will be at least 2T. After that,
x(i) and y(j) will be evolved with L steps (L = 2 in this study) into the future. The prediction value of
x(i) after L steps in time, x̂(i + L), can be computed by

x̂(i + L) =
1
Q

Q

∑
j=1

yj(i + L). (3)

Once the prediction has been made, the prediction error can be computed by

eri = ‖x̂(i + L)− x(i + L)‖ (4)

where ‖ · ‖ is the Euclidean norm. Finally, NNPEis proposed to capture the differences between the
baseline and current-line attractors. NNPE is defined as [32]

NNPE =
1
P

P

∑
i=1

eri

σ2
i

(5)

where σ2
i is the variance of the baseline signal. Obviously, this NNPE value is the quantity used for

determining the differences between the baseline attractor and the current-line attractor caused by
damage. The NNPE is selected as the damage-sensitive feature in this study.
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Figure 3. The schematic of feature extraction.

2.4. Damage Detection and Quantification

The laser scanning technique is introduced to visualize and quantify the damage. Any desired
point on the structure surface can be irradiated by a laser pulse using a galvanometer, and the
pitch between the two adjacent points is set to a constant. When a laser pulse is shot at a point,
ultrasonic waves are generated because of the thermal expansion of the material. The ultrasonic waves
propagating in the structure are then recorded by the transducer placed at a fixed point. The recorded
ultrasonic responses from undamaged and damaged structures are used to calculate NNPE values
for each excitation point to capture the differences between the baseline and current-line attractors.
The most significant differences should occur at the damage location. Therefore, the damage can be
detected by the calculated NNPE values. Notably, only a small area covering the damaged location in
the damaged structure was scanned in this study to readily detect the damage because the damage
location is not known in advance. Furthermore, the pitch between two adjacent points in the scanned
area is determined before laser scanning, by counting the number of points that correspond to larger
NNPE values in the visualization picture. The size of the damage can be quantified too.

A schematic diagram of the proposed technique is provided in Figure 4.
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3. Experimental Setup and Testing Structures

3.1. Laser-Generated Ultrasonics Damage Detection System

A laser-generated ultrasonics damage detection system was built in this study to verify the
accuracy of the detection technique. A pulsed laser beam with a duration of 20 ns and at a repetition
of 20 KHz is generated by a Q-switched Nd:YAG pulse laser. The wavelength of the pulse is 1064 nm.
The laser pulse is slightly focused to a 0.3 mm diameter by a lens, and the maximum pulse energy
density is controlled below 1 × 107 W/cm2 to avoid ablating the material. Through the galvanometric
scanner, the laser pulse can be shot at any desired place on the structure. The generated ultrasonic
waves are recorded by a focused transducer mounted at a fixed point on the structure. The transducer
used here is a high-frequency transducer product by Olympus (VB213 -RM) with a bandwidth
frequency of 0–30.0 MHz, and the crystal diameter of the transducer is 6 mm. This transducer
is used for receiving the surface acoustic waves generated by the laser pulse. Glycerin is used as the
couplant to fix the transducer to the structure surface. Each dynamic response is post-amplified and
recorded by a 14-bit high-speed data acquisition card at a sampling frequency of 100 MHz. There is
a sync signal generator contained in the detection system who will send two enable signals to the
Q-switched Nd:YAG pulse laser and the high–speed data acquisition card synchronously. In this way,
the synchronization of the laser excitation and the reception of the ultrasonic waves can be guaranteed.
The recorded data are transferred to a personal computer (PC) for further analysis. The process of data
collection is started by a trigger signal sent out by the PC. A three-dimensional transition stage is used
to determine the relative position of the structure. The step interval of the stage is 0.01 mm, which is a
sufficient interval to guarantee the repeatability of the test. All the recorded data are averaged 64 times
in the time domain to improve the signal to noise ratio.

An overall schematic of the laser-generated ultrasonics damage detection system used in this
study is shown in Figure 5.
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Figure 5. The schematic diagram of the laser-generated ultrasonics detection system; 1: Laser generator;
2: Galvanometric scanner; 3: Structure to be tested; 4: Transducer; 5:Three-dimensional transition stage;
6: Data acquisition system; 7: Data processing system.

3.2. Testing Structures

Eight identical aluminum alloy plates with different sizes of artificial rectangular grooves on
their surfaces as well as a twin-screw compressor body with actual sand inclusions and fatigue
cracks on its connection transverse plane are introduced for verifying the feasibility of the damage
detection technique.



Appl. Sci. 2018, 8, 824 8 of 18

The aluminum alloy plates are fabricated out of 5052 aluminum alloy with a dimension of
150 × 150 × 10 mm3, and the artificial rectangular grooves have the same depths of 0.1 mm but
different widths, varying from 0.05 mm to 0.8 mm, as shown in Figure 6. Meanwhile, an actual
twin-screw compressor body is introduced for the additional validation of the technique. The
twin-screw compressor body is produced by casting with grey cast iron. The connection transverse
plane of the body is turned for the purpose of assembly, and sand inclusions and fatigue cracks on its
connection surface are explored.
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4. Artificial Damage Detection and Quantification for Aluminum Alloy Plates

4.1. Ultrasonic Responses in Time Domain

The damage detection and quantification process contains two steps. First, a single laser pulse
irradiating a fixed excitation point on one side of the damage is used to generate ultrasonic waves.
The ultrasonic waves are recorded by a transducer placed on the other side of the damage. The distance
between the excitation and detection point is 40 mm in this study, as shown in Figure 6c. Using the
nonlinear state-space-based predictive feature NNPE, the differences among the ultrasonic responses
can be detected, and thereby the damage. Next, the laser scanning technique is used and all the
ultrasonic responses from the irradiated points are recorded by the data acquisition system. According
to the NNPE values calculated from each excitation point, the damage can be quantified successfully.
The schematic of the laser scanning progress is shown in Figure 6d.

Using the laser-generated ultrasonics damage detection system, the ultrasonic responses of the
aluminum alloy plates under the excitation of a single laser pulse were recorded and plotted in Figure 7.
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4.2. Calculation of Embedding Parameters

The proposed technique attempts to detect the changes in the geometric figure in the state
space resulting from damage. First, the baseline and current-line attractors are reconstructed by the
response data recorded from both the undamaged and damaged structures. Notably, the attractors are
reconstructed using the same embedding parameters. An accurate reconstruction requires a proper
choice of embedding parameters, as mentioned above. Generally, the choice of the embedding
dimension m should guarantee that the reconstructed attractor is unfolding in the state space.
In addition, the choice of the time delay T depends on the appearance location of the first minimum
value of the auto-covariance function. Here, the AMI function for time delay T and Cao’s function for
dimension m are used. For the recorded response data x(n) (n = 1,2, . . . ,N), the AMI quantifies the
average amount of information obtained about x(n + T) through x(n). If x(n + T) and x(n) are completely
independent, the AMI value becomes zero. However, in practice, the value of T corresponding to
the first minimum of the AMI function is considered sufficient, which means that the first minimum
value of T can be chosen as the proper time delay. Figure 8 shows the AMI values for the eight plates’
responses. When T reached 12, all the AMI values were reaching their minimum values. Hence, the
time delay was chosen to be 12 for this experiment. A proper choice of embedding dimension m should
guarantee that no false neighbors exist in the reconstructed state space. Cao’s functions for the eight
plates’ responses are provided in Figure 9a. Figure 9b is Cao’s function for the plate whose minimum
embedding dimension is largest compared with the others’. E1 and E2 are two quantities defined by
Cao [29] for determining the minimum embedding dimension of a scalar time series. Suppose a time
series, x1, x2, . . . ,xN. The attractor Xi(m)can be reconstructed as follows [29]:

Xi(m) = (xi, xi+T , . . . , xi+(m−1)T), i = 1, 2, . . . , N − (m− 1)T. (6)

Define:

a(i, m) =
‖Xi(m + 1)− Xn(i,m)(m + 1)‖
‖Xi(m)− Xn(i,m)(m)‖ i = 1, 2, . . . , N −mT, (7)

where ||·|| is some measurement of Euclidian distance and is given by the maximum norm, i.e.,

‖Xk(n)− Xl(n)‖ = max
∣∣∣xk+jT − xl+jT

∣∣∣ (0 ≤ j ≤ n− 1). (8)
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Define:

E(m) =
1

N −mT

N−mT

∑
i=1

a(i, m). (9)

Then
E1(m) = E(m + 1)/E(m). (10)

Define:

E∗(m) =
1

N −mT

N−mT

∑
i=1

∣∣∣xi+mT − xn(i,m)+mT

∣∣∣. (11)

Then
E2(m) = E∗(m + 1)/E∗(m). (12)

Equations (10) and (12) are the definitions of E1 and E2, respectively. Notably, the values of E1

and E2 stopped changing after m exceeded 15 and an embedding dimension of 16 was selected for this
experiment. The detailed selection procedure can be found in [29].
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4.3. Damage-Sensitive Feature: NNPE

Once the embedding parameters are selected, all segments with the same embedding parameters
are used to reconstruct the attractors. Then, the NNPE values for the ultrasonic responses of
specimens (b)–(h) are calculated by comparing their attractors with the reference undamaged attractor
reconstructed from the ultrasonic response of specimen (a).

Several linear features, including the root mean square xrms, standard deviation, and shape factor
were calculated for the eight plates’ response data in addition to the NNPE values. These features
are chosen not only for their ability to reflect the vibration amplitude and energy in the time domain
but also for their power to represent the time series distribution of the responses [33]. To compare the
performances of these features, all the calculation results are normalized by the undamaged value.
The features can be calculated by the following equations:

xrms =

√√√√√ N
∑

n=1
(x(n))2

N
, (13)

xstd =

√√√√√ N
∑

n=1
(x(n)− xm)

2

N − 1
, and (14)

xs f =
xrms

1
N

N
∑

n=1
|x(n)|

(15)

where xm is the mean value of x(n).
Figure 10 shows the values of each feature calculated from the dynamic responses for specimens

(b)–(h). It is clear that: (1) when the damage width exceeded 0.4 mm, all the feature values were
changing, which means that all the features had the ability to detect damage larger than 0.4 mm; (2)
the proposed linear features were relatively insensitive to damage smaller than 0.4 mm, as evidenced
by the tangent slopes of the linear features’ plots that were close to zero when the damage was smaller
than 0.4 mm; and (3) compared to the linear features, the plot of the NNPE had the steepest tangent
slope when the damage width changed from 0 to 0.8 mm. The value of the tangent slope of the NNPE
plot is almost 10 times larger than those of the others, especially when the damage width is smaller
than 0.4 mm. This result reveals that the NNPE feature outperformed the other linear features and can
be used to detect smaller damage.
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4.4. Damage Visualization and Quantification

As mentioned in Section 2.3, the excitation laser pulse scans over both the damaged area and the
comparison undamaged area while the ultrasonic responses from the excitation point are recorded by
a transducer placed at a fixed point. The scanning area covering the damage was 5 × 5 mm2 in this
experiment. The scanning process continues until the whole area is covered. The calculated NNPE values
can be used to visualize the entire scanned area, and the spatial distribution of the values is expected
to help in detecting the damage. Furthermore, because the pitch between two adjacent points in the
scanned area is known before scanning (0.02 mm for this experiment), the size of the damage can be
quantified by counting the number of points that contain damage in the visualization picture. The results
are summarized in Figure 11. For simplicity’s sake, only the visualization pictures for specimens (c) and
(d) with the smallest damage widths are plotted. One thing deserves to be mentioned is that when the
laser beam spot irradiates in the front of the damage, the focal distance of the laser beam will change and
result in a varying diameter of the laser beam spot. It means that the presence of the damage changes the
characteristics of the structure as well as the laser beam. However, we should notice that the changing in
the received signal caused by a varying laser beam spot is very limited. According to the work conducted
by Aindow et al. [34], the diameter of the laser beam spot mainly affects the pulse duration of the surface
waves. Compared with the nonlinear modulation caused by the damage as shown in Figure 2, the effects
caused by a varying laser beam spot is almost negligible. From another perspective, the state-space
predictive model mainly focuses on the changing of the received signal. Generally speaking, the changing
of the laser beam spot caused by damage is helpful for the damage detection.

From Figure 11 we can see that a strongest nonlinearity was observed when damage appeared.
Thus, the damage could be localized by the proposed technique successfully. Notably, the distribution
of the damage is uniform through the Y direction. This is caused by the limitation of the transducer.
When the laser pulse irradiates at the edge of the transducer, the laser generated ultrasonic waves will
be propagating to the transducer obliquely. Some of the signals may be missed in this situation. So the
calculated NNPE values are not uniformly distributed, especially at the edge of the scanning area. By
extracting the coordinate values of the damage in Figure 11, the damage size can be quantified too.
In Figure 11a, the longest distance of the damage width along the X direction was 59.7 − 57.1 = 2.6.
The width of the damage was then 2.6 × 0.02 = 0.052 mm, which matched the actual width. Similarly,
the width of the damage to structure (d) was 5.1 × 0.02 = 0.102 mm.

Using this method, the damage was not only localized, but its size was quantified too. Especially
noteworthy is the number of scanning points and the pitches between two adjacent points being
adjustable, which means, proper visualization parameters can be chosen to detect the different damage
dimensions to obtain the best visualization results. For example, a larger distance between the scanning
points should be chosen to visualize lager dimensioned damage.

In the above damage detection process, the crack is contained in the scanning area. However, if
the damage is located between the scanning area and the transducer, the damage detection process is
relatively cumbersome. In this situation, the detection process is as follows:

Three plates are needed, as shown in Figure 6a–c. Plates (a) and (b) are undamaged and plate (c)
is a damaged plate with a crack. First of all, we make plate (a) the reference undamaged plate and plate
(b) the current undamaged plate to be detected. Calculate the NNPE values in the scan area for plate
(b). It is reasonable to predict that the calculated NNPE values will be basically the same. Secondly,
make plate (a) the reference undamaged plate and plate (c) the current plate to be detected. Calculate
the NNPE values in the scan area for plate (c). Again, the calculated NNPE values will be basically the
same. Thirdly, compare the NNPE values calculated from plate (c) with the NNPE values calculated
from plate (b). It is not hard to predict that the NNPE values calculated from plate (c) will be larger
than the NNPE values calculated from plate (b) as a result of the damage. In this case, we can tell
that there is a crack in plate (c), but the location of the crack is still unknown. This damage detection
process is relatively cumbersome for practical applications. In the following, different scanning modes
will be proposed to simplify the damage detection process.
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5. Actual Damage Detection and Quantification of a Twin-Screw Compressor Body

5.1. Description of the Detection of a Twin-Screw Compressor Body

An actual 22 kW twin-screw compressor body (218A) is introduced for further verification of the
effectiveness of the damage detection technique. The body is made of grey cast iron (No.35) by casting
and has rough dimensions of 370 × 230 × 180 mm3, as shown in Figure 12. The upper and lower parts
of the body are connected by positioning pins and bolts. There is a strict demand for the quality of the
body because any small crack in the body may cause an extremely horrible production accident under
high temperature and high-pressure working conditions. However, in practice, it is easy to produce
sand inclusions and the resulting fatigue cracks into the body during the casting process. Using the
proposed technique and the experimental setup proved in this study, the damage on the connection
transverse plane was detected and quantified. Images of the actual damage are shown in Figure 13.
Both images were taken with a digital microscope by KEYENCE (VHX-100). Figure 13a is a global view
of the damage and contains both the sand inclusions and fatigue cracks. The magnification is 25 times
the original size. Figure 13b is a local enlarged picture of Figure 13a. The area containing a fatigue crack
in Figure 13a was extracted and enlarged to obtain a closer look at the damage. The magnification is
100 times the original size.
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(b) enlarged local fatigue crack.

5.2. Damage Visualization and Quantification

In this section, we discuss the detection, visualization and quantification of the damage on the
connection transverse plane of a twin-screw compressor body using the experimental setup presented
in Section 3. In this damage detection process, two scanning modes with different damage detection
accuracies were used in the experiment to identify the damage with different dimensions. In mode one,
the scanning area of the laser pulse was set to 10 × 10 mm2, and the distance between the two adjacent
points was 0.2 mm, yielding 2500 scanning points. The damage was quickly located in this wide range
scanning mode. The scanning area of the laser pulse was set to 5 × 5 mm2 in mode two. The distance
between the two adjacent points was 0.1 mm, yielding 2500 scanning points. More information on the
tiny damage was acquired by using this scanning mode. A schematic of the second scanning mode
was shown in Figure 13a. In this experiment, the baseline data was acquired from the same connection
transverse plane on the same twin-screw compressor body. The only difference is that the scanned area
used for acquiring the baseline data was examined carefully with the digital microscope to make sure
there is no obvious defect in the area. In this way, this area can be treated as the ‘reference undamaged
structure’ in the experiment. The embedding parameters should be chosen before computing the
NNPE values. The embedding parameters of ten randomly selected ultrasonic responses recorded by
a transducer placed at a fixed point were calculated by the AMI and Cao’s function. The calculation
results are provided in Figures 14 and 15, respectively. The results calculated by Cao’s function for the
response, whose minimum embedding dimension was the largest compared with those of the others,
are shown in Figure 15b. From Figures 14 and 15, when the time delay T reached 4, the calculation
results for all the responses by using the AMI function were close to the minimum value, and the
values of E1 and E2 did not change after m exceeded 23. Hence, T = 4 and m = 24 were selected in
this experiment. Similarly, the time delay T and embedding dimension m in scanning mode two were
calculated to be 3 and 19, respectively. Next, all responses with the same embedding parameters were
used to reconstruct the attractors. Based on the attractors reconstructed from both the undamaged
and damaged sections, the 2500 NNPE values were computed and are summarized in Figure 16. Here,
the detection result by linear feature root mean square was also calculated as shown in Figure 17 in
addition to the NNPE values. In Figure 16a, the values of the feature NNPE around the sand inclusion
are the largest compared with others in the scanning area. Thus, the sand inclusion can be detected
and visualized clearly. Furthermore, the shape and direction of the resulting fatigue crack can be
vaguely distinguished from the picture too. But, the picture of the fatigue crack is almost submerged
in the environmental noise due to the low detection accuracy. In Figure 16b, the shape and direction
information of the fatigue crack can be identified clearly, which means that in scanning mode two
the damage detection accuracy has been greatly improved as a result of changes in the visualization
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parameters. In Figure 17, the sand inclusion has been detected and visualized successfully. However,
the detection of the resulting fatigue crack has failed since there is no obvious information about the
fatigue crack in Figure 17. This detection result is not surprised since the nonlinear ultrasonic features
are usually more sensitive to small cracks than the linear ones as mentioned above. This detection
result is consistent with the result given in Figure 10.
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By extracting the coordinate values of the damage, the size of the cracks can also be quantified.
The largest width of the sand inclusion in Figure 16 was 1.24(0.2 × (24.5 − 18.3)) mm. The largest
width of the sand inclusion in Figure 17 was 1.12 (0.2 × (24.9 − 19.3)) mm. Both of the calculated
values were in line with its actual size of 1.21 mm, but the value calculated by NNPE values is more
accurate. The widths of the measuring points in Figure 16b are 380 (0.1 × (17.1 − 13.3)) um, 250 (0.1 ×
(25.1 − 22.6)) um, and 110 (0.1 × (28.4 − 27.3)) um, respectively, which match the actual measurements
well. Therefore, the proposed technique was again able to detect and quantify the damage on the
connection transverse plane of the twin-screw compressor body. Also from the result we can see that
the nonlinear feature NNPE is more sensitive to the damage than the linear feature.
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6. Conclusions

This paper presents a non-destructive damage detection, visualization, and quantification
technique based on laser-generated ultrasonics and state-space predictive models. Different types of
damage to aluminum alloy plates and a twin-screw compressor body were detected and quantified by
using NNPE. This feature is extracted from the attractors reconstructed by the ultrasonic responses in
the time domain recorded by a transducer mounted at the surface of the structure. By capturing the
differences in the NNPE values between the undamaged and damaged structures, the nonlinearity of
the structures, which are usually caused by damage, can be detected. Furthermore, the damage can be
visualized and even quantified by observing the spatial distribution of NNPE values calculated by the
ultrasonic responses from the area excited by a scanning laser pulse. Artificial damage to aluminum
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alloy plates, as well as the actual sand inclusions and fatigue cracks in a twin-screw compressor body,
have been successfully detected and quantified by using the proposed technique.

Some important issues that are not considered in this paper are the capability of the technique
in detecting the depth of the damage, the internal damage, and the damage on curved surface.
A follow-up study with the proposed feature NNPE will focus on those issues.
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