# An Interference Cancellation Scheme for High Reliability Based on MIMO Systems

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Conventional Two-Path Relay System Model

## 3. Proposed Scheme

## 4. Simulation Results

## 5. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Saxena, R.; Hem Dutt, J. OFDM and Its Major Concerns: A Study with Way Out. IETE J. Educ.
**2013**, 8, 26–49. [Google Scholar] [CrossRef] - Hwang, T.; Yang, C.; Wu, G.; Li, S.; Li, G.Y. OFDM and Its Wireless Applications: A Survey. IEEE Trans. Veh. Technol.
**2009**, 58, 1673–1694. [Google Scholar] [CrossRef] - Nosratinia, A.; Hunter, T.E.; Hedayat, A. Cooperative Communication in Wireless Networks. IEEE Commun. Mag.
**2004**, 42, 74–80. [Google Scholar] [CrossRef] - Su, W.; Sadek, A.K.; Liu, K.R. Cooperative Communication Protocols in Wireless Networks: Performance Analysis and Optimum Power Allocation. Wirel. Pers. Commun.
**2008**, 44, 181–217. [Google Scholar] [CrossRef] - Laneman, J.N.; Tse, D.N.; Wornell, G.W. Cooperative Diversity in Wireless Networks: Efficient Protocols and Outage Behavior. IEEE Trans. Inf. Theory
**2004**, 50, 3062–3080. [Google Scholar] [CrossRef] - Luo, C.; Gong, Y.; Zheng, F. Full Interference Cancellation for Two-Path Relay Cooperative Networks. IEEE Trans. Veh. Technol.
**2011**, 60, 343–347. [Google Scholar] [CrossRef] - Rui, X.; Wang, M.; Liu, S. Inter-Relay Interference Suppression for Two-Path MIMO Relay Systems. Electron. Lett.
**2016**, 52, 774–776. [Google Scholar] [CrossRef] - Ji, Y.; Han, C.; Wang, A.; Shi, H. Partial Inter-Relay Interference Cancellation in Two Path Successive Relay Network. IEEE Commun. Lett.
**2014**, 18, 451–454. [Google Scholar] [CrossRef] - Wolniansky, P.W.; Foschini, G.J.; Golden, G.D.; Valenzuela, R.A. V-BLAST: An Architecture for Realizing Very High Data Rates over the Rich-Scattering Wireless Channel. In Proceedings of the 1998 URSI International Symposium on Signals, Systems, and Electronics, Pisa, Italy, 2 October 1998; pp. 295–300. [Google Scholar]
- Golden, G.D.; Foschini, C.J.; Valenzuela, R.A.; Wolniansky, P.W. Detection Algorithm and Initial Laboratory Results Using V-BLAST Space-Time Communication Architecture. Electron. Lett.
**1999**, 35, 14–16. [Google Scholar] [CrossRef] - Bohnke, R.; Wubben, D.; Kuhn, V.; Kammeyer, K.D. Reduced Complexity MMSE Detection for BLAST Architectures. In Proceedings of the Global Telecommunications Conference, San Francisco, CA, USA, 1–5 December 2003; pp. 2258–2262. [Google Scholar]
- Wubben, D.; Bohnke, R.; Kuhn, V.; Kammeyer, K.D. MMSE Extension of V-BLAST Based on Sorted QR Decomposition. In Proceedings of the IEEE 58th Vehicular Technology Conference, Orlando, FL, USA, 6–9 October 2003; pp. 508–512. [Google Scholar]
- Ro, J.H.; Kim, J.K.; You, Y.H.; Song, H.K. Low-Complexity QRD-M with Path Eliminations in MIMO-OFDM Systems. Appl. Sci.
**2017**, 7, 1206. [Google Scholar] [CrossRef] - Kim, J.K.; Ro, J.H.; Song, H.K. A Simplified QRD-M Algorithm in MIMO-OFDM Systems. IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
**2017**, 100, 2195–2199. [Google Scholar] [CrossRef] - Kim, J.K.; Choi, S.J.; Ro, J.H.; Song, H.K. Adaptive K-Best BFTS Signal Detection Algorithm Based on the Channel Condition for MIMO-OFDM Signal Detector. IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
**2017**, 100, 2207–2211. [Google Scholar] [CrossRef] - Kim, K.J.; Yue, J.; Iltis, R.A.; Gibson, J.D. A QRD-M/Kalman Filter-Based Detection and Channel Estimation Algorithm for MIMO-OFDM Systems. IEEE Trans. Wirel. Commun.
**2005**, 4, 710–721. [Google Scholar] [CrossRef] - Lim, H.; Jang, Y.; Li, T.; Yoon, D. Improved QRD-M Algorithm Based on Adaptive Threshold for MIMO Systems. In Proceedings of the 2014 Sixth International Conference on Communication Systems and Networks (COMSNETS), Bangalore, India, 6–10 January 2014. [Google Scholar]
- Sun, S.; Dai, Y.; Lei, Z.; Kenichi, H.; Kawai, H. Pseudo-Inverse MMSE Based QRD-M Algorithm for MIMO OFDM. In Proceedings of the IEEE 63rd Vehicular Technology Conference, Melbourne, Australia, 7–10 May 2006; pp. 1545–1549. [Google Scholar]
- Bossert, M.; Huebner, A.; Schuehlein, F.; Haas, H.; Costa, E. On Cyclic Delay Diversity in OFDM Based Transmission Schemes. In Proceedings of the 7th International OFDM Workshop, Hamburg, Germany, 10–11 September 2002. [Google Scholar]
- Alamouti, S.M. A Simple Transmit Diversity Technique for Wireless Communications. IEEE J. Sel. Areas Commun.
**1998**, 16, 1451–1458. [Google Scholar] [CrossRef]

**Figure 2.**The proposed two-path relay MIMO system. (

**a**) Odd time slot; (

**b**) Even time slot. MIMO: multiple input multiple output.

**Figure 3.**The BER performances for the conventional FIC and the proposed scheme. BER: bit error rate, FIC: full interference cancellation.

**Figure 5.**The required value of signal-to-noise ratio (SNR) to obtain targeting BER performance of ${10}^{-3}$.

Time Slot | S | ${\mathbf{R}}_{1}$ | ${\mathbf{R}}_{2}$ |
---|---|---|---|

$t=1$ | ${x}_{\mathrm{S}}\left(1\right)$ (S → ${\mathrm{R}}_{1}$) | - | - |

$t=2$ | ${x}_{\mathrm{S}}\left(2\right)$ (S → ${\mathrm{R}}_{2}$) | ${\beta}_{1}{y}_{{\mathrm{R}}_{1}}\left(1\right)$ (${\mathrm{R}}_{1}$ → D, ${\mathrm{R}}_{1}$ → ${\mathrm{R}}_{2}$) | - |

$t=3$ | ${x}_{\mathrm{S}}\left(3\right)$ (S → ${\mathrm{R}}_{1}$) | - | ${\beta}_{2}{y}_{{\mathrm{R}}_{2}}\left(2\right)$ (${\mathrm{R}}_{2}$ → D, ${\mathrm{R}}_{2}$ → ${\mathrm{R}}_{1}$) |

$\vdots $ | $\vdots $ | $\vdots $ | $\vdots $ |

$t=n$ (Odd $n$) | ${x}_{\mathrm{S}}\left(n\right)$ (S → ${\mathrm{R}}_{1}$) | - | ${\beta}_{n-1}{y}_{{\mathrm{R}}_{2}}\left(n-1\right)$ (${\mathrm{R}}_{2}$ → D, ${\mathrm{R}}_{2}$ → ${\mathrm{R}}_{1}$) |

Time Slot | S | ${\mathbf{R}}_{1}$ | ${\mathbf{R}}_{2}$ | |||
---|---|---|---|---|---|---|

${\mathrm{Tx}}_{1}$ | ${\mathrm{Tx}}_{2}$ | ${\mathrm{Tx}}_{1}$ | ${\mathrm{Tx}}_{2}$ | ${\mathrm{Tx}}_{1}$ | ${\mathrm{Tx}}_{2}$ | |

$t=1$ | ${x}_{1}$ (S → ${\mathrm{R}}_{1}$) | ${x}_{1,\delta}$ (S → ${\mathrm{R}}_{1}$) | ||||

$t=2$ | ${x}_{2}$ (S → ${\mathrm{R}}_{2}$) | ${x}_{2,\delta}$ (S → ${\mathrm{R}}_{2}$) | ${\widehat{x}}_{1}$ (${\mathrm{R}}_{1}$ → D, ${\mathrm{R}}_{1}$ → ${\mathrm{R}}_{2}$) | ${\widehat{x}}_{1,\delta}$ (${\mathrm{R}}_{1}$ → D, ${\mathrm{R}}_{1}$ → ${\mathrm{R}}_{2}$) | ||

$t=3$ | ${x}_{3}$ (S → ${\mathrm{R}}_{1}$) | ${x}_{3,\delta}$ (S → ${\mathrm{R}}_{1}$) | ${\widehat{x}}_{2}$ (${\mathrm{R}}_{2}$ → D, ${\mathrm{R}}_{2}$ → ${\mathrm{R}}_{1}$) | ${\widehat{x}}_{2,\delta}$ (${\mathrm{R}}_{2}$ → D, ${\mathrm{R}}_{2}$ → ${\mathrm{R}}_{1}$) | ||

$\vdots $ | $\vdots $ | $\vdots $ | $\vdots $ | $\vdots $ | $\vdots $ | $\vdots $ |

$t=n$ (Odd $n$) | ${x}_{n}$ (S → ${\mathrm{R}}_{1}$) | ${x}_{n,\delta}$ (S → ${\mathrm{R}}_{1}$) | ${\widehat{x}}_{n-1}$ (${\mathrm{R}}_{2}$ → D, ${\mathrm{R}}_{2}$ → ${\mathrm{R}}_{1}$) | ${\widehat{x}}_{n-1,\delta}$ (${\mathrm{R}}_{2}$ → D, ${\mathrm{R}}_{2}$ → ${\mathrm{R}}_{1}$) |

Parameters | Scheme or Values |
---|---|

FFT size | 128 |

GI size | 32 |

Modulation scheme | 256-QAM |

Channel model | 8-path Rayleigh fading channel |

Channel coding & Constraint length | 1/2 convolutional code & 3 |

The number of antennas at source, relay, and destination | 2 for each node |

Scheme | Conventional FIC | Proposed Scheme |
---|---|---|

Addition | 14 | $4N$ ($2N$ for (a) in Equation (15) and $2N$ for (b) in Equation (15)) |

Multiplication | 22 | $12N$ ($4N$ for composite channel, $4N$ for (a) in Equation (15), $4N$ for (b) in Equation (15)) |

Division | 2 | $2N$ for division in Equation (15) |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ro, J.-H.; Park, S.-S.; Song, H.-K.
An Interference Cancellation Scheme for High Reliability Based on MIMO Systems. *Appl. Sci.* **2018**, *8*, 466.
https://doi.org/10.3390/app8030466

**AMA Style**

Ro J-H, Park S-S, Song H-K.
An Interference Cancellation Scheme for High Reliability Based on MIMO Systems. *Applied Sciences*. 2018; 8(3):466.
https://doi.org/10.3390/app8030466

**Chicago/Turabian Style**

Ro, Jae-Hyun, Sung-Soon Park, and Hyoung-Kyu Song.
2018. "An Interference Cancellation Scheme for High Reliability Based on MIMO Systems" *Applied Sciences* 8, no. 3: 466.
https://doi.org/10.3390/app8030466